JPH02240215A - Production of thin grain-oriented magnetic steel sheet - Google Patents

Production of thin grain-oriented magnetic steel sheet

Info

Publication number
JPH02240215A
JPH02240215A JP1059777A JP5977789A JPH02240215A JP H02240215 A JPH02240215 A JP H02240215A JP 1059777 A JP1059777 A JP 1059777A JP 5977789 A JP5977789 A JP 5977789A JP H02240215 A JPH02240215 A JP H02240215A
Authority
JP
Japan
Prior art keywords
decarburization
annealing
temperature
final
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1059777A
Other languages
Japanese (ja)
Other versions
JPH0742502B2 (en
Inventor
Kenichi Nishiwaki
西脇 健一
Fumio Yamamatsu
山松 文男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP1059777A priority Critical patent/JPH0742502B2/en
Publication of JPH02240215A publication Critical patent/JPH02240215A/en
Publication of JPH0742502B2 publication Critical patent/JPH0742502B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To improve magnetic properties and film characteristics by rolling a slab of silicon steel in which respective contents of C, Si, Mn, S, sol.Al, N, Cu, and Sn and applying decarburizing treatment and heat treatment in a nonoxidizing atmosphere under respectively specified temp. and time conditions. CONSTITUTION:A slab of silicon steel having a composition consisting of 0.06-0.10% C, 2.5-4.5% Si, 0.01-0.10% Mn, 0.01-0.04% S, 0.01-0.065% sol.Al, 0.005-0.01% N, 0.03-0.50% Cu, 0.03-0.50% Sn, and the balance essentially Fe is rolled to 0.25-0.15mm final thickness, to which decarburizing treatment is applied at a temp. represented by an equation for 1-10min. Subsequently, the resulting rolled sheet is subjected to heat treatment in a nonoxidizing atmosphere at 850-1050 deg.C for <=10min and then to final finish annealing, by which a grain-oriented silicon sheet is produced. By this method, a product in which secondary recrystallization is stabilized and which has excellent magnetic properties and superior film characteristics can be obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、薄手一方向性電磁鋼板の二次再結晶を安定さ
せ、磁気特性及び皮膜特性を向上させることを目的とし
た薄手一方向性電磁鋼板の製造方法である。
Detailed Description of the Invention (Field of Industrial Application) The present invention is a thin unidirectional electrical steel sheet for the purpose of stabilizing secondary recrystallization of a thin unidirectional electrical steel sheet and improving magnetic properties and film properties. This is a method for manufacturing electrical steel sheets.

(従来の技術) 変圧器などの鉄心材料として用いられる一方向性電磁鋼
板は、−最には、所定の必要成分を含有する鋼片を熱間
圧延し、1回もしくは2回以上の焼鈍・冷間圧延を繰り
返し行って、最終板厚とした後、脱炭焼鈍を行い、M、
Oなとの焼鈍分離剤を塗布して最終仕上焼鈍を施して製
造されている。
(Prior Art) Unidirectional electrical steel sheets used as core materials for transformers, etc. are produced by: - Finally, a steel billet containing predetermined necessary components is hot-rolled, then annealed once or twice or more. After repeated cold rolling to obtain the final plate thickness, decarburization annealing is performed, M,
It is manufactured by applying an annealing separator such as O and subjecting it to final annealing.

この脱炭焼鈍の主要目的としては、■脱炭を行う事、■
二次再結晶につながる一次再結晶粒を形成する事、■フ
ォルステライト皮膜を生成する為のSigh系酸化層を
生成する事、の3点が考えられている。この様な脱炭焼
鈍に対して、その昇温過程の昇温速度を規定して磁気特
性を向上させる特開昭54−35117号公報記載の方
法、750〜870’Cの脱炭雰囲気中での脱炭処理を
行った後、仕上焼鈍前に890〜1050℃の非酸化性
雰囲気中で熱処理を行う特公昭54−24686号公報
記載の方法、また脱炭焼鈍過程の前部と後部の雰囲気酸
化度を変える特公昭57−1575号公報記載の方法な
どが開示されている。
The main purposes of this decarburization annealing are: ■Decarburization;■
Three points are considered: forming primary recrystallized grains that lead to secondary recrystallization, and (2) generating a Sigh-based oxide layer to generate a forsterite film. For such decarburization annealing, the method described in JP-A-54-35117 improves magnetic properties by regulating the temperature increase rate of the temperature increase process in a decarburization atmosphere at 750 to 870'C. The method described in Japanese Patent Publication No. 54-24686, in which heat treatment is performed in a non-oxidizing atmosphere at 890 to 1050°C after decarburization treatment and before final annealing, and the atmosphere at the front and rear parts of the decarburization annealing process. The method described in Japanese Patent Publication No. 57-1575 and the like for changing the degree of oxidation are disclosed.

