JPH02239521A - Manufacture of bi oxide superconducting wire having high critical current density - Google Patents

Manufacture of bi oxide superconducting wire having high critical current density

Info

Publication number
JPH02239521A
JPH02239521A JP1062378A JP6237889A JPH02239521A JP H02239521 A JPH02239521 A JP H02239521A JP 1062378 A JP1062378 A JP 1062378A JP 6237889 A JP6237889 A JP 6237889A JP H02239521 A JPH02239521 A JP H02239521A
Authority
JP
Japan
Prior art keywords
wire
based oxide
oxide powder
current density
critical current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1062378A
Other languages
Japanese (ja)
Inventor
Takuo Takeshita
武下 拓夫
Genichi Suzuki
鈴木 元一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP1062378A priority Critical patent/JPH02239521A/en
Publication of JPH02239521A publication Critical patent/JPH02239521A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To continuously and simply manufacture a Bi type oxide superconducting wire of excellent critical current density by rolling a metal sheath BiSrCaCuO oxide powder filler wire material by means of a heating roll, the wire material obtained by charging BiSrCaCuO oxide powder in a metal pipe and then performing drawing treatment. CONSTITUTION:Mixed powders consisting of Bi2o3PbO, SrCO3, CaCO3 and CuO are each burned in atmosphere and then the Bi oxide thus obtained by burning is crushed. The Bi oxide powder obtained is put in an Ag pipe and both ends of the Ag complex pipe are sealed by press working, and thereafter the powder is swaged to reduce the diameter of the wire, and then a channeled roll treatment is applied, thereby fabricating an Ag sheath Bi oxide powder filler wire. The wire 3 is rolled by a heating roll 1. The heating roll 1 is held at temperatures from 800 to 850 deg.C by a sheath heater 2.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、高臨界電流密度を存するB』系酸化物超電
導線材を製造する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing a B'-based oxide superconducting wire having a high critical current density.

〔従来の技術〕[Conventional technology]

現在、Bi系酸化物超電導線材としては、BLSrCa
CuO系酸化物超電導線材およびBiPbSrCaCu
O系酸化物超電導線材が知られている。上記B i S
 rcacuo系酸化物超電導線材は、BiSrCaC
uO系酸化物粉末を銀パイプに充填し、スエージング加
工、溝ロール加工、ダイス加工などの伸線加工を施し、
AgシースBiSrCaCuO系酸化物粉末充填線材と
し、このAgシースB i S rcacuo系酸化物
粉末充填線材をさらに温度=750〜870℃、lO〜
200時間保持の条件で焼結することにより製造されて
いた。上記B iPbS rcacuO系酸化物超電導
線材の製造方法も上記 BiSrcacuO系酸化物の
81の一部をpbで置換したBiPbSrCaCuO系
酸化物粉末をもちいる以外はBiSrCaCuO系酸化
物超電導線材の製造方法と全く同様にして製造すること
ができる。この様にして製造されたBl系酸化物超電導
線材は、一般に81系酸化物粉末の結晶粒は鱗片状をし
ているために、上記伸線加工を施すと、C面が線材の長
手方向に平行に揃いやすいことも知られている。
Currently, BLSrCa is a Bi-based oxide superconducting wire.
CuO-based oxide superconducting wire and BiPbSrCaCu
O-based oxide superconducting wires are known. The above B i S
The rcacuo-based oxide superconducting wire is BiSrCaC
A silver pipe is filled with uO-based oxide powder and subjected to wire drawing processes such as swaging, groove roll processing, and die processing.
The Ag-sheathed BiSrCaCuO-based oxide powder-filled wire was further heated to a temperature of 750 to 870°C, lO to
It was manufactured by sintering under conditions of holding for 200 hours. The manufacturing method of the BiPbSrcacuO-based oxide superconducting wire is also the same as the manufacturing method of the BiSrCaCuO-based oxide superconducting wire, except that a BiPbSrCaCuO-based oxide powder in which part of 81 of the BiSrcacuO-based oxide is replaced with PB is used. It can be manufactured as follows. In the Bl-based oxide superconducting wire manufactured in this way, since the crystal grains of the 81-based oxide powder are generally scale-shaped, when the wire drawing process is performed, the C plane is oriented in the longitudinal direction of the wire. It is also known that they tend to align in parallel.

