JPH02239595A - Airport lighting device and individual power source for the device - Google Patents
Airport lighting device and individual power source for the deviceInfo
- Publication number
- JPH02239595A JPH02239595A JP1061350A JP6135089A JPH02239595A JP H02239595 A JPH02239595 A JP H02239595A JP 1061350 A JP1061350 A JP 1061350A JP 6135089 A JP6135089 A JP 6135089A JP H02239595 A JPH02239595 A JP H02239595A
- Authority
- JP
- Japan
- Prior art keywords
- lamp
- power supply
- individual power
- voltage
- current
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000012544 monitoring process Methods 0.000 claims description 32
- 238000004891 communication Methods 0.000 claims description 12
- 238000001514 detection method Methods 0.000 claims description 8
- 239000000463 material Substances 0.000 claims description 2
- 239000011347 resin Substances 0.000 claims 1
- 229920005989 resin Polymers 0.000 claims 1
- 238000010586 diagram Methods 0.000 description 10
- 230000006870 function Effects 0.000 description 4
- 238000013459 approach Methods 0.000 description 3
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 3
- 238000012423 maintenance Methods 0.000 description 3
- 238000009423 ventilation Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 238000010891 electric arc Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 239000013307 optical fiber Substances 0.000 description 2
- 229920001084 poly(chloroprene) Polymers 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- 208000032368 Device malfunction Diseases 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 230000009931 harmful effect Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
- Circuit Arrangement For Electric Light Sources In General (AREA)
- Direct Current Feeding And Distribution (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は.滑走路等の空港灯火装置に関する.〔従来の
技術〕
空港灯火装置としての例えば滑走路灯火施設は,航空機
を滑走路という限られた狭い区域に離着陸させるための
視覚援助施設である.すなわち、航空機のパイロットに
光源そのものを見せることによって、進入すべき滑走路
を示す視覚信号である。[Detailed Description of the Invention] [Industrial Application Field] The present invention... Concerning airport lighting equipment for runways, etc. [Prior Art] For example, a runway lighting facility as an airport lighting system is a visual aid facility for allowing aircraft to take off and land on a limited narrow area called a runway. That is, it is a visual signal indicating the runway to be approached by showing the light source itself to the aircraft pilot.
一般に、滑走路灯火施設は滑走路に沿って設置された進
入灯、進入角指示灯,接地帯灯、滑走路中心線灯、滑走
路灯、風向指示灯,滑走路末端灯などの主灯火設備の他
、誘導路灯および誘導路中心灯などの補助灯火設備から
なる.これら滑走路の灯火はA級滑走路(3000m級
)において約5000灯あり、昼、夕方、夜等の背景輝
度条件、雲高低条件、視程条件に応じて、パイロットの
目に適正な光度で灯火信号を提供できるように調整され
なければならない.
従来の滑走路灯火施設は、例えば特開昭55−1152
93号公報または特開昭55−11.5294号公報等
に示されるように,灯火(ランプ)の用途ごとにグルー
プ分けしかつグループ内を何分割かに分け、通常50〜
100個のランプ群単位に1つの灯火回路を形成し,こ
れに対して1つの定電流制御装置を設け、これによりそ
の群に属するランプの光度を一括して制御するようにさ
れている.
そして,このような灯火回路は,広い区域にわたって配
置され、例えば100個のランプを,ゴムトランスと称
する小型のトランスの2次側に接続し,このランプトラ
ンスの1次側をケーブルで直列接続して構成されている
.ここで,ランプの仕様は種々のものがあるが、例えば
200W.30V、6.6A程度のものを用いたとき,
ランプトランスとしては、1次電圧30v.電流6,6
Aのものが適用される.このようなランプトランスを用
いるのは,ランプが断芯しても直列接続された灯火回路
全体の停電が防げるからである.したがって、ランプト
ランスはそれに応じた飽和特性のものが用いられている
.
このように、灯火回路はランプトランスを直列接続して
なることから、定電流制御装置の出力端における電圧は
,上記例で30VX100個=3000V必要となる.
そこで一般に、定電流制御装置の2次側に昇圧トランス
を設けて,各ランブに電力を供給するようにしている.
この場合、昇圧トランスは電源電圧の変動や、灯火回路
におけるラインドロップを考慮して1次電圧が440V
、2次電圧が4400V、電流6.6A、容量約30K
VA程度のものが用いられる.なお、ランプの光度制御
は昇圧トランス2次側の電流を、前記定電流制御装置に
より制御して1つの灯火回路を一括しておこなうように
なっている.〔発明が解決しようとする課題〕
上述した従来技術によれば、次のような問題点がある.
■ 直列接続された100個程度のランプを,1つの定
電流制御装置により一括制御する方式であることから.
定電流制御装置が故障すると、これの負荷である灯火回
路のすべてのランプが消えてしまい,航空機の運行上支
障ができるという問題がある.
■ 前述したように、灯火回路が高電圧となるため、ケ
ーブルやランプトランスの絶縁耐圧が高く要求されるこ
とからコスト高になり,また高電圧に起因する地絡事故
,絶縁不良、アーク放電などの問題がある.
■ 断芯したランプの所在を特定することが困難である
.なお、ランプ群一括でランプの断芯の有無および個数
を検出する方法として、特開昭55−13979号公報
、特開昭55−148390号公報,特開昭58−18
897号公報等により提案されたものが知られている.
しかし,それらの技術によっても断芯したランプそのも
のを特定することができないという問題がある,従来は
上記のような問題を有することから,空港灯火設備の保
守において、地絡事故などの発生箇所や断芯ランブを見
つけ出すため、常時パトロールがおこなわれており,そ
のような不具合箇所の保守や修繕に莫大なマンパワーを
必要とするという問題があった.