(発明が解決しようとする課題) 近年、方向性電磁鋼板の低鉄損化の需要が高まり、その
為に、製品板厚を薄くしていく方策が採られてきている
。しかし薄手化に伴い、従来の製造方法では、仕上焼鈍
過程に於ける二次再結晶挙動が不安定になる事は避けら
れず、0.250 m以下の板厚で磁気特性が優れた製
品を製造することが、困難であるという問題点があった
つ 本発明は、従来の脱炭焼鈍技術に対して、製品板厚毎の
焼鈍温度を規定することにより二次再結晶を安定させ、
磁気特性と皮膜特性を良好なものとする薄手一方向性電
磁鋼板の製造方法を提供するものである。
(Problems to be Solved by the Invention) In recent years, there has been an increasing demand for lower iron loss in grain-oriented electrical steel sheets, and for this reason, measures have been taken to reduce the thickness of the product sheets. However, due to thinning, conventional manufacturing methods inevitably lead to unstable secondary recrystallization behavior during the final annealing process, making it difficult to produce products with excellent magnetic properties with a thickness of 0.250 m or less. However, the present invention stabilizes secondary recrystallization by specifying the annealing temperature for each product plate thickness, compared to the conventional decarburization annealing technology, which has had the problem of being difficult to manufacture.
The present invention provides a method for manufacturing a thin grain-oriented electrical steel sheet that has good magnetic properties and film properties.

(課題を解決するための手段) 本発明は、前述の様な一方向性電磁鋼板の製造過程にお
ける脱炭焼鈍条件に関わるものである。
(Means for Solving the Problems) The present invention relates to decarburization annealing conditions in the manufacturing process of grain-oriented electrical steel sheets as described above.

従来は、成る最終板厚範囲に対して所定範囲内の温度で
焼鈍を行い、二次再結晶が不安定になる薄手化の方法に
対して、その脱炭焼鈍条件を規定する様な方策は、開示
されてはいなかった。最終板厚が薄くなる場合の方策も
、例えば、特公昭571575号公報記載の方法では、
雰囲気酸化度を変えることにより、高々0.225mm
の最終板厚の製造方法を提示するものであるし、また、
特開昭57−41326号公報記載の方法では、フォル
ステライト量を規定するものの、その方法としては脱炭
焼鈍時の雰囲気、Mg0O量と質、最終仕上焼鈍の雰囲
気を示すにとどめられている。それらに対して本発明は
、最終板厚に対応した焼鈍温度を採用することで、0.
250 rsta以下の薄手一方向性電磁鋼板を安定し
て製造する方法を提示するものである。
Conventionally, the final plate thickness range is annealed at a temperature within a predetermined range, and secondary recrystallization becomes unstable. , had not been disclosed. For example, the method described in Japanese Patent Publication No. 571,575 can also be used when the final plate thickness becomes thinner.
By changing the degree of oxidation in the atmosphere, it is possible to reduce the
This paper presents a manufacturing method for the final plate thickness of
Although the method described in JP-A-57-41326 specifies the amount of forsterite, the method only indicates the atmosphere during decarburization annealing, the amount and quality of Mg0O, and the atmosphere for final finish annealing. In contrast, the present invention adopts an annealing temperature that corresponds to the final plate thickness.
The present invention presents a method for stably manufacturing thin unidirectional electrical steel sheets with a thickness of 250 rsta or less.

先ず本発明に至った実験とその結果について説明する。First, the experiments that led to the present invention and their results will be explained.