〔発明が解決しようとする3題〕 上記BiSrCaCuO系酸化物は、臨界温度:105
 ’Kの相(以下、f%Te相という)と臨界温度二8
01の相(以下、低Tc相という)の2相が混在してお
り、上記BiSrCaCuO系酸化物の81の一部をp
bで置換することにより高TejiJが安定して得られ
るようになってきた。
[Three problems to be solved by the invention] The above BiSrCaCuO-based oxide has a critical temperature of 105
'K phase (hereinafter referred to as f%Te phase) and critical temperature 28
Two phases, 01 phase (hereinafter referred to as low Tc phase), coexist, and a part of 81 of the BiSrCaCuO-based oxide is
It has become possible to stably obtain high TejiJ by substituting with b.

しかしながら、Bl系酸化物超電導線材は、公知のY系
酸化物超電導線材に比べて臨界電流密度Jcが極めて低
く、上記Bl系酸化物超電導線材を実用に共するために
は、一層優れた臨界電流密度Jcを有するBl系酸化物
超電導線材の出現が望まれていた。
However, the Bl-based oxide superconducting wire has an extremely low critical current density Jc compared to the known Y-based oxide superconducting wire. The appearance of a Bl-based oxide superconducting wire having a density Jc has been desired.

〔課題を解決するための手段〕 そこで、本発明者らは、一層優れた臨界電流密度Jeを
有するBl系酸化物超電導線材を開発すべ《研究を行っ
た結果、 B1系酸化物粉末充填線材を、Bl系酸化物が容易に粒
成長を起こす温度域(800〜850℃)に保持された
加熱ロールにより圧延することにより臨界電流密度Jc
を大幅に向上させることができるという知見を得たので
ある。
[Means for Solving the Problem] Therefore, the present inventors have conducted research to develop a B1-based oxide superconducting wire having an even better critical current density Je. , critical current density Jc is achieved by rolling with heated rolls maintained at a temperature range (800 to 850°C) where Bl-based oxide easily causes grain growth.
They obtained the knowledge that it is possible to significantly improve the

この発明は、かかる知見にもとづいてなされたものであ
って、 通常の金属シースB1系酸化物粉末充}Aijl材を、
温度=800〜850℃に保持された加熱ロールにより
圧延するBI系酸化物超電導線材の製造方法に特徴を有
するものである。
This invention was made based on this knowledge, and the present invention was made based on this knowledge, and it is possible to use a conventional metal sheath B1-based oxide powder-filled Aijl material.
This method is characterized by a method for producing a BI-based oxide superconducting wire, which is rolled using heated rolls maintained at a temperature of 800 to 850°C.

前述のように、Bfi系酸化物粉末を金属パイプに充填
し伸線加工を施して得られた金属シースB1系酸化物粉
末充填線材のBl系酸化物粉末は、C面がある程度線材
の長子方向に平行に揃っているが、これを従来のように
バッチ式に焼結するとBi系酸化物粉末の結晶は、等方
向に粒成長するので配向性を失う。しかし、この発明の
ように、上記金属シースB1系酸化物粉末充填線材を温
度800−850℃に保持された加熱ロールにより圧延
すると、BI系酸化物粉末は高密度に充填されると同時
に、Bl系酸化物粉末の結晶は線材の長手方向にのみ粒
成長し、そのため、臨界電流密度Jcは大幅に向上する
ものと考えられる。
As mentioned above, the Bl-based oxide powder of the metal sheathed B1-based oxide powder-filled wire obtained by filling a metal pipe with Bfi-based oxide powder and subjecting it to wire drawing has a C-plane in the longitudinal direction of the wire to some extent. However, when this is batch-sintered as in the past, the crystals of the Bi-based oxide powder grow in the same direction and lose their orientation. However, when the metal sheath B1-based oxide powder-filled wire rod is rolled with a heated roll maintained at a temperature of 800-850°C as in the present invention, the BI-based oxide powder is densely packed and at the same time It is considered that the crystals of the oxide powder grow only in the longitudinal direction of the wire, and therefore the critical current density Jc is significantly improved.

