JPH022391B2 - - Google Patents

Info

Publication number
JPH022391B2
JPH022391B2 JP56135051A JP13505181A JPH022391B2 JP H022391 B2 JPH022391 B2 JP H022391B2 JP 56135051 A JP56135051 A JP 56135051A JP 13505181 A JP13505181 A JP 13505181A JP H022391 B2 JPH022391 B2 JP H022391B2
Authority
JP
Japan
Prior art keywords
mos
switch circuits
switch
circuit
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56135051A
Other languages
Japanese (ja)
Other versions
JPS5836179A (en
Inventor
Tetsuo Yoshida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP56135051A priority Critical patent/JPS5836179A/en
Publication of JPS5836179A publication Critical patent/JPS5836179A/en
Publication of JPH022391B2 publication Critical patent/JPH022391B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters

Description

【発明の詳細な説明】 本発明は同一位相でスイツチングする複数のス
イツチング素子を直列に接続して耐圧を増すよう
にしたスイツチング電力変換回路の改良に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a switching power conversion circuit in which a plurality of switching elements that switch in the same phase are connected in series to increase withstand voltage.

従来のこの種のブリツジ形スイツチング電力増
幅回路を第1図に示す。図中、1は励振入力端
子、2は(+)側の電源端子、3は(−)側の電
源端子、4は出力端子、Q11,Q12,Q2
1,Q22,Q31,Q32,Q41,Q42は
NチヤネルパワーMOS−FET(スイツチング素
子)、R1〜R16は抵抗、CDはコンデンサ、T
1は入力トランス、T2は出力トランスで、上記
MOS−FETQ11とQ12,Q21とQ22,
Q31とQ32、及びQ41とQ42はそれぞれ
各々のソースとドレインとの間で直列に接続し、
第1、第2、第3及び第4のスイツチ回路を構成
している。励振入力端子1は入力トランスT1の
1次巻線に接続され、MOS−FET Q11〜Q
42のゲートソース間には入力トランスT1の2
次巻線がそれぞれ接続され、各スイツチ回路を構
成する2つのMOS−FETにはそれぞれ同相の電
圧が加えられ同一位相でスイツチングする如くな
つており、第1のスイツチ回路と第4のスイツチ
回路、及び第2のスイツチ回路と第3のスイツチ
回路は同じ位相でオン・オフし、第1(または第
4)のスイツチ回路と第2(または第3)のスイ
ツチ回路は逆位相でオン・オフする如くなつてい
る。電源端子2には第1のスイツチ回路のMOS
−FET Q11のドレインと第3のスイツチ回路
のMOS−FET Q31のドレインとが並列に接
続され、電源端子3には第2のスイツチ回路の
MOS−FET Q22のソースと第4のスイツチ
回路のMOS−FET Q42のソースとが並列に
接続されている。第1のスイツチ回路と第2のス
イツチ回路とはMOS−FET Q12のソースと
MOS−FET Q21のドレインとで直列に接続
し、また第3のスイツチ回路と第4のスイツチ回
路とはMOS−FET Q32のソースとMOS−
FET Q41のドレインとで直列に接続し、該2
つの接続点の間には出力トランスT2の1次巻線
が接続し、出力トランスT2の2次巻線は出力端
子4に接続している。コンデンサCDは電源イン
ピーダンスを小さくするためのもので、電源端子
2と3との間に接続されている。抵抗R1〜R1
6は容量性のゲートを漏れインダクタンスを含む
入力トランスT1により駆動する場合の駆動波形
を改善するためのもので、MOS−FET Q11
〜Q42にそれぞれ対応する入力トランスT1の
2次巻線に並列に抵抗R1〜R8が、また直列に
抵抗R9〜R16がそれぞれ挿入されている。
A conventional bridge-type switching power amplifier circuit of this type is shown in FIG. In the figure, 1 is the excitation input terminal, 2 is the (+) side power supply terminal, 3 is the (-) side power supply terminal, 4 is the output terminal, Q11, Q12, Q2
1, Q22, Q31, Q32, Q41, Q42 are N-channel power MOS-FETs (switching elements), R1 to R16 are resistors, C D is a capacitor, T
1 is the input transformer, T2 is the output transformer, and the above
MOS-FETQ11 and Q12, Q21 and Q22,
Q31 and Q32 and Q41 and Q42 are connected in series between their respective sources and drains,
It constitutes first, second, third and fourth switch circuits. Excitation input terminal 1 is connected to the primary winding of input transformer T1, and MOS-FET Q11 to Q
2 of input transformer T1 between the gate and source of 42
The next windings are connected to each other, and voltages of the same phase are applied to the two MOS-FETs constituting each switch circuit so that they switch in the same phase, and the first switch circuit, the fourth switch circuit, The second switch circuit and the third switch circuit are turned on and off in the same phase, and the first (or fourth) switch circuit and the second (or third) switch circuit are turned on and off in opposite phases. It's becoming like that. The power supply terminal 2 is connected to the MOS of the first switch circuit.
The drain of -FET Q11 and the drain of MOS-FET Q31 of the third switch circuit are connected in parallel, and power supply terminal 3 is connected to the drain of MOS-FET Q31 of the third switch circuit.
The source of MOS-FET Q22 and the source of MOS-FET Q42 of the fourth switch circuit are connected in parallel. The first switch circuit and the second switch circuit are the source of MOS-FET Q12.
The third switch circuit and the fourth switch circuit are connected in series with the drain of MOS-FET Q21, and the source of MOS-FET Q32 and the MOS-
Connect in series with the drain of FET Q41, and
The primary winding of the output transformer T2 is connected between the two connection points, and the secondary winding of the output transformer T2 is connected to the output terminal 4. Capacitor C D is used to reduce power supply impedance and is connected between power supply terminals 2 and 3. Resistance R1~R1
6 is for improving the drive waveform when the capacitive gate is driven by the input transformer T1 including leakage inductance, and MOS-FET Q11
Resistors R1 to R8 are inserted in parallel to the secondary windings of input transformer T1 corresponding to Q42, respectively, and resistors R9 to R16 are inserted in series, respectively.