請求項1記載の成分範囲の電磁鋼スラブを1.8〜2.
3 mに熱間圧延し、均一化焼鈍→冷間圧延→中間焼鈍
を施した後、80〜95%の圧下率で100〜400℃
の鋼板温度を保ちながら0.13〜0.22 tmの最
終板厚に圧延した。それらを、760〜860℃の温度
範囲で3分間脱炭処理後、900℃の非酸化性雰囲気中
で1分間の熱処理を行い、次いで最終仕上焼鈍によって
得た製品の二次再結晶の安定度と鉄…を、第1図に示し
た。760〜860℃の温度範囲では、はぼ全試料で脱
炭が良好に行われているが、最終板厚が薄くなるにつれ
て二次再結晶が安定する温度範囲が狭くなっていること
がわかる。しかも、鉄損のレベルが脱炭処理温度により
変動しており、二次再結晶が安定し鉄損が良好となるの
が最終板厚により異なる脱炭焼鈍温度であることが明ら
かになった。
The electromagnetic steel slab having the composition range according to claim 1 is 1.8 to 2.
After hot rolling to 3 m, homogenizing annealing → cold rolling → intermediate annealing, the steel was heated at 100 to 400°C with a rolling reduction of 80 to 95%.
The steel sheet was rolled to a final thickness of 0.13 to 0.22 tm while maintaining the temperature of the sheet. Stability of secondary recrystallization of the products obtained by decarburizing them for 3 minutes at a temperature range of 760 to 860 degrees Celsius, followed by heat treatment for 1 minute in a non-oxidizing atmosphere at 900 degrees Celsius, and then final annealing. and iron... are shown in Figure 1. It can be seen that in the temperature range of 760 to 860°C, decarburization was performed well in almost all the samples, but as the final plate thickness became thinner, the temperature range in which secondary recrystallization was stabilized became narrower. Furthermore, it has been revealed that the level of iron loss varies depending on the decarburization treatment temperature, and that secondary recrystallization is stable and iron loss is good at decarburization annealing temperatures that vary depending on the final plate thickness.

た。Ta.

この実験結果の理由について推察すると、先に述べた脱
炭焼鈍の3点の主要目的の内、「■フォルステライト皮
膜を生成する為のSing系酸化層を生成する事」を改
善していると考えられる。先ず「■脱炭を行う事」につ
いては、この焼鈍温度範囲では、脱炭は、はぼ安定して
おり、脱炭自体が改善された訳ではない。また「■二次
再結晶につながる一次再結晶粒を形成する事」は、脱炭
焼鈍に引き続く900℃の非酸化性雰囲気中での熱処理
により確保されており、前の脱炭温度の違いによる影響
は少ないと言える。さて、「■フォルステライト皮膜を
生成する為の5int系酸化層を生成する事」の改善に
ついてであるが、最終板厚に応じた最適なSiO□系酸
化層の質と量が存在すると推測される。即ち、二次再結
晶の安定度に影響するSth系酸系層化層(最終仕上焼
鈍過程中の二次再結晶開始温度近辺で、雰囲気窒素が、
Sing系酸化層を通して鋼板中へ侵入し、インヒビタ
ーとして存在する/’JNが変動する)と、鉄損値に影
響する5i02系酸化層の量(フォルステライト皮膜の
張力効果と占積率の相関)とが、最終板厚により異なり
それが最適になって初めて薄手の一方向性電磁鋼板の製
造が可能になったと考えられる。
Inferring the reason for this experimental result, it seems that among the three main purposes of decarburization annealing mentioned earlier, it improves "■generating a Sing-based oxide layer to generate a forsterite film". Conceivable. First of all, with regard to ``performing decarburization'', in this annealing temperature range, decarburization is fairly stable, and decarburization itself is not improved. In addition, "■ Forming primary recrystallized grains that lead to secondary recrystallization" is ensured by heat treatment in a non-oxidizing atmosphere at 900°C following decarburization annealing, and is due to the difference in the previous decarburization temperature. It can be said that the impact is small. Now, regarding the improvement of "■Generating a 5-inch oxide layer to generate a forsterite film," it is assumed that there is an optimal quality and quantity of the SiO□-based oxide layer depending on the final plate thickness. Ru. That is, the Sth-based acid layer that affects the stability of secondary recrystallization (near the secondary recrystallization start temperature during the final annealing process, atmospheric nitrogen
The amount of 5i02-based oxide layer that penetrates into the steel sheet through the Sing-based oxide layer and exists as an inhibitor/'JN fluctuates) and the amount of the 5i02-based oxide layer that affects the iron loss value (correlation between the tension effect of the forsterite film and the space factor) differs depending on the final plate thickness, and it is thought that it became possible to manufacture thin unidirectional electrical steel sheets only when it was optimized.

以下に、範囲限定の根拠について説明する。The basis for limiting the range will be explained below.

