JPH02239574A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JPH02239574A
JPH02239574A JP1061674A JP6167489A JPH02239574A JP H02239574 A JPH02239574 A JP H02239574A JP 1061674 A JP1061674 A JP 1061674A JP 6167489 A JP6167489 A JP 6167489A JP H02239574 A JPH02239574 A JP H02239574A
Authority
JP
Japan
Prior art keywords
lithium
negative electrode
alloy
electrolyte secondary
negative pole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1061674A
Other languages
Japanese (ja)
Inventor
Satoshi Ubukawa
生川 訓
Toru Amezutsumi
徹 雨堤
Keisaku Nakanishi
圭作 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP1061674A priority Critical patent/JPH02239574A/en
Publication of JPH02239574A publication Critical patent/JPH02239574A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/40Alloys based on alkali metals
    • H01M4/405Alloys based on lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/668Composites of electroconductive material and synthetic resins
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To avoid current concentration and restrict formation change at peripheral parts of a negative pole by disposing an insulation layer at the peripheral parts. CONSTITUTION:For a nonaqueous electrolyte secondary battery having a positive pole 2 mainly consisting of active material which can be re-charged and a negative pole 4 consisting of lithium or lithium alloy, an insulation layer 7 is formed by applying epoxy resin (for solder-resist) for a width of 0.5mm at peripheral parts of a disc-formed negative pole 7 of lithium-aluminum alloy and drying it. If lithium is solely used for the negative pole, metal lithium of a purity of more than 99.99% shall preferably be used.

Description

【発明の詳細な説明】 イ、産業上の利用分野 本発明は三酸化モリブデン、五酸化バナジウム、マンガ
ン酸化物、チタン或いは二オブの硫化物などの再充電可
能な活物質を主体とする正極と、リチウム或いはリチウ
ム合金よりなる負掻とを備えた非水電解液二次電池に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION A. Field of Industrial Application The present invention relates to a positive electrode based on a rechargeable active material such as molybdenum trioxide, vanadium pentoxide, manganese oxide, titanium or niobium sulfide. The present invention relates to a non-aqueous electrolyte secondary battery equipped with a negative electrode made of lithium or a lithium alloy.

口. 従来のuL術 この種二次電池は放電時に負極活物質であるリチウムが
イオンとなって電解液中に溶解し、充電時にその逆反応
で負極上に金属リチウムとして電折するのであるが、充
放電の繰返しにより負極上に金属リチウムが樹柱状に成
長し、終局的には正極に達して内部短絡を引起すという
問題がある。
mouth. Conventional uL technology In this type of secondary battery, when discharging, lithium, which is the negative electrode active material, becomes ions and dissolves in the electrolyte, and when charging, the reverse reaction occurs and the metal lithium is electrolytically deposited on the negative electrode. There is a problem in that metallic lithium grows in a dendritic shape on the negative electrode due to repeated discharges, and eventually reaches the positive electrode, causing an internal short circuit.

この問題を解決するために、負極としてリチウム合金、
例えばリチウムーアルミニウム合金を用いることが提案
されている。
To solve this problem, we used a lithium alloy as the negative electrode,
For example, it has been proposed to use a lithium-aluminum alloy.

リチウム合金の製造方法としては、冶會学的製造方法と
電気化学的製造方法とがあるが、設備、装置、取扱い、
そして特性面から一穀的には電気化学的法で製造されて
いる。
There are two methods for producing lithium alloys: the chemical production method and the electrochemical production method.
Due to its characteristics, it is produced using an electrochemical method.

電気化学的製造方法としては、合金基板上にリチウムを
圧着して圧着物を形成し、次いでこの圧着物をリチウム
塩を含む有機溶媒中に浸漬する方法と,金属リチウムを
対極としセパレー夕を介してリチウム塩を含む有機溶媒
中で合金基板を陰極還元する方法がある。
Electrochemical manufacturing methods include a method in which lithium is pressed onto an alloy substrate to form a crimped object, and then this crimped object is immersed in an organic solvent containing a lithium salt, and a method in which lithium metal is used as a counter electrode and a separator is formed. There is a method in which an alloy substrate is cathodically reduced in an organic solvent containing a lithium salt.