上記回路に入力として高周波の矩形波または正
弦波の信号を励振入力端子1より与えると、第1
及び第4のスイツチ回路と第2及び第3のスイツ
チ回路とが交互にオン・オフ動作を繰り返し、電
源端子2−3間の電源電圧を振幅とする矩形波の
電圧波形が出力トランスT2の1次巻線に発生
し、2次巻線より出力端子4に電力が出力され
る。
When a high frequency rectangular wave or sine wave signal is input to the above circuit from the excitation input terminal 1, the first
The fourth switch circuit and the second and third switch circuits alternately repeat on/off operations, and a rectangular voltage waveform whose amplitude is the power supply voltage between the power supply terminals 2 and 3 is output from the output transformer T2. Power is generated in the secondary winding, and power is output from the secondary winding to the output terminal 4.

しかしながら上記回路ではオフ状態のスイツチ
回路における2つのMOS−FETへの電圧配分が
該MOS−FETのスイツチングのタイミング及び
ドレイン−ソース間の静電容量によつて変わるた
め、一方のMOS−FETの電圧負担が大きくな
り、回路の耐圧が電圧の多くかかる方によつて制
限され、直列数倍より小さくなるという欠点があ
つた。
However, in the above circuit, the voltage distribution to the two MOS-FETs in the off-state switch circuit changes depending on the switching timing and drain-source capacitance of the MOS-FETs, so the voltage of one MOS-FET changes. This has the disadvantage that the burden increases, and the withstand voltage of the circuit is limited by the side to which more voltage is applied, making it smaller than the number of connections in series.