上記金属シースは、Ag,Cuまたはそれらの合金が加
工しやすく好ましいが、これらの金属に限定されること
なく、ステンレススチールなどをもちいてもよい。
The metal sheath is preferably Ag, Cu, or an alloy thereof because it is easy to process, but is not limited to these metals, and stainless steel or the like may also be used.

また、上記金属シースB1系酸化物粉末充填線材とは、
断面円形のBl系酸化物粉末充填線材だけでなく断面円
形のBi系酸化物粉末充填線材をさらに平行ロール圧延
して得られたリボン状線材であってもよい。
In addition, the metal sheath B1-based oxide powder-filled wire rod is
In addition to the Bl-based oxide powder-filled wire with a circular cross section, it may also be a ribbon-shaped wire obtained by further parallel roll rolling a Bi-based oxide powder-filled wire with a circular cross section.

上記加熱ロールの加熱温度域を800℃未満にすると、
BI系酸化物粉末の粒子の結合も弱く、また、圧延に時
間がかかりすぎるので好ましくない。
When the heating temperature range of the heating roll is less than 800°C,
The bond between the particles of the BI-based oxide powder is also weak, and rolling takes too much time, which is not preferable.

一方、上記加熱ロールの温度域が850℃を越えると、
臨界温度:l05’Kの高Tc相の中に80’Kの低T
c相、さらに低温の6〜2(1”K相が現れて好ましく
ない。したがって、上記加熱ロールの温度域は、800
〜850℃に定めた。
On the other hand, if the temperature range of the heating roll exceeds 850°C,
Critical temperature: low T of 80'K in high Tc phase of 105'K
C phase, and even lower temperature 6 to 2 (1" K phase) appear, which is undesirable. Therefore, the temperature range of the heating roll is 800
The temperature was set at ~850°C.

なお、上記加熱ロールによる金属シースBl系酸化物粉
末充填線材の圧延は1回だけでなく、複数回実施しても
よい。
Note that the metal sheath Bl-based oxide powder-filled wire rod may be rolled not only once but multiple times using the heating roll.

〔実 施 例〕〔Example〕

つぎに、この発明を実施例にもとづいて具体的に説明す
る。
Next, the present invention will be specifically explained based on examples.

原料粉末として、いずれも粒径:10一以下のBi20
3粉末、pbo粉末、S r C O 3粉末、C a
 C O s粉末およびCuO粉末を用意し、これら原
料粉末を第1表に示される組成となるように配合し、混
合し、得られた混合粉末を第1表に示される条件で大気
中でそれぞれ焼成し、ついで、これら焼成して得られた
Bi系酸化物を粉砕し、第1表に示される粒度を有する
Bi系酸化物粉末を作製した。
As a raw material powder, Bi20 with a particle size of 10 or less is used in both cases.
3 powder, pbo powder, S r CO 3 powder, Ca
CO s powder and CuO powder are prepared, these raw material powders are blended and mixed so that the composition shown in Table 1 is obtained, and the obtained mixed powder is individually heated in the atmosphere under the conditions shown in Table 1. After firing, the Bi-based oxides obtained by the firing were pulverized to produce Bi-based oxide powders having particle sizes shown in Table 1.