Cの下限は、二次再結晶が不安定になる限界として0.
060%であり、上限は、脱炭焼鈍の所要時間が長くな
り過ぎ経済的に不利となる為に0.100%と限定した
The lower limit of C is 0.0 as the limit at which secondary recrystallization becomes unstable.
060%, and the upper limit was set to 0.100% because the time required for decarburization annealing would be too long, which would be economically disadvantageous.

Siは、電気抵抗を高め鉄損値を低減させる為に添加し
、その下限は、脱炭焼鈍過程での脱炭処理後の850〜
1050℃の非酸化性雰囲気中での熱処理中に、α−γ
変態による組織変化が無い様に2.5%とし、その上限
は、冷間圧延等の加工性限界により4.5%とした。
Si is added to increase electrical resistance and reduce iron loss value, and its lower limit is 850~ after decarburization treatment in the decarburization annealing process.
During heat treatment at 1050°C in a non-oxidizing atmosphere, α-γ
The content was set at 2.5% so that there would be no structural change due to transformation, and the upper limit was set at 4.5% due to the workability limit of cold rolling, etc.

Mn、 Cu、  SはインヒビターとしてのMn3.
 CuxSを形成する為に必要な元素で、下限は、それ
ぞれインヒビターとしての絶対量を確保する為に、0.
01%、0.03%、0.01%と限定し、上限は、M
nは容体化温度で0.10%、Cuは酸洗性で0.50
%、Sは熱間割れのトラブルを回避する為に0.04%
と限定した。
Mn, Cu, S are Mn3. as inhibitors.
These are the elements necessary to form CuxS, and the lower limit is 0.0 to ensure the absolute amount of each as an inhibitor.
01%, 0.03%, 0.01%, and the upper limit is M
n is 0.10% at compaction temperature, Cu is 0.50 at pickling property.
%, S is 0.04% to avoid hot cracking troubles.
limited to.

sol、N、  Nは、インヒビターとしてのA7Nを
形成する為に必要な元素で、下限及び上限は、それぞれ
インヒビターとしての絶対量を最適に保つ為に、sol
、klは0.010〜0.065%、Nは0.005〜
0.010%と限定した。
sol, N, and N are elements necessary to form A7N as an inhibitor.
, kl is 0.010~0.065%, N is 0.005~
It was limited to 0.010%.

Snは粒界に偏析し、二次再結晶を安定化させるが、下
限は、偏析量が不足となる限界として0.03%とし、
上限は、経済的に不利となる為に0.50%と限定した
Sn segregates at grain boundaries and stabilizes secondary recrystallization, but the lower limit is set at 0.03% as the limit at which the amount of segregation becomes insufficient.
The upper limit was set at 0.50% because it would be economically disadvantageous.

次に請求項1記載の発明における脱炭焼鈍は、本発明者
が開示した特公昭54−24686号公報記載の方法を
採用しており、即ち、750〜870℃の脱炭雰囲気中
での脱炭処理を行った後890〜1050℃の非酸化雰
囲気中での熱処理を行う二段の温度での焼鈍を基盤とし
ている。その脱炭処理温度に関しては、最終板厚を0.
25mm以下と規定した製品での実験結果により780
〜850℃と制限し、非酸化性雰囲気中での熱処理は、
同じく最終板厚を0.25 tm以下と規定した製品で
の実験結果より、850〜1050℃と制限した。請求
項1の発明は、本発明の基本的内容を表すもので、第1
図の結果から導かれる様に、最終板厚が0.25m以下
(0.15am以上)の場合、その脱炭処理温度は最終
板厚に応じて、以下の、0式 %式%() が表す最適値が存在することを示したものである。
Next, the decarburization annealing in the invention according to claim 1 employs the method described in Japanese Patent Publication No. 54-24686 disclosed by the present inventor, that is, decarburization in a decarburization atmosphere at 750 to 870°C. It is based on two-stage annealing in which carbon treatment is followed by heat treatment in a non-oxidizing atmosphere at 890-1050°C. Regarding the decarburization treatment temperature, the final plate thickness is 0.
780 based on experimental results for products specified as 25mm or less
The heat treatment in a non-oxidizing atmosphere is limited to ~850°C.
Similarly, based on the results of experiments with products in which the final plate thickness was specified to be 0.25 tm or less, the limit was set at 850 to 1050°C. The invention of claim 1 expresses the basic content of the present invention, and the invention of claim 1 represents the basic content of the present invention.
As derived from the results in the figure, when the final plate thickness is 0.25 m or less (0.15 am or more), the decarburization treatment temperature is determined according to the final plate thickness as follows: This shows that there is an optimal value for representing the value.