本発明は上記従来の欠点を除去するためになさ
れたもので、その要旨とするところは、4組のス
イツチ回路を有し、第1と第2のスイツチ回路
を、また第3と第4のスイツチ回路を直列接続
し、第1と第3のスイツチ回路を(+)側電源端
子に、第2と第4のスイツチ回路を(−)側の電
源端子に接続してブリツジ回路を構成し、該スイ
ツチ回路同士の他の接続点の間に出力トランスの
1次巻線を接続し、該出力トランスの2次巻線よ
り出力を取り出すようにしたスイツチング電力変
換回路において、前記の各スイツチ回路が入力信
号に対して同一の位相でスイツチングするn個の
スイツチング素子を直列に接続して構成され互に
隣合つたスイツチ回路に対して入力信号が互に逆
位相をなして与えられることと、前記出力トラン
スに2(n−1)個の補助巻線を設け、第1と第
3のスイツチ回路内部のスイツチング素子同士の
接続点の(+)側電源端子からのそれぞれ等しい
順位の接続点の間に、また第2と第4のスイツチ
回路内部のスイツチング素子同士の接続点の
(−)側の電源端子からのそれぞれ等しい順位の
接続点の間に上記出力トランスに設けた補助巻線
を接続し、その巻数比が一次巻線を1に対し、各
スイツチ回路内に含まれるスイツチング素子の数
nと電源より前記補助巻線との接続点までに含ま
れるスイツチング素子の数mとの比m/nで表わ
される値としたことにある。そしてその目的とす
るところはオフ時の各スイツチ回路内のスイツチ
ング素子にかかる電圧配分を強制的に均等化し、
スイツチ回路内のスイツチング素子1個当りの耐
圧の直列数倍の耐圧が正しく得られるスイツチン
グ電力変換回路を提供することにある。以下、図
面について詳細に説明する。
The present invention has been made to eliminate the above-mentioned conventional drawbacks, and its gist is that it has four sets of switch circuits, the first and second switch circuits, and the third and fourth switch circuits. The switch circuits are connected in series, the first and third switch circuits are connected to the (+) side power terminal, and the second and fourth switch circuits are connected to the (-) side power terminal to form a bridge circuit, In a switching power conversion circuit in which the primary winding of an output transformer is connected between the other connection points of the switch circuits, and the output is taken out from the secondary winding of the output transformer, each of the above-mentioned switch circuits The input signal is provided in opposite phases to mutually adjacent switch circuits, which are constructed by connecting n switching elements in series that switch in the same phase with respect to the input signal; The output transformer is provided with 2(n-1) auxiliary windings, and between the connection points of the same order from the (+) side power supply terminal of the connection points between the switching elements inside the first and third switch circuits. In addition, the auxiliary winding provided in the output transformer is connected between the connection points of the same order from the (-) side power supply terminal of the connection points between the switching elements inside the second and fourth switch circuits. , whose turns ratio is 1 for the primary winding, and the ratio m/ The reason is that the value is expressed as n. The purpose of this is to forcibly equalize the voltage distribution applied to the switching elements in each switch circuit when the switch is off.
It is an object of the present invention to provide a switching power conversion circuit which can correctly obtain a withstand voltage that is several times the withstand voltage in series as the withstand voltage per switching element in a switch circuit. The drawings will be described in detail below.

第2図は本発明の第1の実施例を示すスイツチ
ング電力増幅回路の回路図であつて、第1図と同
一構成部分は同一符号をもつて表わす。すなわち
1は励振入力端子、2及び3は(+)側及び
(−)側の電源端子、4は出力端子、Q11,Q
12,Q21,Q22,Q31,Q32,Q4
1,Q42はNチヤネルパワーMOS−FET(ス
イツチング素子)、R1〜R16は抵抗、CDはコ
ンデンサ、T1は入力トランス、T3は出力トラ
ンスで、同一位相でスイツチングするMOS−
FETQ11とQ12,Q21とQ22,Q31と
Q32,Q41とQ42はそれぞれ第1、第2、
第3及び第4のスイツチ回路を構成している。出
力トランスT3は1次巻線W1、2次巻線W2及
び補助巻線W3,W4の4つの巻線を有し、補助
巻線W3,W4は1次巻線W1と同相の電圧を発
生する向きに巻かれており、1次巻線W1の巻数
と補助巻線W3の巻数と補助巻線W4の巻数の比
は2:1:1となつている。1次巻線W1は第1
図の回路と同様に第1と第2のスイツチ回路の接
続点と第3と第4のスイツチ回路の接続点との間
に接続されており、補助巻線W3は第2のスイツ
チ回路のMOS−FET Q21とQ22の接続点
と第4のスイツチ回路のMOS−FET Q41と
Q42の接続点との間に、また補助巻線W4は第
1のスイツチ回路のMOS−FET Q11とQ1
2の接続点と第3のスイツチ回路のMOS−FET
Q31とQ32の接続点との間にそれぞれ接続さ
れている。また、2次巻線W2は出力端子4に接
続されている。その他の構成については第1図の
回路と同様である。
FIG. 2 is a circuit diagram of a switching power amplifier circuit showing a first embodiment of the present invention, and the same components as in FIG. 1 are denoted by the same symbols. In other words, 1 is the excitation input terminal, 2 and 3 are the (+) side and (-) side power supply terminals, 4 is the output terminal, Q11, Q
12, Q21, Q22, Q31, Q32, Q4
1. Q42 is an N-channel power MOS-FET (switching element), R1 to R16 are resistors, C D is a capacitor, T1 is an input transformer, and T3 is an output transformer, which are MOS-FETs that switch in the same phase.
FETQ11 and Q12, Q21 and Q22, Q31 and Q32, Q41 and Q42 are the first, second,
This constitutes third and fourth switch circuits. The output transformer T3 has four windings: a primary winding W1, a secondary winding W2, and auxiliary windings W3 and W4, and the auxiliary windings W3 and W4 generate a voltage that is in phase with the primary winding W1. The ratio of the number of turns of the primary winding W1, the number of turns of the auxiliary winding W3, and the number of turns of the auxiliary winding W4 is 2:1:1. The primary winding W1 is the first
Similar to the circuit shown in the figure, it is connected between the connection point of the first and second switch circuits and the connection point of the third and fourth switch circuits, and the auxiliary winding W3 is connected to the MOS of the second switch circuit. - The auxiliary winding W4 is connected between the connection point of FETs Q21 and Q22 and the connection point of MOS-FETs Q41 and Q42 of the fourth switch circuit, and the auxiliary winding W4 is connected to the connection point of MOS-FETs Q11 and Q1 of the first switch circuit.
2nd connection point and 3rd switch circuit MOS-FET
They are respectively connected between the connection points of Q31 and Q32. Further, the secondary winding W2 is connected to the output terminal 4. The rest of the configuration is the same as the circuit shown in FIG.