これらBl系酸化物粉末を、内径:5+n、肉厚二〇、
5關、長さ:200+*嘗のAgパイプに充填してBl
系酸化物粉末充填Agffl合パイプを作製し、このA
g複合パイプの両端をプレス加工により封止したのち、
スエージング加工により縮径し、ついで溝ロール加工を
施すことにより直径:l.7■一、Agシース厚さ:0
,2mmの寸法を有するAgシースB1系酸化物粉末充
iJli線材を作製した。
These Bl-based oxide powders were prepared with an inner diameter of 5+n, a wall thickness of 20,
5. Length: 200+* Fill the Ag pipe with Bl
A Agffl joint pipe filled with oxide powder was prepared, and this A
g After sealing both ends of the composite pipe by press working,
The diameter is reduced by swaging and then grooved to reduce the diameter to l. 7 ■ 1. Ag sheath thickness: 0
An Ag-sheathed B1-based oxide powder-filled iJli wire rod having dimensions of , 2 mm was fabricated.

このようにして作製したAgシースB1系酸化物粉末充
填線材は、第1図に示されるように大気中で加熱ロール
1により圧延され、その圧延条件は、第1表に示されて
いる。上記加熱ロール1は、ドラムの内側にシーズヒー
ター2を設け、上記シーズヒーター2は上記加熱ロール
1の両側面に設けられた導電性摺動材4に接続された構
造となっている。電力はスライダー5から導電性摺動材
4を通してシーズヒーター2に供給され、シーズヒータ
ー2を加熱することにより加熱ロール1の温度を800
〜850℃に保持するようになっている。
The Ag-sheathed B1-based oxide powder-filled wire rod produced in this way was rolled in the atmosphere with a heating roll 1 as shown in FIG. 1, and the rolling conditions are shown in Table 1. The heating roll 1 has a sheathed heater 2 provided inside the drum, and the sheathed heater 2 is connected to conductive sliding members 4 provided on both sides of the heating roll 1. Electric power is supplied from the slider 5 to the sheathed heater 2 through the conductive sliding material 4, and by heating the sheathed heater 2, the temperature of the heating roll 1 is raised to 800°C.
The temperature is maintained at ~850°C.

上記AgシースBl系酸化物粉末充填線材3を第1表に
示される温度に保持された加熱ロール1により第1表に
示される圧延速度および圧下率で圧延して得られたB−
1系酸化物超電導線材の臨界電流密度Jcを、液体窒素
中で測定し、これらの測定結果を第1表に示した。′m
1表において栗印を付した値は、この発明の条件を外れ
た値を示す。
A B-
The critical current density Jc of the 1-type oxide superconducting wire was measured in liquid nitrogen, and the measurement results are shown in Table 1. 'm
Values marked with a chestnut in Table 1 indicate values outside the conditions of the present invention.

第1表の結果から、この発明の条件に従って製造された
Bl系酸化物超電導線材は、優れた臨界電流密度を有す
ることがわかる。
From the results in Table 1, it can be seen that the Bl-based oxide superconducting wire manufactured according to the conditions of the present invention has an excellent critical current density.

〔発明の効果〕〔Effect of the invention〕

この発明によると、優れた臨界電流密度を有するBl系
酸化物超電導線材が連続的に簡単に製造することができ
るので、実用上きわめて優れた結果を奏するものである
According to the present invention, a Bl-based oxide superconducting wire having an excellent critical current density can be easily and continuously manufactured, so that extremely excellent results can be obtained in practice.

Claims (2)

【特許請求の範囲】[Claims] (1) BiSrCaCuO系酸化物粉末を金属パイプ
に充填し伸線加工を施して得られた金属シースBiSr
CaCuO系酸化物粉末充填線材を、温度:800〜8
50℃に保持された加熱ロールにより圧延することを特
徴とする高臨界電流密度を有するBi系酸化物超電導線
材の製造方法。
(1) Metal sheath BiSr obtained by filling a metal pipe with BiSrCaCuO-based oxide powder and subjecting it to wire drawing.
The CaCuO-based oxide powder-filled wire rod was heated at a temperature of 800 to 8
A method for producing a Bi-based oxide superconducting wire having a high critical current density, the method comprising rolling with heated rolls maintained at 50°C.
(2) BiPbSrCaCuO系酸化物粉末を金属パ
イプに充填し伸線加工を施して得られた金属シースBi
PbSrCaCuO系酸化物粉末充填線材を、温度:8
00〜850℃に保持された加熱ロールにより圧延する
ことを特徴とする高臨界電流密度を有するBi系酸化物
超電導線材の製造方法。
(2) Metal sheath Bi obtained by filling a metal pipe with BiPbSrCaCuO-based oxide powder and subjecting it to wire drawing.
A PbSrCaCuO-based oxide powder-filled wire rod was heated at a temperature of 8
1. A method for producing a Bi-based oxide superconducting wire having a high critical current density, the method comprising rolling the wire using heated rolls maintained at 00 to 850°C.
JP1062378A 1989-03-13 1989-03-13 Manufacture of bi oxide superconducting wire having high critical current density Pending JPH02239521A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1062378A JPH02239521A (en) 1989-03-13 1989-03-13 Manufacture of bi oxide superconducting wire having high critical current density