一方、その脱炭処理における時間は、下限を脱炭が完了
し更に適正なSin、系酸化層の生成に必要な最低限の
時間から1分間とし、上限は過度の酸化層生成を限定す
る為に10分間とした。また、非酸化性雰囲気中での熱
処理においては、充分な一次再結晶粒の形成に必要な1
0分間以下と限定した。それより長時間の場合には磁性
の劣化および生産性の低下を招くからである。その脱炭
焼鈍の雰囲気は780〜850℃の脱炭処理の時には、
脱炭が充分に進行する酸化度であれば良く、また、後段
の850〜1050℃の熱処理では酸化の進行を極力抑
えられる非酸化性雰囲気であれば良く、これらは、特に
規制するものではない。
On the other hand, the time for the decarburization process is set at a lower limit of 1 minute, which is the minimum time required to complete decarburization and to generate an appropriate Sin and oxide layer, and an upper limit of 1 minute to limit excessive oxide layer formation. for 10 minutes. In addition, in heat treatment in a non-oxidizing atmosphere, the
The duration was limited to 0 minutes or less. This is because if the heating time is longer than that, deterioration of magnetism and reduction in productivity will occur. The decarburization annealing atmosphere is 780 to 850℃ during decarburization treatment.
It is sufficient as long as the degree of oxidation allows decarburization to proceed sufficiently, and in the subsequent heat treatment at 850 to 1050°C, it is sufficient as long as it is a non-oxidizing atmosphere that suppresses the progress of oxidation as much as possible; these are not particularly restricted. .

請求項2の発明は、請求項1の発明による特性の向上に
あわせ生産性の向上を加味したものである。即ち、請求
項2の発明は請求項1の発明と同じく板厚に応じて脱炭
温度を最適化するのであるが、脱炭処理過程の後半部で
は、835〜850℃に温度を上げることで、5i02
系酸化層が生成される時間が短縮され、生産性を向上さ
せる事が可能となるものである。但し、請求項2の発明
における三段の温度条件により生産性の向上を図る場合
、最終板厚に応じて下げた脱炭処理温度780〜850
 ℃での必要な時間は、以下の考えにより決定されれば
良い、即ち、最終板厚に応じて下げた脱炭処理温度での
必要な時間は、成る程度の脱炭が進行完了するまでの時
間とすれば充分であり、その後は温度を上げて最適な量
と質の5ta2系酸化層の生成を確保するのに必要な時
間に短縮して生産性の向上を図る事が可能である。一方
、三段の温度条件で行う場合に、初期の温度を請求項1
の範囲を外れる高温で行ったり、範囲内であっても時間
が短か過ぎた時には、良好な結果が得られないが、それ
は、脱炭が完了していない状態で、5iO1系酸化層の
生成が増え、フォルステライト皮膜の緻密性に影響を与
えるStO□系酸化層の質に不都合が生じることが原因
となっているのではないかと准測される。
The invention of claim 2 takes into consideration the improvement of productivity in addition to the improvement of characteristics provided by the invention of claim 1. That is, the invention of claim 2 optimizes the decarburization temperature according to the thickness of the plate like the invention of claim 1, but in the latter half of the decarburization process, by raising the temperature to 835 to 850°C. ,5i02
The time required for the generation of the system oxide layer is shortened, making it possible to improve productivity. However, if productivity is to be improved by the three-step temperature conditions in the invention of claim 2, the decarburization treatment temperature is lowered from 780 to 850 depending on the final plate thickness.
The required time at ℃ may be determined based on the following consideration.In other words, the required time at the decarburization treatment temperature, which is lowered according to the final plate thickness, is the time needed to complete the decarburization process. It is sufficient to increase the time, and after that, it is possible to increase the temperature and shorten the time to the time necessary to ensure the production of the 5ta2-based oxide layer in the optimum quantity and quality, thereby improving productivity. On the other hand, when carrying out the process under three-stage temperature conditions, the initial temperature is as claimed in claim 1.
Good results may not be obtained if the temperature is outside the range, or if the time is too short even if it is within the range, this is because decarburization is not completed and a 5iO1-based oxide layer is formed. It is hypothesized that this is caused by an increase in the quality of the StO□-based oxide layer, which affects the density of the forsterite film.