本発明の第1の目的は,故障等の影響が及ぶ範囲を低減
することができる空港灯火装置を提供することにある.
本発明の第2の目的は,灯火回路を低電圧化することか
できる空港灯火装置を提供することにある.
本発明の第3の目的は、断芯したランプを特定できる空
港灯火装置を提供することにある.〔課題を解決するた
めの手段〕
本発明は第1と第2の目的を達成するため、空港の滑走
路等に配設される複数のランプを1または数個のランプ
からなるグループに分割し、該グループごとに個別電源
装置を近接して設け、各グループに属するランプを対応
する個別電源装置の負荷として並列に接続し,各個別電
源装置を中央電源に接続された配電線に並列接続してな
る空港灯火装置としたことにある.
また、上記第3の目的を達成するため,上記構成に加え
て、前記個別電源装置に各ランプの電圧と電流を検出し
、該検出値に基づいて各ランプの断芯を含む作動状態を
検出するランプ監視手段を設けたものである.
〔作用〕
上記構成とすることにより、次の作用により本発明の目
的が達成される.
まず、1または数個のランプをグループとして個別電源
装置を分散して設けているから.a別電源装置の故障は
そのグループ内だけに影響を与えるだけに止どまる.そ
して,個別電源装置は中央wigに対して並列に接続さ
れていることから、個別電源装置の供給電圧(灯火回路
の電圧)が低電圧化される.そして,この低電圧化によ
り、配電線ケーブルおよび個別電源装置の低圧化がなさ
れ,高電圧#Il#に起因する種々の弊害を除去するこ
とができる.
また、個別電源装置にランプの断芯検出を含むランプ作
動状態監視手段を設けていることから,断芯したランプ
の場所または存在を1個または数個の範囲で特定するこ
とができる.これにより,灯火装置の保守が極めて容易
になる.
〔実施例〕
以下,本発明を実施例に基づいて説明する.第1図に本
発明の一実旅例の全体構成図を示す.本実施例では図示
のように、ランプ1に対し個別電源装置2がそれぞれ対
応して1対1で設けられている.各個別電源装w2には
電流制御回路3とランプ電流を検出する電圧電流検出m
4とランプ監視制御回路5を含んで形成されている.な
おランプ監視制御回路5はマイクロコンピュータを用い
て構成するのが望ましい.各個別電源装!!2は中央電
源6に配電線7を介してそれぞれ並列に接続されている
.また,ランプ監視制御回路5は通信線8を介して中央
監視所9に接続されている.なお、本実施例ではランプ
1と個別電源装!2を1対1のものについて示したが,
1つの個別電源装置2に対しランブ1を数個接続するこ
とにより個別電源装置2の台数を減らすことが可能であ
る。In general, runway lighting facilities include main lighting equipment installed along the runway, such as approach lights, approach angle indicator lights, touchdown zone lights, runway centerline lights, runway lights, wind direction indicator lights, and runway end lights. It also consists of auxiliary lighting equipment such as taxiway lights and taxiway center lights. There are approximately 5,000 lights on these A-class runways (3,000 m class), and the lights are illuminated at an appropriate brightness for the pilot's eyes, depending on background brightness conditions such as daytime, evening, and night, cloud height and low conditions, and visibility conditions. must be adjusted to provide a signal. Conventional runway lighting facilities include, for example, Japanese Patent Application Laid-Open No. 55-1152
As shown in Publication No. 93 or Japanese Unexamined Patent Publication No. 55-11.5294, lights (lamps) are divided into groups according to their usage, and each group is divided into several divisions.
One lamp circuit is formed for each group of 100 lamps, and one constant current control device is provided for each lamp group, thereby collectively controlling the luminous intensity of the lamps belonging to the group. Such a lighting circuit is arranged over a wide area, for example, by connecting 100 lamps to the secondary side of a small transformer called a rubber transformer, and connecting the primary side of this lamp transformer in series with a cable. It is composed of Here, there are various specifications of the lamp, for example, 200W. When using something of about 30V and 6.6A,
As a lamp transformer, the primary voltage is 30v. Current 6,6
A applies. The reason for using such a lamp transformer is that even if a lamp breaks, it prevents a power outage in the entire series-connected lighting circuit. Therefore, lamp transformers with saturation characteristics are used accordingly. In this way, since the lamp circuit is made up of lamp transformers connected in series, the voltage at the output end of the constant current control device is required to be 30V x 100 = 3000V in the above example.
Therefore, a step-up transformer is generally installed on the secondary side of the constant current control device to supply power to each lamp.
In this case, the primary voltage of the step-up transformer is 440V, taking into account fluctuations in the power supply voltage and line drops in the lighting circuit.
, Secondary voltage is 4400V, current 6.6A, capacity approximately 30K
Something of VA level is used. The luminous intensity of the lamp is controlled by controlling the current on the secondary side of the step-up transformer using the constant current control device described above, thereby controlling the luminous intensity of one lamp circuit at once. [Problems to be solved by the invention] According to the above-mentioned conventional technology, there are the following problems. ■ This is because approximately 100 lamps connected in series are collectively controlled by one constant current control device.
If the constant current control device malfunctions, all the lamps in the lighting circuit, which is its load, will go out, causing a problem in the operation of the aircraft. ■ As mentioned above, since the lighting circuit operates at high voltage, the cables and lamp transformers are required to have high dielectric strength, which increases costs, and also increases the risk of ground faults, poor insulation, arc discharge, etc. caused by high voltage. There is a problem. ■ It is difficult to locate the broken lamp. In addition, as a method for detecting the presence or absence of broken cores and the number of broken lamps in a group of lamps at once, Japanese Patent Application Laid-Open Nos. 1983-13979, 1983-148390, and 1982-18 are known.