次に動作について述べる。なお、ここでMOS
−FETのオン抵抗は小さく、出力トランスT3
の巻線間の結合度は大きいものとする。上記回路
に入力として高周波の矩形波または正弦波の信号
を励振入力端子1より与えると、上記第1図の回
路と同様に第1及び第4のスイツチ回路と第2及
び第3のスイツチ回路が交互にオン・オフ動作を
繰り返し、電源端子2−3間の電源電圧を振幅
(peak to peakでは電源電圧の2倍)とする矩形
波の電圧波形が出力トランスT3の1次巻線W1
に発生し、2次巻線W2より出力端子4に電力が
出力される。
Next, we will discuss the operation. In addition, here MOS
-FET on-resistance is small, output transformer T3
It is assumed that the degree of coupling between the windings is large. When a high frequency rectangular wave or sine wave signal is inputted to the above circuit from the excitation input terminal 1, the first and fourth switch circuits and the second and third switch circuits are activated as in the circuit shown in FIG. The voltage waveform of the rectangular wave that alternately repeats on and off operations and whose amplitude is the power supply voltage between power supply terminals 2 and 3 (twice the power supply voltage from peak to peak) is the primary winding W1 of the output transformer T3.
occurs, and power is output from the secondary winding W2 to the output terminal 4.

一方、補助巻線W3,W4には1次巻線W1に
発生した電圧波形と周期、位相が同一で、振幅が
1/2、すなわち電源電圧の1/2(peak to peakで
は電源電圧と同一)の矩形波の電圧が誘起され
る。
On the other hand, the auxiliary windings W3 and W4 have the same cycle and phase as the voltage waveform generated in the primary winding W1, and the amplitude is 1/2, that is, 1/2 of the power supply voltage (peak to peak is the same as the power supply voltage). ) is induced.

第1及び第4のスイツチ回路がオンで、第2及
び第3のスイツチ回路がオフの状態において、
MOS−FET Q21とQ22の接続点は補助巻
線W3に誘起された電圧によつてMOS−FET
Q41とQ42の接続点より電源電圧の1/2だけ
強制的に高い電位となる。一方、MOS−FET
Q41とQ42の接続点はMOS−FET Q41
とQ42がオンのため電源端子3の電位に等し
い。従つてMOS−FET Q21とQ22はそれ
ぞれ電源電圧の1/2ずつを負担する。同様にMOS
−FET Q31とQ32の接続点は補助巻線W4
に誘起された電圧によつてMOS−FET Q11
とQ12の接続点より電源電圧の1/2だけ低い電
位となるが、MOS−FET Q11とQ12の接
続点の電位は電源端子2の電位に等しく、MOS
−FET Q31とQ32はそれぞれ電源電圧の1/
2ずつを負担する。
When the first and fourth switch circuits are on and the second and third switch circuits are off,
The connection point between MOS-FET Q21 and Q22 is connected to the MOS-FET by the voltage induced in the auxiliary winding W3.
The potential is forcibly higher than the connection point between Q41 and Q42 by 1/2 of the power supply voltage. On the other hand, MOS-FET
The connection point between Q41 and Q42 is MOS-FET Q41
Since Q42 is on, the potential is equal to the potential of power supply terminal 3. Therefore, MOS-FETs Q21 and Q22 each bear 1/2 of the power supply voltage. Similarly, MOS
-The connection point between FET Q31 and Q32 is auxiliary winding W4
MOS-FET Q11 due to the voltage induced in
The potential is 1/2 of the power supply voltage lower than the connection point between Q11 and Q12, but the potential at the connection point between MOS-FET Q11 and Q12 is equal to the potential of power supply terminal 2, and the MOS
-FET Q31 and Q32 are each 1/1/2 of the power supply voltage.
2 each.