板厚を限定した理由は、良好な磁気特性を得る為に上限
を0.25amとし、下限は、実験結果より、二次再結
晶及び磁性の安定性から0.15mとした。
The reason why the plate thickness was limited was that the upper limit was set to 0.25 am in order to obtain good magnetic properties, and the lower limit was set to 0.15 m in view of secondary recrystallization and magnetic stability based on experimental results.

製造工程に関しては、常法で製造された熱延板を析出処
理し、80〜95%の強圧延率で冷間圧延し最終板厚と
するか、2回以上の圧延法であれば、40%以下の圧延
率で圧延→析出処理を施した後、80〜95%の強圧延
率で最終冷延を行い所定の最終板厚とし、本発明の脱炭
焼鈍を行う。
Regarding the manufacturing process, a hot-rolled sheet manufactured by a conventional method is subjected to precipitation treatment, and then cold-rolled at a strong rolling rate of 80 to 95% to obtain the final sheet thickness, or if the rolling method is performed twice or more, 40% After performing rolling→precipitation treatment at a rolling rate of 80 to 95%, final cold rolling is performed at a hard rolling rate of 80 to 95% to obtain a predetermined final plate thickness, and the decarburization annealing of the present invention is performed.

次いで、この鋼板にMgOを主成分とした焼鈍分離剤を
塗布した後、二次再結晶と純化を行う最終仕上焼鈍をし
、張力コーティングを実施する。
Next, an annealing separator containing MgO as a main component is applied to this steel plate, and then final annealing is performed to perform secondary recrystallization and purification, followed by tension coating.

(実施例1) c : o、oso%、 St : 3.23%、 M
n : 0.076%、SX0.025 %、  so
l、 fiJ : 0.025 %、  N : 0.
0086%+  Sn:0.12%、Cu:0.07%
を含有する2、 30 mmの熱延板に、2回の焼鈍、
冷延(中間板厚1.55m1で最終板厚0.22111
111)をし、 ■860℃X180sec■850℃X 180sec
■835℃×180sec0800″(: X 180
secの各条件で脱炭処理を行い、引き続き非酸化性雰
囲気で880℃X60secの熱処理をして、脱炭焼鈍
実験を行った。その後、公知の焼鈍分離剤塗布、最終仕
上焼鈍、張力コーティングを施して、一方向性電磁鋼板
を得た。その結果を、第1表に示す。
(Example 1) c: o, oso%, St: 3.23%, M
n: 0.076%, SX0.025%, so
l, fiJ: 0.025%, N: 0.
0086%+ Sn: 0.12%, Cu: 0.07%
2, 30 mm hot rolled sheet containing
Cold rolling (intermediate thickness 1.55m1, final thickness 0.22111
111) ■860℃×180sec■850℃×180sec
■835℃×180sec0800″(: X 180
A decarburization annealing experiment was performed by performing decarburization treatment under various conditions for 10 seconds, followed by heat treatment at 880° C. for 60 seconds in a non-oxidizing atmosphere. Thereafter, a known annealing separator application, final finish annealing, and tension coating were applied to obtain a unidirectional electrical steel sheet. The results are shown in Table 1.

第1表 二の第1表の結果から、本発明法に従えば、従来法に比
較して良好な磁気特性と皮膜特性が得られることが判る
From the results in Table 1 and Table 2, it can be seen that by following the method of the present invention, better magnetic properties and film properties can be obtained than by the conventional method.

(実施例2) C:0.080%、 Si : 3.23%、 Mn 
: 0.076%、880.025%、 sol、 k
l : 0.025%、 N : 0.0086%、 
Sn:0.12%、 Cu : 0.07%を含有する
2、3011m+の熱延板に、2回の焼鈍、冷延(中間
板厚1.40mmで最終板厚0.17aa)をし、 0835℃X 180sec■820℃X 180se
c■800℃×180sec■800℃X 90sec
 + 835℃X60secの各条件で脱炭処理を行い
、引き続き非酸化性雰囲気で880℃X60secの熱
処理をして、脱炭焼鈍実験を行った。その後、公知の焼
鈍分離剤塗布、最終仕上焼鈍、張力コーティングを施し
て、一方向性電磁w4ttyiを得た。その結果を、第
2表に示す。
(Example 2) C: 0.080%, Si: 3.23%, Mn
: 0.076%, 880.025%, sol, k
l: 0.025%, N: 0.0086%,
A hot rolled sheet of 2,3011m+ containing Sn: 0.12% and Cu: 0.07% was annealed twice and cold rolled (intermediate sheet thickness 1.40 mm, final sheet thickness 0.17 aa), 0835℃X 180sec■820℃X 180sec
c■800℃×180sec■800℃×90sec
A decarburization annealing experiment was performed by performing decarburization treatment under various conditions of +835°C for 60 seconds, followed by heat treatment at 880°C for 60 seconds in a non-oxidizing atmosphere. Thereafter, a known annealing separator application, final finish annealing, and tension coating were performed to obtain a unidirectional electromagnetic w4ttyi. The results are shown in Table 2.