しかしながら、リチウム合金においても充放電を繰返す
とfA.橿の電極板周縁部のエッジ部に電流集中が発生
し、充放電による負極の影状変化が大きく、負極リチウ
ム合金の周縁部が脆くなって砕けやすくなる問題がある
。そこで、負極板の周縁部の脆弱化を抑制するために,
リチウムをアルミニウム板の圧IFN面の面積Sstに
対し、リチウムの圧着面積SLIがS++./SAt≦
0.99になるようにアルミニウム板の圧着側面の周縁
部を露呈した状態で圧着し,′@気化学釣法でリチウム
ーアルミニウム合金を製造する方法が提案されている(
特開昭63−146351号公報参照)。この方法で製
造したりチウムーアルミニウム合金は製造時には砕け難
く取扱い易いが、実際にこのリチウムーアルミニウム合
金を負極として電池を組立て充放電を繰返すと、リチウ
ムーアルミニウム合金の周縁部にアルミニウム基体が露
呈しているため周縁部のアルミニウム基体部分にも合金
化が生じ、結局、アルミニウム板全面において合金化さ
れることとなる。そのため充放電を繰返すと周縁部の合
金が脆くなって崩れ、内部短絡を生じてサイクル寿命を
短くする結果となっていた。
However, even in lithium alloys, if charging and discharging are repeated, fA. There is a problem in that current concentration occurs at the edge of the periphery of the electrode plate of the rod, the shape of the negative electrode changes significantly due to charging and discharging, and the periphery of the negative electrode lithium alloy becomes brittle and easily breaks. Therefore, in order to suppress the weakening of the peripheral edge of the negative electrode plate,
The crimping area SLI of lithium is S++. /SAt≦
A method has been proposed in which a lithium-aluminum alloy is produced by crimping the aluminum plate with the peripheral edge of the crimped side surface exposed so that the lithium-ion temperature is 0.99, and using the vapor chemical fishing method (
(See Japanese Patent Application Laid-open No. 146351/1983). The lithium-aluminum alloy manufactured by this method is difficult to break and is easy to handle during manufacture, but when a battery is actually assembled using this lithium-aluminum alloy as a negative electrode and repeatedly charged and discharged, the aluminum base is exposed at the periphery of the lithium-aluminum alloy. As a result, alloying also occurs in the aluminum base portion at the periphery, and eventually the entire surface of the aluminum plate is alloyed. Therefore, when charging and discharging are repeated, the alloy at the peripheral edge becomes brittle and crumbles, causing internal short circuits and shortening the cycle life.

このように、例え負極としてリチウム合金を用いても周
縁部の問題は残っている。同様にこの周縁部における問
題、即ち形状変化はリチウム単独の場合にも生じること
である。
As described above, even if a lithium alloy is used as the negative electrode, the problem of the peripheral portion remains. Similarly, this problem at the periphery, ie, shape change, also occurs when lithium is used alone.

ハ. 発明が解決しようとする課題 本発明は前述した如き、tL極を要因とする電池性能の
劣化を抑制することを目的とするものである。
C. Problems to be Solved by the Invention The present invention aims to suppress the deterioration of battery performance caused by the tL pole as described above.

二. 課題を解決するための手段 本発明は再充電可能な活物質を主体とする正掻と、リチ
ウム或いはリチウム合金よりなる負極とを備え、負極の
周縁部に絶縁層を配設したことを特徴とする非水電解液
二次!池にある。
two. Means for Solving the Problems The present invention is characterized by comprising a positive electrode mainly made of a rechargeable active material and a negative electrode made of lithium or a lithium alloy, with an insulating layer disposed around the periphery of the negative electrode. Secondary non-aqueous electrolyte! It's at the pond.

又、負極として純度9 9.9 9%以上の4r@リチ
ウムを用いることが好ましい。
Further, it is preferable to use 4r@lithium with a purity of 99.99% or more as the negative electrode.

ホ.作 用 本発明t池によれば、負極の周縁部に絶縁層が配設され
ているので、電流集中が生じず,周縁部の形状変化が抑
制される。
Ho. Function According to the device of the present invention, since the insulating layer is disposed on the peripheral edge of the negative electrode, current concentration does not occur and changes in the shape of the peripheral edge are suppressed.