また第2及び第3のスイツチ回路がオンで、第
1及び第4のスイツチ回路がオフの状態において
は、上記同様にMOS−FET Q11とQ12の
接続点及びQ41とQ42の接続点の電位は電源
電圧の1/2の電位となり、MOS−FET Q11と
Q12及びQ41とQ42はそれぞれ電源電圧の
1/2の電圧を負担する。
Furthermore, when the second and third switch circuits are on and the first and fourth switch circuits are off, the potential at the connection point between MOS-FETs Q11 and Q12 and the connection point between Q41 and Q42 is as same as above. The potential is 1/2 of the power supply voltage, and MOS-FETs Q11 and Q12 and Q41 and Q42 each bear a voltage that is 1/2 of the power supply voltage.

このように上記第1の実施例ではオフ時のスイ
ツチ回路内の2つのMOS−FETの接続点を補助
巻線W3,W4により強制的に電源電圧の1/2の
電位となるようになしたため、MOS−FETの静
電容量やスイツチングのタイミング等に拘らず、
オフ時のスイツチ回路内のMOS−FETへの電圧
配分を電源電圧の1/2にでき、常に耐圧をMOS−
FET1個の2倍にすることができる。
In this way, in the first embodiment, the connection point of the two MOS-FETs in the switch circuit when off is forced to have a potential of 1/2 of the power supply voltage by the auxiliary windings W3 and W4. , regardless of the capacitance of the MOS-FET or the timing of switching,
The voltage distribution to the MOS-FET in the switch circuit when off can be reduced to 1/2 of the power supply voltage, and the withstand voltage can always be maintained at MOS-FET.
It can be doubled as one FET.

また、出力トランスT3のそれぞれの巻線間は
直流的に絶縁されているため、AM送信機の被変
調電力増幅回路として用いた場合のように供給電
源電圧が変調信号に応じて瞬時に変化しても、こ
の出力トランスの補助巻線によるMOS−FETの
電圧均等化は有効に作用する。
In addition, since each winding of the output transformer T3 is DC-insulated, the supply voltage does not change instantaneously in response to the modulation signal, as in the case of using it as a modulated power amplifier circuit of an AM transmitter. However, the voltage equalization of the MOS-FET by the auxiliary winding of the output transformer works effectively.