第2表 この第2表の結果から、本発明に従えば、従来法に比較
して良好な磁気特性が得られ、第二の発明に従えば、時
間短縮による生産性の向上が達成されることが判る。
Table 2 From the results in Table 2, it can be seen that according to the present invention, better magnetic properties can be obtained compared to the conventional method, and according to the second invention, productivity can be improved by reducing time. I understand that.

(発明の効果) 本発明によれば、二次再結晶が安定し、磁気特性に優れ
皮膜性状の良い一方向性電磁鋼板の薄手製品を製造でき
る効果がある。
(Effects of the Invention) According to the present invention, there is an effect that secondary recrystallization is stable, and thin products of unidirectional electrical steel sheets with excellent magnetic properties and good film properties can be manufactured.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、最終板厚の異なる材料の脱炭処理温度を変え
た場合の、二次再結晶の安定度と鉄損値を示したもので
ある。 〔凡例〕
FIG. 1 shows the stability of secondary recrystallization and iron loss values when the decarburization treatment temperature is changed for materials with different final plate thicknesses. 〔Usage Guide〕

Claims (1)

【特許請求の範囲】[Claims] (1)C:0.060〜0.100%、Si:2.5〜
4.5%、Mn:0.01〜0.10%、S:0.01
〜0.04%、sol.Al:0.010〜0.065
%、N:0.005〜0.010%、Cu:0.03〜
0.50%、Sn:0.03〜0.50%、残部鉄及び
不可避的不純物を含む電磁鋼スラブを熱間圧延し、1回
もしくは中間焼鈍をはさむ2回以上の冷間圧延を施して
、0.25〜0.15mmの最終板厚とし、780〜8
50℃の脱炭雰囲気中で、1〜10分間脱炭処理を行っ
た後、850〜1050℃の非酸化性雰囲気中で10分
間以下の熱処理を行い、次いで、最終仕上焼鈍によって
一方向性電磁鋼板を製造する方法において、上記脱炭焼
鈍の脱炭処理温度を最終板厚に応じて、以下の[1]式
を満たす温度で行うことを特徴とする薄手一方向性電磁
鋼板の製造方法。 T−807=700(t−0.186)〔T:焼鈍温度
(℃)、t:最終厚板(0.15〜0.251)〕[1
](2)前記脱炭焼鈍の脱炭処理を2段に分割し、前段
部を請求項1の[1]式の温度で行い、後段部を835
〜850℃の温度で行う請求項1記載の薄手一方向性電
磁鋼板の製造方法。
(1) C: 0.060~0.100%, Si: 2.5~
4.5%, Mn: 0.01-0.10%, S: 0.01
~0.04%, sol. Al: 0.010-0.065
%, N: 0.005-0.010%, Cu: 0.03-
A magnetic steel slab containing 0.50%, Sn: 0.03-0.50%, balance iron and unavoidable impurities is hot rolled, and cold rolled once or twice or more with intermediate annealing in between. , final plate thickness of 0.25-0.15mm, 780-8
After decarburizing for 1 to 10 minutes in a decarburizing atmosphere at 50°C, heat treatment for 10 minutes or less in a non-oxidizing atmosphere at 850 to 1050°C, and then final annealing to produce unidirectional electromagnetic A method for manufacturing a thin unidirectional electrical steel sheet, characterized in that the decarburization treatment temperature of the decarburization annealing is carried out at a temperature that satisfies the following formula [1] depending on the final sheet thickness. T-807 = 700 (t-0.186) [T: annealing temperature (°C), t: final thick plate (0.15-0.251)] [1
] (2) The decarburization process of the decarburization annealing is divided into two stages, the first stage being carried out at a temperature according to formula [1] of claim 1, and the second stage being carried out at a temperature of 835°C.
The method for manufacturing a thin grain-oriented electrical steel sheet according to claim 1, which is carried out at a temperature of ~850°C.
JP1059777A 1989-03-14 1989-03-14 Manufacturing method of thin unidirectional electrical steel sheet Expired - Lifetime JPH0742502B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1059777A JPH0742502B2 (en) 1989-03-14 1989-03-14 Manufacturing method of thin unidirectional electrical steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1059777A JPH0742502B2 (en) 1989-03-14 1989-03-14 Manufacturing method of thin unidirectional electrical steel sheet