One proposed by Publication No. 897 is known.
However, even with these technologies, there is a problem that it is not possible to identify the broken lamp itself.Conventional methods have the above problems, so when maintaining airport lighting equipment, it is necessary to identify the location where a ground fault has occurred, etc. Constant patrols were conducted to find broken lamps, and there was a problem in that a huge amount of manpower was required to maintain and repair such defective parts. The first object of the present invention is to provide an airport lighting system that can reduce the range affected by failures, etc. A second object of the present invention is to provide an airport lighting system that can reduce the voltage of the lighting circuit. A third object of the present invention is to provide an airport lighting system that can identify broken lamps. [Means for Solving the Problems] In order to achieve the first and second objects, the present invention divides a plurality of lamps arranged on an airport runway etc. into groups consisting of one or several lamps. , the individual power supplies for each group are provided in close proximity, the lamps belonging to each group are connected in parallel as loads of the corresponding individual power supplies, and each individual power supply is connected in parallel to the distribution line connected to the central power source. The reason for this is that the airport lighting system will become a major airport lighting system. In order to achieve the third objective, in addition to the above configuration, the individual power supply device detects the voltage and current of each lamp, and based on the detected values, detects the operating state of each lamp, including breakage. This lamp is equipped with lamp monitoring means. [Function] With the above configuration, the object of the present invention is achieved by the following function. First, individual power supplies are distributed for one or several lamps as a group. A failure of a separate power supply unit only affects that group. Since the individual power supply devices are connected in parallel to the central wig, the supply voltage of the individual power supply devices (voltage of the lighting circuit) is reduced. As a result of this lower voltage, the voltage of the distribution line cable and individual power supply device can be lowered, and various harmful effects caused by the high voltage #Il# can be eliminated. Furthermore, since the individual power supply unit is provided with a lamp operating state monitoring means that includes lamp breakage detection, it is possible to identify the location or existence of one or several broken lamps. This makes maintenance of the lighting equipment extremely easy. [Example] The present invention will be explained below based on an example. Figure 1 shows an overall configuration diagram of a practical example of the present invention. In this embodiment, as shown in the figure, individual power supply devices 2 are provided in one-to-one correspondence with the lamps 1, respectively. Each individual power supply unit w2 includes a current control circuit 3 and a voltage/current detection m for detecting lamp current.
4 and a lamp monitoring control circuit 5. It is preferable that the lamp monitoring control circuit 5 is constructed using a microcomputer. Each individual power supply! ! 2 are connected in parallel to a central power source 6 via power distribution lines 7, respectively. Further, the lamp monitoring control circuit 5 is connected to a central monitoring station 9 via a communication line 8. In addition, in this example, the lamp 1 and an individual power supply unit are used! 2 was shown for a one-to-one ratio, but
By connecting several lamps 1 to one individual power supply device 2, it is possible to reduce the number of individual power supply devices 2.
またこの場合,数個のランプ1に対して電圧電流検出器
4を個別にまたは一括して設け、後で説明するランプ監
視を個別にまたは一括しておこなうようにすることが可
能である。Further, in this case, it is possible to provide voltage and current detectors 4 for several lamps 1 individually or all at once, and to perform lamp monitoring, which will be described later, individually or all at once.
第2図に、第1図実施例の個別電源装I2の詳細構成図
を示す.中央電WX6から供給される電力はヒューズ1
1を介して電流制御回路3に入力される.電流制御回路
3は整流回路12と電流レギュレータ13から構成され
ている.1!流レギュレータl3は2組のスイッチング
素子14A,14Bを有するブリッジ型インバータの電
流レギュレータとされている.なお、符号15は平滑コ
ンデンサである.電流レギュレータ13の出力がランブ
1に接続されている.ランプ回路2は電流検出器4Aと
電圧検出器4Bが設けられており、これにより検出され
た電流と電圧の検出信号は、AD変換器21を介して監
視手段22に入力されている.また,AD変換器21に
より変換されたランプ電流■^は光度制御手段23に入
力されている.光度制御手段23は通信手段24を介し
て中央監視所9から与えられる光度指令(電流に相当す
る量)Isと検出電流I^とを比較し,それらを一致さ
せるように位相制御装置25を介してスイッチング素子
14A,14Bを制御するようになっている.なお、中
央監視所9は空港のコントロールタワーまたは変電所な
どに設置される.通信線8は光ファイバーなどを用いた
多重信号線を適用することができ、中央監視所9から各
個別電源装誼2に対して,光度指令と運転指令などの情
報を伝送するようになっている.また,監視手段22に
よって検出されたランプの作動状庵,例えば断芯検出,
光度検出,灯火寿命予測,内部短絡検出等のデータが通
信手段24を介して中央監視所9に伝送されるようにな
っている.なお、ランプ作動状態の生データおよび個別
電源装M2に関する作動状態のデータを通信手段24を
介して中央監視所9に転送し、中央監視所9においてそ
れらのデータに基づいて各ランプの光度チェック、断芯
チェック、寿命チェック、などおよび各個別電源装it
2の機能チェックをおこなうようにすることも可能であ
る.いずれの方式によっても、中央で灯大装置の全体の
状態を集中的に監視することが可能である.