第3図は本発明の第2の実施例のスイツチング
電力増幅回路を示すもので、この実施例は各スイ
ツチ回路内に3個のNチヤネルパワーMOS−
FETを直列接続した場合の回路を示す。図中、
Q13,Q23,Q33,Q43はNチヤネルパ
ワーMOS−FETで、MOS−FET Q13はQ1
1及びQ12と直列に接続し、かつ同一位相でス
イツチングしMOS−FET Q11,Q12とと
もに第1のスイツチ回路を構成している。同様に
MOS−FET Q23,Q33,Q43はそれぞ
れQ21,Q22,Q31,Q32,Q41,Q
42と直列に接続し、かつ同一位相でスイツチン
グして第2、第3、第4のスイツチ回路を構成し
ている。出力トランスT4は1次巻線W1、2次
巻線W2及び補助巻線W3,W4,W5,W6の
6つの巻線を有し、補助巻線W3,W4,W5,
W6は1次巻線W1と同相の電圧を発生する向き
に巻かれており、1次巻線W1と補助巻線W3,
W4,W5,W6との巻数比はW4:W5:W
3:W6:W1=1:1:2:2:3となつてい
る。また補助巻線W5はMOS−FET Q22と
Q23の接続点とQ42とQ43の接続点との間
に接続し、補助巻線W6はMOS−FETQ12と
Q13の接続点とQ32とQ33の接続点との間
に接続している。このような回路構成となつてい
るため、オフ時の各スイツチ回路の各MOS−
FETには電源電圧の1/3の電圧が均等に配分さ
れ、耐圧をMOS−FET1個の3倍とすることが
できる。その他の構成、及び効果については第1
の実施例と同様である。
FIG. 3 shows a switching power amplifier circuit according to a second embodiment of the present invention, and this embodiment has three N-channel power MOS-
This shows a circuit when FETs are connected in series. In the figure,
Q13, Q23, Q33, Q43 are N-channel power MOS-FETs, and MOS-FET Q13 is Q1
It is connected in series with MOS-FETs Q11 and Q12, and switches in the same phase, thereby forming a first switch circuit together with MOS-FETs Q11 and Q12. similarly
MOS-FET Q23, Q33, Q43 are respectively Q21, Q22, Q31, Q32, Q41, Q
42 in series and switch in the same phase to form second, third, and fourth switch circuits. The output transformer T4 has six windings: a primary winding W1, a secondary winding W2, and auxiliary windings W3, W4, W5, W6.
W6 is wound in a direction that generates a voltage in phase with the primary winding W1, and the primary winding W1 and the auxiliary winding W3,
The turns ratio of W4, W5, and W6 is W4:W5:W
3:W6:W1=1:1:2:2:3. In addition, the auxiliary winding W5 is connected between the connection point of MOS-FETs Q22 and Q23 and the connection point of Q42 and Q43, and the auxiliary winding W6 is connected between the connection point of MOS-FETs Q12 and Q13 and the connection point of Q32 and Q33. connected between. Because of this circuit configuration, each MOS-
1/3 of the power supply voltage is evenly distributed to the FETs, and the withstand voltage can be three times that of a single MOS-FET. For other configurations and effects, see Part 1.
This is similar to the embodiment.

なお、補助巻線は出力側に電力を伝達するため
の巻線ではなく、1次巻線、2次巻線に比較して
細い線材を使用しても良く、また第3図の回路に
示す如く低抵抗rを直列に挿入しても良い。また
スイツチング波形の少しばかりの非対称性により
生じる直流分を吸収するため、第3図に示すよう
に1次巻線に直列にコンデンサCCを挿入しても
良く、この場合でも電圧配分の効果は変らない。
Note that the auxiliary winding is not a winding for transmitting power to the output side, and may be made of thinner wire than the primary and secondary windings, as shown in the circuit in Figure 3. A low resistance r may be inserted in series as shown in FIG. In addition, in order to absorb the DC component caused by the slight asymmetry of the switching waveform, a capacitor C C may be inserted in series with the primary winding as shown in Figure 3. Even in this case, the effect of voltage distribution is It doesn't change.

また1つのスイツチ回路内で直列接続する
MOS−FETの数は2個あるいは3個に限定され
ることなく所望の耐圧に応じて任意の数とするこ
とができる。スイツチング素子についても実施例
のNチヤネルパワーMOS−FETに限定されるこ
となく、PチヤネルパワーMOS−FET、バイポ
ーラトランジスタ、SCR等のあらゆるスイツチ
ング素子を使用でき、この場合でも効果は同様で
ある。
Also, connect them in series within one switch circuit.
The number of MOS-FETs is not limited to two or three, but can be any number depending on the desired breakdown voltage. The switching element is not limited to the N-channel power MOS-FET of the embodiment, but any switching element such as a P-channel power MOS-FET, bipolar transistor, SCR, etc. can be used, and the same effect can be obtained in this case.