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1062378A JPH02239521A (en) 1989-03-13 1989-03-13 Manufacture of bi oxide superconducting wire having high critical current density

Publications (1)

Publication Number Publication Date
JPH02239521A true JPH02239521A (en) 1990-09-21

Family

ID=13198394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1062378A Pending JPH02239521A (en) 1989-03-13 1989-03-13 Manufacture of bi oxide superconducting wire having high critical current density

Country Status (1)

Country Link
JP (1) JPH02239521A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH685996A5 (en) * 1993-06-22 1995-11-30 Univ Geneve Method and apparatus for producing a conductor having at least one textured superconducting core.

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63313425A (en) * 1987-06-15 1988-12-21 Furukawa Electric Co Ltd:The Manufacture of ceramic superconducting wire rod
JPS6456506A (en) * 1987-08-28 1989-03-03 Hitachi Ltd Manufacture of green sheet of superconductive material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63313425A (en) * 1987-06-15 1988-12-21 Furukawa Electric Co Ltd:The Manufacture of ceramic superconducting wire rod
JPS6456506A (en) * 1987-08-28 1989-03-03 Hitachi Ltd Manufacture of green sheet of superconductive material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH685996A5 (en) * 1993-06-22 1995-11-30 Univ Geneve Method and apparatus for producing a conductor having at least one textured superconducting core.

Similar Documents

Publication Publication Date Title
JP2877149B2 (en) Method for producing composite oxide ceramic superconducting wire
JPS6465716A (en) Manufacture of oxide superconductive wire
JPH04292819A (en) Manufacture of oxide superconductive wire
JPH02239521A (en) Manufacture of bi oxide superconducting wire having high critical current density
CN105585315A (en) Preparation method of Bi-Sr-Ca-Cu-O series superconducting composite material
JPH02239522A (en) Manufacture of bi oxide superconducting wire having high critical current density
JPH02207420A (en) Manufacture of superconducting wire rod
JPH07282659A (en) Manufacture of high temperature superconducting wire rod
JPH02183918A (en) Manufacture of oxide superconductor
JPS63252309A (en) Manufacture of oxide superconductive wire
JPS63285155A (en) Oxide type superconductive material and production thereof
JPH04292812A (en) Manufacture of bismuth-based oxide superconductive wire
US5429791A (en) Silver-high temperature superconductor composite material manufactured based on powder method, and manufacturing method therefor
JPH028335A (en) Sheath for manufacturing of oxide superconducting wire rod
JP2966134B2 (en) Method for producing Bi-based oxide superconductor
JPH02192401A (en) Production of oxide superconductor and oxide superconducting wire
JPH04317415A (en) Production of bi-based oxide superconductor
JPH02145470A (en) Production of tlbacacuo superconductor
JPH01241717A (en) Manufacture of oxide superconductor wire
JPH0528857A (en) Manufacture of ceramic superconductor
JPH03114112A (en) Manufacture of bi oxide filling superconductive wire rod having high critical current density
JPH01304618A (en) Manufacture of oxide superconductive filament
JPH02192619A (en) Manufacture of oxide superconductor
JPH02109219A (en) Manufacture of oxide superconductive wire rod
JPH0498714A (en) Manufacture of oxide superconducting wire