このように構成される実施例の動作について次に説明す
る.中央電源6から与えられる交流電力が,ヒューズ1
1を介して整流回路12により整流され直流に変換され
る.そして直流出力は電流レギュレータ13により制御
され,電流レギュレータ13の出力電圧は零から所定の
最大電圧まで連続的に可変制御される.なお,電流レギ
ュレータ13はいわゆるPWMインバータまたはスイッ
チングレギュレータと称されるものを用いることができ
る.このようにして制御された直流電圧がランプ1に印
加される.そのときランブ1に流れる電流と印加された
電圧は,それぞれ電流検出器4Aと電圧検出器4Bによ
り検出され、さらにAD変換器21によりデジタル信号
に変換される.光度制御手段23は通信手段24から与
えられる光度指令IsとAD変換器21から入力される
電流検出値工^の偏差を演算し.その偏差を零にすべ〈
位相制御信号を出力する.位相制御装W125はその位
相制御信号を受けて電流レギュレータ13に対応した信
号形態(パルスなど)の制御信号をスイッチング素子1
4A,14Bに出力する.これによって.ランプ1に流
れる電流が光度指令Isに応じた値に制御され,ランプ
1の光度を所定値に保持することができる.
次に、監視手段22について具体的に説明する.監視手
段22はAD変換器21からランプ1に実際に印加され
た電圧V^とランプ電流I^を取り込み.これらを通信
手段24を介して中央監視所9に送出する機能を有する
と共に、あらかじめ設定されたプログラムにより次に説
明するランプの作動状態を検出または診断する。FIG. 2 shows a detailed configuration diagram of the individual power supply unit I2 of the embodiment shown in FIG. The power supplied from Chuo Electric WX6 is fuse 1
1 to the current control circuit 3. The current control circuit 3 is composed of a rectifier circuit 12 and a current regulator 13. 1! The current regulator l3 is a bridge type inverter current regulator having two sets of switching elements 14A and 14B. Note that numeral 15 is a smoothing capacitor. The output of current regulator 13 is connected to lamp 1. The lamp circuit 2 is provided with a current detector 4A and a voltage detector 4B, and current and voltage detection signals detected by these are inputted to a monitoring means 22 via an AD converter 21. Further, the lamp current {circle around (2)} converted by the AD converter 21 is input to the luminous intensity control means 23. The luminous intensity control means 23 compares the luminous intensity command (an amount equivalent to the current) Is given from the central monitoring station 9 via the communication means 24 with the detected current I^, and controls the luminous intensity via the phase control device 25 so as to make them coincide. The switching elements 14A and 14B are controlled by the switching elements 14A and 14B. The central monitoring station 9 is installed at an airport control tower or substation. The communication line 8 can be a multiple signal line using optical fiber or the like, and is configured to transmit information such as luminous intensity commands and operation commands from the central monitoring station 9 to each individual power supply system 2. .. In addition, the operation status of the lamp detected by the monitoring means 22, for example, detection of core breakage,
Data such as light intensity detection, lamp life prediction, and internal short circuit detection are transmitted to the central monitoring station 9 via the communication means 24. The raw data on the operating state of the lamps and the data on the operating state regarding the individual power supply unit M2 are transferred to the central monitoring station 9 via the communication means 24, and the central monitoring station 9 checks the luminous intensity of each lamp based on the data. Breakage check, lifespan check, etc., and each individual power supply unit IT
It is also possible to perform function check 2. Either method makes it possible to centrally monitor the overall status of the lighting equipment. The operation of the embodiment configured in this way will be explained next. AC power given from the central power supply 6 is applied to the fuse 1
1 and then rectified by a rectifier circuit 12 and converted into direct current. The DC output is controlled by a current regulator 13, and the output voltage of the current regulator 13 is continuously variably controlled from zero to a predetermined maximum voltage. Note that the current regulator 13 may be a so-called PWM inverter or a switching regulator. A DC voltage controlled in this way is applied to the lamp 1. At this time, the current flowing through the lamp 1 and the applied voltage are detected by a current detector 4A and a voltage detector 4B, respectively, and further converted into digital signals by an AD converter 21. The luminous intensity control means 23 calculates the deviation between the luminous intensity command Is given from the communication means 24 and the current detection value inputted from the AD converter 21. The deviation should be reduced to zero.
Outputs the phase control signal. Upon receiving the phase control signal, the phase control device W125 transmits a control signal in a signal form (such as a pulse) corresponding to the current regulator 13 to the switching element 1.
Output to 4A and 14B. by this. The current flowing through the lamp 1 is controlled to a value according to the luminous intensity command Is, and the luminous intensity of the lamp 1 can be maintained at a predetermined value. Next, the monitoring means 22 will be specifically explained. The monitoring means 22 receives the voltage V^ and lamp current I^ actually applied to the lamp 1 from the AD converter 21. It has a function of sending these to the central monitoring station 9 via the communication means 24, and also detects or diagnoses the operating state of the lamp, which will be explained next, using a preset program.
■ ランプ断芯チェックは、電圧V^が印加されている
のにもかかわらず、電流工^が零に近い状態にあること
を条件として検出することができる.
■ ランプ内部短絡チェックは、電流I^が指命値どお
り流れているのに、電圧V^が零に近い状態であること
を条件に検出することができる.■ 光度チェックは、
ランプに与えられた電力と光度の関係は,第3図に示す
ように、用いられているランプの特性により決ってくる
ので,電圧V^と電流I^との積により求まる電力をチ
ェックすることにより必要な光度が出ているか否かをチ
ェックすることができる.
■ 寿命の予測は、第4図に示すように,ランプのフィ
ラメントの抵抗と寿命とが一定の相関関係にあることに
基づいておこなうことができる。■ Lamp breakage can be detected under the condition that the current voltage is close to zero even though the voltage V^ is being applied. ■ The lamp internal short circuit check can be detected under the condition that the voltage V^ is close to zero even though the current I^ is flowing as specified. ■ For light intensity check,
The relationship between the power given to the lamp and the luminous intensity is determined by the characteristics of the lamp used, as shown in Figure 3, so check the power determined by the product of the voltage V^ and the current I^. You can check whether the required luminous intensity is coming out. (2) The lifespan can be predicted based on the fact that there is a certain correlation between the resistance of the lamp filament and the lifespan, as shown in FIG.