以上説明したように本発明によれば、4組のス
イツチ回路を有し、第1と第2のスイツチ回路
を、また第3と第4のスイツチ回路を直列接続
し、第1と第3のスイツチ回路を(+)側電源端
子に、第2と第4のスイツチ回路を(−)側の電
源端子に接続してブリツジ回路を構成し、該スイ
ツチ回路同士の他の接続点の間に出力トランスの
1次巻線を接続し、該出力トランスの2次巻線よ
り出力を取り出すようにしたスイツチング電力変
換回路において、前記の各スイツチ回路が入力信
号に対して同一の位相でスイツチングするn個の
スイツチング素子を直列に接続して構成され互に
隣合つたスイツチ回路に対して入力信号が互に逆
位相をなして与えられることと、前記出力トラン
スに2(n−1)個の補助巻線を設け、第1と第
3のスイツチ回路内部のスイツチング素子同士の
接続点の(+)側電源端子からのそれぞれ等しい
順位の接続点の間に、また第2と第4のスイツチ
回路内部のスイツチング素子同士の接続点の
(−)側の電源端子からのそれぞれ等しい順位の
接続点の間に上記出力トランスに設けた補助巻線
を接続し、その巻数比が一次巻線を1に対し、各
スイツチ回路内に含まれるスイツチング素子の数
nと電源より前記補助巻線との接続点までに含ま
れるスイツチング素子の数mとの比m/nで表わ
される値としたので、スイツチング素子の静電容
量やスイツチングのタイミングに拘らずオフ時の
スイツチ回路内の各スイツチング素子への電圧配
分を均等化でき、回路の耐圧をスイツチング素子
1つ当りの耐圧の直列数倍まで正確に増加させる
ことができる。また出力インピーダンスを低くし
なくても大電力化できるため、高出力ラジオ放送
機等の電力増幅器に利用できる等の利点がある。
As explained above, according to the present invention, there are four sets of switch circuits, the first and second switch circuits are connected in series, the third and fourth switch circuits are connected in series, and the first and third switch circuits are connected in series. A bridge circuit is constructed by connecting the switch circuit to the (+) side power supply terminal and the second and fourth switch circuits to the (-) side power supply terminal, and outputting between the other connection points between the switch circuits. In a switching power conversion circuit in which the primary winding of a transformer is connected and the output is taken out from the secondary winding of the output transformer, each of the above-mentioned switch circuits switches in the same phase with respect to the input signal. Input signals are provided in opposite phases to mutually adjacent switch circuits constructed by connecting switching elements in series, and the output transformer has 2(n-1) auxiliary windings. A line is provided between the connection points of the same order from the (+) side power supply terminal of the connection point between the switching elements inside the first and third switch circuits, and between the connection points inside the second and fourth switch circuits. The auxiliary winding provided in the output transformer is connected between the connection points of the equal order from the power supply terminal on the (-) side of the connection points between the switching elements, and the turns ratio is 1 for the primary winding. Since the value is expressed as the ratio m/n of the number n of switching elements included in each switch circuit to the number m of switching elements included from the power supply to the connection point with the auxiliary winding, the static It is possible to equalize the voltage distribution to each switching element in the switch circuit when off, regardless of capacitance or switching timing, and it is possible to accurately increase the circuit's withstand voltage to the number of times the withstand voltage of one switching element in series. can. Furthermore, since it is possible to increase the power without lowering the output impedance, it has the advantage that it can be used in power amplifiers such as high-output radio broadcasters.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の説明に供するもので、第1図は
従来のスイツチング電力増幅回路の回路図、第2
図は本発明のスイツチング電力変換回路の第1の
実施例を示すスイツチング電力増幅回路の回路
図、第3図は本発明の第2の実施例を示すスイツ
チング電力増幅回路の回路図である。 1……励振入力端子、2,3……電源端子、4
……出力端子、Q11,Q12,Q13,Q2
1,Q22,Q23,Q31,Q32,Q33,
Q41,Q42,Q43……Nチヤネルパワー
MOS−FET、T1……入力トランス、T3,T
4……出力トランス、W1……1次巻線、W2…
…2次巻線、W3,W4,W5,W6……補助巻
線。
The drawings are for explaining the present invention, and FIG. 1 is a circuit diagram of a conventional switching power amplifier circuit, and FIG. 2 is a circuit diagram of a conventional switching power amplifier circuit.
FIG. 3 is a circuit diagram of a switching power amplifier circuit showing a first embodiment of the switching power conversion circuit of the present invention, and FIG. 3 is a circuit diagram of a switching power amplifier circuit showing a second embodiment of the present invention. 1...Excitation input terminal, 2, 3...Power terminal, 4
...Output terminal, Q11, Q12, Q13, Q2
1, Q22, Q23, Q31, Q32, Q33,
Q41, Q42, Q43...N channel power
MOS-FET, T1...Input transformer, T3, T
4... Output transformer, W1... Primary winding, W2...
...Secondary winding, W3, W4, W5, W6...Auxiliary winding.