又、負極としてリチウム単独を用いる場合には、純度9
 9.9 9%以上の金属リチウムを用いるのが好まし
い。この理由を詳述すると、一般に電池に用いられてい
るリチウム会属は純度99.8%程度であり、ナトリウ
ム、カルシウム、カリウム、鉄等の不純物を含んでいる
。そして、この不純物が金属リチウムの樹技状成長に大
きな影響を及ぼしているのである。即ち、充放電により
負極においてリチウムの溶解、析出を繰返すと負極表面
の不純物濃度が高まることになる。ここでリチウムと不
純物との間には電位的に差があり、そのためこの複雑な
電位分布が金属リチウム電析の際の核を形成し易すくな
ることに起因する。
In addition, when using lithium alone as the negative electrode, purity 9
9.9 It is preferable to use 9% or more of metallic lithium. To explain the reason in detail, lithium metals generally used in batteries have a purity of about 99.8% and contain impurities such as sodium, calcium, potassium, and iron. These impurities have a large effect on the tree-like growth of metallic lithium. That is, when lithium is repeatedly dissolved and deposited in the negative electrode due to charging and discharging, the impurity concentration on the negative electrode surface increases. Here, there is a difference in potential between lithium and impurities, and this complicated potential distribution facilitates the formation of nuclei during metal lithium electrodeposition.

それ故.金属リチウム単独を負極に用いる際には純度9
 9.9 9%以上のものを用いることが有益である。
Therefore. When using metallic lithium alone as a negative electrode, the purity is 9.
9.9 It is advantageous to use 9% or more.

へ.実施例 以下本発明の実施例について詳述する。fart. Example Examples of the present invention will be described in detail below.

第1図は本発明の実施例による扁平形非水電解液二次電
池の半断面図を示し、図において(1)はステンレス製
の正極缶であってその内底面には正Iji(2 ”)が
正極集電停(3)を介して圧接されている。正極(2)
は活物質としてL i@ M n O sを含有してい
る二酸化マンガンに導電剤としてのアセチレンブラ・l
ク及び結着剤としてのフッ素書脂を85:10:5の比
率で混合した正極合剤を所定量採取し成型したものであ
る。
FIG. 1 shows a half-sectional view of a flat non-aqueous electrolyte secondary battery according to an embodiment of the present invention. ) are pressed together via the positive electrode current collector (3).The positive electrode (2)
is manganese dioxide containing Li@MnOs as an active material and acetylene brane as a conductive agent.
A predetermined amount of a positive electrode mixture prepared by mixing a fluorine resin and a fluorine resin as a binder in a ratio of 85:10:5 was taken and molded.

而して、(4)はリチウムーアルミニウム合金板よりな
る負極であって負極集電体(5)を介してステンレス製
の負極缶(6冫の内底面に圧着されている。
(4) is a negative electrode made of a lithium-aluminum alloy plate, which is crimped to the inner bottom surface of a stainless steel negative electrode can (6) via a negative electrode current collector (5).

ここで負i(4 )は以下の方法で作成したものである
。即ち、直径φ19.Oi.厚み0.7Mの円板状のア
ルミニウム板の片面の周縁部に0.5一の幅でエボキシ
樹脂(ソルダーレジスト用)を塗布し屹燥して絶縁層(
7)を形成する。このアルミニウム板を陰極とし厚み0
.3 5allのリチウム板ヲFn極トL.テ用イI 
M L i C J! 04− P C/DME(1/
1.)の電解液中において外部短絡し、20時間放置し
、リチウムーアルミニウム合金を得る。
Here, negative i(4) is created using the following method. That is, the diameter is φ19. Oi. Epoxy resin (for solder resist) is applied to the periphery of one side of a disc-shaped aluminum plate with a thickness of 0.7M in a width of 0.5 mm, and dried to form an insulating layer (
7). This aluminum plate is used as a cathode and the thickness is 0.
.. 3 5all lithium plate Fn pole L. Tei I
M L i C J! 04-PC/DME(1/
1. ) in an electrolytic solution and left for 20 hours to obtain a lithium-aluminum alloy.

こうして得られたりチウムーアルミニウム合金面の直径
はφ18.OIIIffiであり、アルミニウム基体の
直径はφ1 9.Ommであるため面積比率は0.90
となっている。尚、アルミニウム板に塗布する塗料はエ
ボキシ樹脂に限らず、ポリテトラフルオ口エチレン、シ
リコーン樹脂等も使用できる。
The diameter of the aluminum alloy surface obtained in this way is φ18. OIIIffi, and the diameter of the aluminum base is φ1 9. Omm, so the area ratio is 0.90
It becomes. The paint applied to the aluminum plate is not limited to epoxy resin, but polytetrafluoroethylene, silicone resin, etc. can also be used.

又、合金作製時の溶質、溶媒ともに上記のものに限らず
使用できる。
Furthermore, the solute and solvent used in producing the alloy are not limited to those mentioned above, and can be used.