すなわち、ランプは寿命が近づくと一般にフィラメント
の抵抗Rが上昇することが知られている.そこで、電圧
■^を電流■^で除して抵抗値Rを求め、その抵抗値が
一定値以上に達したか否かによってランプの寿命を予測
または予告することができる.
なお,上記のチェック等に必要な第3図または第4図の
データを含む必要なデータは、あらかじめ監視手段22
のメモリ等に格納されている.以上述べたように,第1
図図示実施例によれば、ランプの光度制御にかかる個別
電源装置をそれぞれランプに対して1 #1 t’設け
た構成とし,各個別電源装置を中央電源に対して並列接
続構成としているため,個別電源装置の1次電圧すなわ
ち配電電圧を低電圧化することができ,個別電源装置の
故障などの影響が及ぶ範囲を著しく低減すると共に,高
電圧に伴う事故等の種々の弊害を除去することができる
.
また、監視手段により、各ランプの光度チェック、断芯
チェック,ランプの寿命予測をおこなうことができる.
これによってパトロールなどの保守作業を大幅に軽減す
ることができる.なお、上記実施例によれば、配電線に
対し各個別電極が並列接続されているため,配電電圧を
1つのランプが必要な電圧に設定すればよく、例えば,
200V程度にすることが可能である.これによってラ
ンプの出力を200Wとすると電流はIA程度になる.
第5図に本発明にかかる個別電源装12の一実施例構造
を一部破断面にして示す.この個別電源装置2は滑走路
内等に設けられる第6図のようなハンドホール内に設置
される.ハンドホール30は地中に埋設され、内部に4
00角×900深さの収納部31が形成され、ほぼ地面
と面一に蓋31が設けられている.したがって、個別電
源装!2の外形寸法は300立方程度にする必要があり
、また完全防水型が要求され、かつ−30℃〜+55℃
の広範囲の温度変化に対して機器を保護するため、クロ
ロブレンゴムなどの材料でモールドしなければならない
.すなわち、第5図に示すように、個別電源装置2の本
体が組み込まれてなる本体ボード41を,取付具42を
介してアルミダイキャストからなるケース43の内部に
取納して固定し.そのケース43の外面をクロロプレン
ゴムなどからなる外被46により被覆した構造となって
いる.そしてランプリード線47と電源用リード線48
と,通信用リード線49は上部から引き出されている.
またケース43は本体43Aと蓋43Bに分割されてお
り、それらの接合部にはラビリンスパッキン44が介装
されている.そしてケース43を構成する外壁部には相
互に連通した通気孔45が穿設されており,この通気孔
45は外被46から引き出された通気管50A,50B
に連通されている.
このように構成されることから、本体ボード41はケー
ス43と外被46により水や湿気が浸入しないように保
護される.また.ランプを点灯した場合、個別電源装置
本体の発熱量は、200Wのランプの場合15〜20W
程度となるため,その熱はケース43に穿設された通気
孔45に通流される外気により冷却される.また、通気
管54A,54Bの一方に送風機を接続して,強制的に
冷却空気を送るようにしてもよい,また,各リード線4
7.48.49はそれぞれコネクタで接続する構成とし
ているが、本発明によれば、配電線電圧が低いので,コ
ネクタの絶縁構造が簡単でかつ着脱時にアーク放電など
を生ずる恐れがない.
第7図に本発明の他の実施例を示す.本実施例が第1図
実施例と異なる点は.中央1%1[6を直流電i1[5
1としたことにある.そのため個別電源装M2の整流回
路12は不要とされている.本実施例によれば、整流回
路12がないことから個別電源装!2本体をより小型に
できると共に,発熱量が少ないという利点がある.また
、配電,117には直流が流れるだけであるから、電圧
降下は抵抗分のみとなり,交流電源を用いる場合に比べ
て電圧降下が少ないという利点がある.
第8図に本発明のさらに他の実施例を示す.本実施例が
、第1図および第2図実施例と異なる点は,ランブ1の
光度を直接光度センサ52により検出されたランブ1の
光度はAD変換器21を介して監視手段22に取り込ま
れるようになっている.滑走路などの灯火設備において
最終的に要求されるのがランブ1の光度の制御である.
したがって,本実施例によればランプの光度そのものを
検出して制御することができるため,正確な光度制御が
可能となる.なお、本実施例の場合は、中央監視所9か
ら光度指令として光度そのものが与えられ、検出光度と
光度指令を比較4II54で比較し、その偏差で光度制
御手段23に入力し、これに基づいてランプ電流を利用
するようにしている.なおまた、光度センサ52に代え
て光ファイバの先端をランプ1に対峙して設け、AD変
換器21の入力部に光・電気信号変換器を設けるように
することも可能である.
〔発明の効果〕
以上説明したように,本発明tこよれば、故障等の影響
が及ぶ範囲を著しく低減すると共に.灯火回路の電圧を
低電圧化することができる.また断芯したランプを特定
することができる.しかも、ランプの光度チェック、寿
命予測、内部短絡チェックなどを中央監視所において集
中監視することも容易にできる.これらの結果、従来に
比べて、保守のためのパトロールがほとんど不要となり
、空港滑走路の灯火設備の維持管理に要していた膨大な
マンパワーを削減することが可能となる。That is, it is known that the resistance R of the filament of a lamp generally increases as it approaches the end of its life. Therefore, the resistance value R is obtained by dividing the voltage ■^ by the current ■^, and the life of the lamp can be predicted or predicted based on whether the resistance value reaches a certain value or more. Note that the necessary data including the data shown in FIG.