Claims (1)

【特許請求の範囲】[Claims] 1 4組のスイツチ回路を有し、第1と第2のス
イツチ回路を、また第3と第4のスイツチ回路を
直列接続し、第1と第3のスイツチ回路を(+)
側電源端子に、第2と第4のスイツチ回路を
(−)側の電源端子に接続してブリツジ回路を構
成し、該スイツチ回路同士の他の接続点の間に出
力トランスの1次巻線を接続し、該出力トランス
の2次巻線より出力を取り出すようにしたスイツ
チング電力変換回路において、前記の各スイツチ
回路が入力信号に対して同一の位相でスイツチン
グするn個のスイツチング素子を直列に接続して
構成され互に隣合つたスイツチ回路に対して入力
信号が互に逆位相をなして与えられることと、前
記出力トランスに2(n−1)個の補助巻線を設
け、第1と第3のスイツチ回路内部のスイツチン
グ素子同士の接続点の(+)側電源端子からのそ
れぞれ等しい順位の接続点の間に、また第2と第
4のスイツチ回路内部のスイツチング素子同士の
接続点の(−)側の電源端子からのそれぞれ等し
い順位の接続点の間に上記出力トランスに設けた
補助巻線を接続し、その巻数比が一次巻線を1に
対し、各スイツチ回路内に含まれるスイツチング
素子の数nと電源より前記補助巻線との接続点ま
でに含まれるスイツチング素子の数mとの比m/
nであることとを特徴とするスイツチング電力変
換回路。
1 It has 4 sets of switch circuits, the first and second switch circuits are connected in series, the third and fourth switch circuits are connected in series, and the first and third switch circuits are connected in series (+).
The second and fourth switch circuits are connected to the (-) side power supply terminal to form a bridge circuit, and the primary winding of the output transformer is connected between the other connection points of the switch circuits. In a switching power conversion circuit, in which the output transformer is connected to the output transformer and the output is taken out from the secondary winding of the output transformer, each of the switching circuits has n switching elements in series that switch in the same phase with respect to the input signal. Input signals are provided in opposite phases to mutually adjacent switch circuits connected to each other, and the output transformer is provided with 2(n-1) auxiliary windings, and the first and between the connection points of the same order from the (+) side power supply terminal of the connection points between the switching elements inside the third switch circuit, and between the connection points between the switching elements inside the second and fourth switch circuits. The auxiliary winding provided in the output transformer is connected between the connection points of the same order from the power supply terminal on the (-) side of The ratio m/
A switching power conversion circuit characterized in that n.
JP56135051A 1981-08-28 1981-08-28 Switching power converter circuit Granted JPS5836179A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56135051A JPS5836179A (en) 1981-08-28 1981-08-28 Switching power converter circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56135051A JPS5836179A (en) 1981-08-28 1981-08-28 Switching power converter circuit

Publications (2)

Publication Number Publication Date
JPS5836179A JPS5836179A (en) 1983-03-03
JPH022391B2 true JPH022391B2 (en) 1990-01-17

Family

ID=15142772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56135051A Granted JPS5836179A (en) 1981-08-28 1981-08-28 Switching power converter circuit

Country Status (1)

Country Link
JP (1) JPS5836179A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0006513D0 (en) * 2000-03-18 2000-05-10 Alstom Improvements relating to converters
JP5820241B2 (en) 2011-11-02 2015-11-24 浜松ホトニクス株式会社 Capacitive load drive circuit

Also Published As

Publication number Publication date
JPS5836179A (en) 1983-03-03

Similar Documents

Publication Publication Date Title
US6294957B1 (en) RF power amplifier having synchronous RF drive
KR870006724A (en) Switching circuit
US5438693A (en) R. F. mixer
CA2325826A1 (en) Rf power amplifier system having inductive steering
JPH11205123A (en) High withstand voltage power integrated circuit
US6211735B1 (en) RF power amplifier having improved power supply for RF drive circuits
KR970005825B1 (en) Differential current source circuit
US9787100B2 (en) Multilevel power supply
JPH022391B2 (en)
KR20040068268A (en) Isolated converter with synchronized switching leg
TWM553523U (en) Motor driving circuit
US5422765A (en) Inverter device attenuating in-phase harmonic components of an oscillating output signal
US7719861B2 (en) Signal differentiation with differential conversion circuit
JP2020182281A (en) Electric power conversion device
JPH08275518A (en) Synchronous rectifier circuit
JPH10336059A (en) Improvement concerning radio broadcasting
JP3020827B2 (en) Power amplifier circuit
WO2019187484A1 (en) Gate drive circuit and switching device using same
US4591811A (en) Generator for generating an amplitude modulated signal corresponding to a carrier signal modulated by an information signal
JP2023001457A (en) semiconductor switch circuit
KR970008807A (en) Transformer coupled inverter drive
AU2021395470A1 (en) Ultrasound transmitter
JPS6134688B2 (en)
WO1990009056A1 (en) Inverter
GB2471308A (en) Low voltage radio frequency power amplifier with modulation input