Publications (2)

Publication Number Publication Date
JPH02240215A true JPH02240215A (en) 1990-09-25
JPH0742502B2 JPH0742502B2 (en) 1995-05-10

Family

ID=13123062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1059777A Expired - Lifetime JPH0742502B2 (en) 1989-03-14 1989-03-14 Manufacturing method of thin unidirectional electrical steel sheet

Country Status (1)

Country Link
JP (1) JPH0742502B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0633142A (en) * 1992-07-13 1994-02-08 Nippon Steel Corp Decarburizing annealing method of grain-oriented silicon steel sheet excellent in magnetic flux density and film adhesion
EP0761827A2 (en) * 1995-09-07 1997-03-12 Kawasaki Steel Corporation Process for producing grain oriented silicon steel sheet, and decarburized sheet

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0633142A (en) * 1992-07-13 1994-02-08 Nippon Steel Corp Decarburizing annealing method of grain-oriented silicon steel sheet excellent in magnetic flux density and film adhesion
JP2579717B2 (en) * 1992-07-13 1997-02-12 新日本製鐵株式会社 Decarburization annealing method for grain-oriented electrical steel sheets with excellent magnetic flux density and film adhesion
EP0761827A2 (en) * 1995-09-07 1997-03-12 Kawasaki Steel Corporation Process for producing grain oriented silicon steel sheet, and decarburized sheet
EP0761827A3 (en) * 1995-09-07 1998-05-27 Kawasaki Steel Corporation Process for producing grain oriented silicon steel sheet, and decarburized sheet

Also Published As

Publication number Publication date
JPH0742502B2 (en) 1995-05-10

Similar Documents

Publication Publication Date Title
JP3172439B2 (en) Grain-oriented silicon steel having high volume resistivity and method for producing the same
JP6844125B2 (en) Manufacturing method of grain-oriented electrical steel sheet
WO2014049770A1 (en) Process for producing grain-oriented electromagnetic steel sheet
JPH02259020A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JPS598049B2 (en) Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties
JPH0686630B2 (en) Method for manufacturing unidirectional silicon steel sheet with high magnetic flux density
JP6891707B2 (en) Non-oriented electrical steel sheet and its manufacturing method
JPH06128646A (en) Production of grain oriented silicon steel sheet reduced in iron loss and having high magnetic flux density
WO1999046416A1 (en) Unidirectional magnetic steel sheet and method of its manufacture
JPH059666A (en) Grain oriented electrical steel sheet and its manufacture
JP2603130B2 (en) Manufacturing method of high magnetic flux density grain-oriented electrical steel sheet
JPH02240215A (en) Production of thin grain-oriented magnetic steel sheet
JP2001049351A (en) Production of grain-oriented silicon steel sheet high in magnetic flux density
JP2002212635A (en) Method for producing grain oriented silicon steel sheet having excellent magnetic property
JPH0625747A (en) Manufacture of thin high magnetic flux density grain-oriented silicon steel sheet
JPH04341518A (en) Production of extra thin grain-oriented silicon steel sheet having high magnetic flux density and reduced in iron loss
JPH06256847A (en) Manufacture of grain-oriented electrical steel sheet having excellent magnetic characteristic
JPH08279408A (en) Manufacture of unidirectional electromagnetic steel sheet being excellent in magnetic characteristics
JP2001192787A (en) Grain oriented silicon steel sheet excellent in magnetic property, and its manufacturing method
JPS6333518A (en) Non-oriented electrical steel sheet having low iron loss and excellent magnetic flux density and its production
JPH05295441A (en) Production of grain-oriented silicon steel sheet excellent in glass film characteristic, having superior magnetic property, and increrased in magnetic flux density
JPH07305116A (en) Production of high magnetic flux density grain-oriented silicon steel sheet
JP2712913B2 (en) Grain-oriented electrical steel sheet and its manufacturing method
JPH09118920A (en) Stable manufacture of grain-oriented magnetic steel sheet excellent in magnetic property
JP2562254B2 (en) Manufacturing method of thin high magnetic flux density unidirectional electrical steel sheet

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080510

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090510

Year of fee payment: 14

EXPY Cancellation because of completion of term