It is stored in the memory etc. As mentioned above, the first
According to the illustrated embodiment, an individual power supply device for controlling the luminous intensity of the lamp is provided for each lamp, and each individual power supply device is connected in parallel to the central power supply. The primary voltage of the individual power supply device, that is, the distribution voltage, can be lowered, significantly reducing the range affected by failure of the individual power supply device, and eliminating various adverse effects such as accidents caused by high voltage. Can be done. In addition, the monitoring means can check the luminous intensity of each lamp, check for core breakage, and predict the lamp's lifespan.
This greatly reduces maintenance work such as patrolling. In addition, according to the above embodiment, since each individual electrode is connected in parallel to the distribution line, it is only necessary to set the distribution voltage to the voltage required for one lamp, for example,
It is possible to set the voltage to about 200V. As a result, if the lamp output is 200W, the current will be about IA. FIG. 5 shows the structure of an embodiment of the individual power supply unit 12 according to the present invention in a partially broken section. This individual power supply device 2 is installed in a handhole as shown in Fig. 6, which is provided inside a runway or the like. The hand hole 30 is buried underground, and there are 4 holes inside.
A storage section 31 having a size of 00 mm x 900 mm is formed, and a lid 31 is provided almost flush with the ground. Therefore, a separate power supply! The external dimensions of No. 2 must be approximately 300 cubic meters, and must be completely waterproof, and must be temperature-resistant from -30°C to +55°C.
To protect the equipment from wide temperature changes, it must be molded with a material such as chloroprene rubber. That is, as shown in FIG. 5, a main body board 41 in which the main body of the individual power supply device 2 is incorporated is placed and fixed inside a case 43 made of die-cast aluminum via a fixture 42. The outer surface of the case 43 is covered with a jacket 46 made of chloroprene rubber or the like. And the lamp lead wire 47 and the power supply lead wire 48
The communication lead wire 49 is pulled out from the top.
Further, the case 43 is divided into a main body 43A and a lid 43B, and a labyrinth packing 44 is interposed at the joint between them. The outer wall of the case 43 is provided with ventilation holes 45 that communicate with each other.
It is communicated with. With this configuration, the main body board 41 is protected by the case 43 and the outer cover 46 from ingress of water and moisture. Also. When the lamp is lit, the heat output of the individual power supply unit is 15 to 20W for a 200W lamp.
The heat is cooled by the outside air flowing through the ventilation holes 45 formed in the case 43. Alternatively, a blower may be connected to one of the ventilation pipes 54A, 54B to forcibly send cooling air.
7, 48, and 49 are connected by connectors, but according to the present invention, since the voltage of the distribution line is low, the insulation structure of the connector is simple and there is no risk of arc discharge etc. occurring when connecting and disconnecting. Figure 7 shows another embodiment of the present invention. The difference between this embodiment and the embodiment shown in Fig. 1 is as follows. Center 1% 1[6 is DC electricity i1[5
The reason is that it is set to 1. Therefore, the rectifier circuit 12 of the individual power supply unit M2 is unnecessary. According to this embodiment, since there is no rectifier circuit 12, an individual power supply is required! 2 It has the advantage that the main body can be made smaller and generates less heat. Furthermore, since only direct current flows through the power distribution 117, the voltage drop is only due to the resistance, which has the advantage that the voltage drop is smaller than when using an alternating current power supply. FIG. 8 shows still another embodiment of the present invention. The difference between this embodiment and the embodiments shown in FIGS. 1 and 2 is that the luminous intensity of the lamp 1 is directly detected by the luminous intensity sensor 52, and the luminous intensity of the lamp 1 is taken into the monitoring means 22 via the AD converter 21. It looks like this. The ultimate requirement for lighting equipment such as runways is control of the luminous intensity of lamp 1.
Therefore, according to this embodiment, since the luminous intensity of the lamp itself can be detected and controlled, accurate luminous intensity control is possible. In the case of this embodiment, the luminous intensity itself is given as the luminous intensity command from the central monitoring station 9, the detected luminous intensity and the luminous intensity command are compared in the comparison 4II 54, the deviation is inputted to the luminous intensity control means 23, and based on this, the luminous intensity is The lamp current is used. Furthermore, instead of the light intensity sensor 52, it is also possible to provide the tip of an optical fiber facing the lamp 1, and to provide an optical/electrical signal converter at the input section of the AD converter 21. [Effects of the Invention] As explained above, according to the present invention, it is possible to significantly reduce the range affected by failures, etc. The voltage of the lighting circuit can be lowered. It is also possible to identify broken lamps. Moreover, it is easy to centrally monitor lamp brightness checks, life predictions, internal short circuit checks, etc. at a central monitoring station. As a result, compared to the past, there is almost no need for maintenance patrols, making it possible to reduce the enormous amount of manpower required to maintain and manage the lighting equipment on airport runways.
第1図は本発明の一実施例の全体構成図,第2図は第1
図図示実施例の個別電源装置の詳細構成図,第3図はラ
ンプの電力と光度の関係を示す線図、第4図はランプの
寿命とランプの抵抗との関係を示す線図、第5図は本発
明に係る個別電源装置の構造の一例を示す図、第6図は
第5実施例の個別電源装置が設置されるハンドホールの
構造図、第7図と第8図はそれぞれ本発明の他の実施例
の構成図である.