(8)はボリプロビレン製のセバレー夕であって、プロ
ピレンカーボネートとジメトキシエタンの混合溶媒にL
iCIO.をIM溶解した非水電解液が含浸されている
。(9)は絶縁パッキングである。電池寸法は直径φ2
 4,Qm、厚み3.0一であり、正負極の理論容量は
それぞれ100ffi^h及び2 8 0 mAhであ
る。この本発明電池を(A)とする。
(8) is a polypropylene sebaret, in which L is added to a mixed solvent of propylene carbonate and dimethoxyethane.
iCIO. It is impregnated with a non-aqueous electrolyte in which IM is dissolved. (9) is insulating packing. Battery dimensions are diameter φ2
4, Qm, thickness 3.0-1, and the theoretical capacities of the positive and negative electrodes are 100ffi^h and 280 mAh, respectively. This invention battery is referred to as (A).

比較例l 直径φ1 9.01111、厚み0.71allの円板
状のアルミニウム板を陰極とし、直径φ18.0閣、厚
み0.3 5wmのリチウム板を陽極として実施例と同
様にして得られたリチウムーアルミニウム合金、即ちり
チウムーアルミニウム合金の周縁部0.5画にアルミニ
ウム基体が露呈した合金を負極に使用することを除いて
実施例と同様の比較電池(81)を作製した。
Comparative Example 1 A disc-shaped aluminum plate with a diameter of φ1 9.01111 mm and a thickness of 0.71 all was used as a cathode, and a lithium plate with a diameter of φ 18.0 mm and a thickness of 0.35 wm was used as an anode, obtained in the same manner as in Example. A comparative battery (81) was prepared in the same manner as in the example except that a lithium-aluminum alloy, that is, an alloy in which the aluminum substrate was exposed at 0.5 of the periphery of the lithium-aluminum alloy, was used as the negative electrode.

比較例2 直径φ1 9,Qm、厚み0,7Il1lllの円板状
のアルミニウム板を陰極とし、直径φ1 9.0+ss
、厚み0.3 5mのリチウム板を陽極として実施例と
同様にして得られたリチウムーアルミニウム合金、即ち
アルミニウム板の全面が合金化し、リチウムーアルミニ
ウム合金となっている合金を負極として使用することを
除いて実施例と同様の比較電池(B2)を作製した。
Comparative Example 2 A disk-shaped aluminum plate with a diameter φ1 9.Qm and a thickness 0.7Il1lll is used as a cathode, and a diameter φ1 9.0+ss
A lithium-aluminum alloy obtained in the same manner as in the example using a 0.3-5 m thick lithium plate as an anode, that is, an alloy in which the entire surface of the aluminum plate is alloyed to form a lithium-aluminum alloy, is used as the negative electrode. A comparative battery (B2) was prepared in the same manner as in the example except for the following.

第2図はこれらの電池の充放電サイクル特性図を示す。FIG. 2 shows the charge/discharge cycle characteristics of these batteries.

尚、充放電条件は電流3mAで8時間放電し、電流3m
Aで充電し充電終止電圧3.5Vとした。第2図より本
発明電池(A)はサイク、ル特性が改善されているのが
わかる。
The charging and discharging conditions are: discharging at a current of 3 mA for 8 hours;
The battery was charged at A, and the final charge voltage was 3.5V. It can be seen from FIG. 2 that the battery (A) of the present invention has improved cycle characteristics.

ト.発明の効果 ]二述した如く、リチウム或いはリチウム合金よりなる
負極を備えた非水電解液二次!池において、負掻の周縁
部に絶縁層を配設することにより周縁部に電流が集中す
るのを阻止でき、周縁部の形状変化を要因とする電池性
能の劣化を抑制し得るものであり、その工業的価値は極
めて大である。
to. Effects of the invention] As mentioned above, a non-aqueous electrolyte secondary equipped with a negative electrode made of lithium or lithium alloy! In a pond, by disposing an insulating layer around the periphery of the paddle, it is possible to prevent current from concentrating on the periphery, and it is possible to suppress deterioration of battery performance due to changes in the shape of the periphery. Its industrial value is extremely large.

尚,実施例においてはリチウム合金としてリチウムーア
ルミニウム合金の場合を例示したが、リチウムと合金化
される金属としてはアルミニウムに限定されず他の金属
、例えばインジウム、マグネシウム、鉛などとの合金も
使用できる。
In the examples, a lithium-aluminum alloy was used as the lithium alloy, but the metal alloyed with lithium is not limited to aluminum, and alloys with other metals such as indium, magnesium, and lead may also be used. can.