1・・・ランプ,2・・・個別電源装置,3・・・電流
制御回路,5・・・ランプ監視制御回路、6・・・中央
電源,7・・・配電線、8・・・通信線,9・・・中央
監視所、12・・・整流回路、13・・・電流レギュレ
ータ、4A・・・電流検出器、4B・・・電圧検出器、
21・・・AD変換器、22・・・監視手段.23・・
・光度制御手段,24・・・通信手段、25・・・位相
制御手段,41・・・本体ボード、43・・・ケース、
45・・・通気孔、46・・・外被、Figure 1 is an overall configuration diagram of an embodiment of the present invention, and Figure 2 is a diagram of the first embodiment of the present invention.
Figure 3 is a diagram showing the relationship between lamp power and luminous intensity; Figure 4 is a diagram showing the relationship between lamp life and lamp resistance; Figure 5 is a diagram showing the relationship between lamp life and lamp resistance. The figure is a diagram showing an example of the structure of the individual power supply device according to the present invention, FIG. 6 is a structural diagram of a hand hole in which the individual power supply device of the fifth embodiment is installed, and FIGS. 7 and 8 are respectively according to the present invention. FIG. 2 is a configuration diagram of another embodiment of . DESCRIPTION OF SYMBOLS 1... Lamp, 2... Individual power supply device, 3... Current control circuit, 5... Lamp monitoring control circuit, 6... Central power supply, 7... Distribution line, 8... Communication Line, 9... Central monitoring station, 12... Rectifier circuit, 13... Current regulator, 4A... Current detector, 4B... Voltage detector,
21...AD converter, 22...monitoring means. 23...
・Light intensity control means, 24... Communication means, 25... Phase control means, 41... Main body board, 43... Case,
45...Vent hole, 46...Outer cover,
Claims (1)
は数個のランプからなるグループに分割し、該グループ
ごとに個別電源装置を近接して設け、各グループに属す
るランプを対応する個別電源装置の負荷として並列に接
続し、各個別電源装置を中央電源に接続された配電線に
並列接続してなる空港灯火装置。 2、前記中央電源は交流電源であることを特徴とする請
求項1記載の空港灯火装置。 3、前記個別電源装置が整流回路と、該整流回路の出力
電圧を可変制御するレギュレータを含んでなることを特
徴とする請求項2記載の空港灯火装置。 4、前記中央電源が直流電源であることを特徴とする請
求項1記載の空港灯火装置。 5、空港の滑走路等に配設される複数のランプを1また
は数個のランプからなるグループに分割し、該各グルー
プごとに個別電源装置を近接して設け、各グループに属
するランプを対応する個別電源装置の負荷として並列に
接続し、各個別電源装置を中央電源に接続された配電線
に並列接続してなり、前記個別電源装置に各ランプの電
圧と電流を検出し、該検出値に基づいて各ランプの作動
状態を検出するランプ監視手段を設けてなる空港灯火装
置。 6、前記ランプ監視手段は、電圧有りおよび電流零の条
件でランプの断芯を検出する手段と、電圧無しおよび電
流有りの条件でランプ内部の短絡を検出する手段と、電
圧と電流の特性変化に基づいて寿命を予測する手段と、
ランプの消費電力に基づいて光度を検出する手段の少な
くとも1つの手段を具備することを特徴とする請求項5
記載の空港灯火装置。 7、前記個別電源装置は中央監視所と通信する通信手段
を有し、中央監視所から与えられる光度指令に応じてラ
ンプに流れる電流を制御する光度制御手段を有すること
を特徴とする請求項1または5記載の空港灯火装置。 8、前記個別電源装置は前記ランプ検出手段により検出
されたランプの作動状態データを前記通信手段を介して
、中央監視所に伝送する機能を具備したことを特徴とす
る請求項7記載の空港灯火装置。 9、負荷ランプの電流を与えられる光度指令に応じて制
御する電流制御手段と、ランプの電圧・電流を検出して
ランプの作動状態を監視する監視手段とを有してなる個
別電源装置本体を、良伝熱性を有する材料で形成してな
る密閉容器内に収納し、該容器の外周を樹脂により被覆
してなる空港灯火装置用の個別電源装置。[Claims] 1. A plurality of lamps arranged on airport runways, etc. are divided into groups of one or several lamps, and an individual power supply device is provided adjacent to each group, and each group An airport lighting system in which lamps belonging to the above are connected in parallel as loads of corresponding individual power supply units, and each individual power supply unit is connected in parallel to a distribution line connected to a central power supply. 2. The airport lighting system according to claim 1, wherein the central power source is an AC power source. 3. The airport lighting system according to claim 2, wherein the individual power supply device includes a rectifier circuit and a regulator that variably controls the output voltage of the rectifier circuit. 4. The airport lighting system according to claim 1, wherein the central power source is a DC power source. 5. Divide the multiple lamps installed on airport runways, etc. into groups of one or several lamps, install an individual power supply unit close to each group, and handle the lamps belonging to each group. The individual power supplies are connected in parallel as loads, and each individual power supply is connected in parallel to a distribution line connected to the central power supply, and the individual power supplies detect the voltage and current of each lamp, and the detected values are An airport lighting system comprising a lamp monitoring means for detecting the operating status of each lamp based on. 6. The lamp monitoring means includes a means for detecting a break in the lamp under voltage and zero current conditions, a means for detecting a short circuit inside the lamp under no voltage and current conditions, and a change in voltage and current characteristics. a means for predicting life based on;
Claim 5 characterized in that it comprises at least one means for detecting luminous intensity based on the power consumption of the lamp.