又、絶縁層を配設する方法としては、リチウム合金を作
成した後、その周縁部に塗料を塗布、乾燥する方法でも
良い。
Alternatively, the insulating layer may be provided by a method in which a lithium alloy is created, and then a paint is applied to the periphery of the lithium alloy and then dried.

更に、負極としてはリチウム単独を用いても良く、その
場合には純度9 9.9 9%以上の金属リチウムを用
いるのが好ましい。
Furthermore, lithium alone may be used as the negative electrode, and in that case, it is preferable to use metallic lithium with a purity of 99.99% or more.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明電池の半断面図、第2図は電池の充放電
サイクル特性図である。 (1)・・・正極缶、(2)・・・正極、(4)・・・
負極,(6)・・・負極毎、(7)・・・絶縁層、(8
)・・・セバレータ、(9)・・・絶縁パッキング。
FIG. 1 is a half-sectional view of the battery of the present invention, and FIG. 2 is a diagram of the charge/discharge cycle characteristics of the battery. (1)...Positive electrode can, (2)...Positive electrode, (4)...
Negative electrode, (6)...each negative electrode, (7)...insulating layer, (8
)...Severator, (9)...Insulating packing.

Claims (2)

【特許請求の範囲】[Claims] (1)再充電可能な活物質を主体とする正極と、リチウ
ム或いはリチウム合金よりなる負極とを備え、前記負極
の周縁部に絶縁層を配設したことを特徴とする非水電解
液二次電池。
(1) A non-aqueous electrolyte secondary comprising a positive electrode mainly made of a rechargeable active material and a negative electrode made of lithium or a lithium alloy, with an insulating layer disposed around the periphery of the negative electrode. battery.
(2)前記負極が純度99.99%以上の金属リチウム
よりなることを特徴とする請求項1記載の非水電解液二
次電池。
(2) The non-aqueous electrolyte secondary battery according to claim 1, wherein the negative electrode is made of metallic lithium with a purity of 99.99% or more.
JP1061674A 1989-03-13 1989-03-13 Nonaqueous electrolyte secondary battery Pending JPH02239574A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1061674A JPH02239574A (en) 1989-03-13 1989-03-13 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1061674A JPH02239574A (en) 1989-03-13 1989-03-13 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JPH02239574A true JPH02239574A (en) 1990-09-21

Family

ID=13178031

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1061674A Pending JPH02239574A (en) 1989-03-13 1989-03-13 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JPH02239574A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09134719A (en) * 1995-11-09 1997-05-20 Fuji Photo Film Co Ltd Non-aqueous secondary battery
JP2016074972A (en) * 2014-10-03 2016-05-12 Tdk株式会社 Stabilized lithium powder, and lithium ion secondary battery using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09134719A (en) * 1995-11-09 1997-05-20 Fuji Photo Film Co Ltd Non-aqueous secondary battery
JP2016074972A (en) * 2014-10-03 2016-05-12 Tdk株式会社 Stabilized lithium powder, and lithium ion secondary battery using the same

Similar Documents

Publication Publication Date Title
JPH0630246B2 (en) Button type lithium organic secondary battery
JP3291528B2 (en) Non-aqueous electrolyte battery
JPH05234583A (en) Negative electrode for lithium secondary battery and lithium secondary battery using it
JPH01124969A (en) Lithium secondary battery
JPH02239574A (en) Nonaqueous electrolyte secondary battery
JPS638588B2 (en)
JPS63178449A (en) Nonaqueous electrolyte secondary battery
JP2975627B2 (en) Battery
JPS58137975A (en) Nonaqueous electrolyte secondary battery
JP2940706B2 (en) Non-aqueous electrolyte secondary battery
JP2744061B2 (en) Non-aqueous electrolyte secondary battery
JP2594035B2 (en) Rechargeable battery
JP2999793B2 (en) Manufacturing method of non-aqueous electrolyte secondary battery
JP2639934B2 (en) Non-aqueous secondary battery
JP2798742B2 (en) Non-aqueous electrolyte secondary battery
JPS59146157A (en) Nonaqueous electrolyte secondary cell
JPH07176330A (en) Organic electrolytic solution secondary battery and manufacture thereof
JPH0539580Y2 (en)
JPS63285878A (en) Nonaqueous secondary battery
JP2840357B2 (en) Non-aqueous electrolyte secondary battery
JP2989212B2 (en) Non-aqueous electrolyte secondary battery
JPH0588506B2 (en)
JPS58111276A (en) Organic electrolyte secondary battery
JP2562651B2 (en) Non-aqueous electrolyte secondary battery
JPH0374061A (en) Nonaqueous electrolyte secondary battery