The airport lighting system described. 7. Claim 1, wherein the individual power supply device has a communication means for communicating with a central monitoring station, and a luminous intensity control means for controlling the current flowing through the lamp in accordance with a luminous intensity command given from the central monitoring station. or the airport lighting system described in 5. 8. The airport light according to claim 7, wherein the individual power supply device has a function of transmitting lamp operating state data detected by the lamp detection means to a central monitoring station via the communication means. Device. 9. An individual power supply device body comprising a current control means for controlling the current of the load lamp according to a given luminous intensity command, and a monitoring means for detecting the voltage and current of the lamp and monitoring the operating state of the lamp. An individual power supply device for an airport lighting system, which is housed in a sealed container made of a material having good heat conductivity, and the outer periphery of the container is covered with resin.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1061350A JPH02239595A (en) | 1989-03-14 | 1989-03-14 | Airport lighting device and individual power source for the device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1061350A JPH02239595A (en) | 1989-03-14 | 1989-03-14 | Airport lighting device and individual power source for the device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02239595A true JPH02239595A (en) | 1990-09-21 |
Family
ID=13168604
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1061350A Pending JPH02239595A (en) | 1989-03-14 | 1989-03-14 | Airport lighting device and individual power source for the device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02239595A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001045472A1 (en) * | 1999-12-17 | 2001-06-21 | Hitachi, Ltd. | Lamp state detector and lamp state monitor using lamp state detector |
WO2003031262A1 (en) * | 2001-10-05 | 2003-04-17 | Siemens Aktiengesellschaft | Control device for flashlight systems in airports |
JP2008153070A (en) * | 2006-12-18 | 2008-07-03 | Hitachi Ltd | Lamp system and breakage lamp specification method |
JP2009146617A (en) * | 2007-12-11 | 2009-07-02 | Toshiba Lighting & Technology Corp | Light control system |
JP2009158116A (en) * | 2007-12-25 | 2009-07-16 | Panasonic Electric Works Co Ltd | Illumination control system |
JP2010035320A (en) * | 2008-07-29 | 2010-02-12 | Kuroi Electric Co Ltd | Illuminating lamp control circuit |
JP2012227085A (en) * | 2011-04-22 | 2012-11-15 | Toshiba Lighting & Technology Corp | Marker lamp system |
-
1989
- 1989-03-14 JP JP1061350A patent/JPH02239595A/en active Pending
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001045472A1 (en) * | 1999-12-17 | 2001-06-21 | Hitachi, Ltd. | Lamp state detector and lamp state monitor using lamp state detector |
EP1276353A1 (en) * | 1999-12-17 | 2003-01-15 | Hitachi, Ltd. | Lamp state detector and lamp state monitor using lamp state detector |
EP1276353A4 (en) * | 1999-12-17 | 2003-03-26 | Hitachi Ltd | Lamp state detector and lamp state monitor using lamp state detector |
WO2003031262A1 (en) * | 2001-10-05 | 2003-04-17 | Siemens Aktiengesellschaft | Control device for flashlight systems in airports |
US7157860B2 (en) | 2001-10-05 | 2007-01-02 | Siemens Aktiengesellschaft | Control device for flashlight systems in airports |
JP2008153070A (en) * | 2006-12-18 | 2008-07-03 | Hitachi Ltd | Lamp system and breakage lamp specification method |
JP2009146617A (en) * | 2007-12-11 | 2009-07-02 | Toshiba Lighting & Technology Corp | Light control system |
JP2009158116A (en) * | 2007-12-25 | 2009-07-16 | Panasonic Electric Works Co Ltd | Illumination control system |
JP2010035320A (en) * | 2008-07-29 | 2010-02-12 | Kuroi Electric Co Ltd | Illuminating lamp control circuit |
JP2012227085A (en) * | 2011-04-22 | 2012-11-15 | Toshiba Lighting & Technology Corp | Marker lamp system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU622719B2 (en) | Supervision and control of airport lighting and ground movements | |
US9131584B2 (en) | Airfield lighting sustem | |
US5032961A (en) | Ground light system for a landing strip | |
KR102582138B1 (en) | Aviation light high voltage cables short circuit monitoring and lamp monitoring system | |
JPH02239595A (en) | Airport lighting device and individual power source for the device | |
KR101020869B1 (en) | Airfield light system using a luminescent diode lamp | |
KR100378604B1 (en) | Overhead power transmission line monitoring system using induction electricity | |
KR101447736B1 (en) | Streetlights track remote monitoring system and monitoring method with it | |
KR101303320B1 (en) | Apparrutus and method to inspect obstruction light for flight, and system using thereof | |
KR101020868B1 (en) | Airfield light system using a luminescent diode lamp | |
CN213906994U (en) | System for automatically adjusting illumination of highway tunnel | |
KR200241634Y1 (en) | Power supply for airplane warning light | |
CN214626302U (en) | Power supply and distribution and illumination system for high-voltage cable tunnel | |
CN220017307U (en) | Electric wire netting dispatch debugging overhauls searchlighting device | |
CN221306157U (en) | Navigation light power supply system | |
KR101020867B1 (en) | Airfield light system using a luminescent diode lamp | |
CN211697949U (en) | Independent intelligent electrical fire communication transmission equipment | |
KR20130139693A (en) | An apparatus for detecting failure of led lamp | |
CN213485221U (en) | Single lamp monitoring system of navigation aid lamp | |
CN203326706U (en) | Airport constant current power supply switching device | |
CN213207612U (en) | Device for lighting and marking by adopting 220V voltage and applying high-speed rail tunnel | |
CN211429607U (en) | Night scene light controller | |
KR200439118Y1 (en) | Traffic signal controller for direct current power | |
KR101478857B1 (en) | Airfield lighting control system | |
KR20230077030A (en) | Intelligent multi-power system for guiding location of transmission tower and operation method thereof |