JPH02238509A - Reference voltage circuit - Google Patents

Reference voltage circuit

Info

Publication number
JPH02238509A
JPH02238509A JP6040789A JP6040789A JPH02238509A JP H02238509 A JPH02238509 A JP H02238509A JP 6040789 A JP6040789 A JP 6040789A JP 6040789 A JP6040789 A JP 6040789A JP H02238509 A JPH02238509 A JP H02238509A
Authority
JP
Japan
Prior art keywords
power supply
reference voltage
resistor
transistor
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6040789A
Other languages
Japanese (ja)
Inventor
Takashi Senba
仙波 隆司
Madoka Kimura
円 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
NEC Miyagi Ltd
Original Assignee
NEC Corp
NEC Miyagi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, NEC Miyagi Ltd filed Critical NEC Corp
Priority to JP6040789A priority Critical patent/JPH02238509A/en
Publication of JPH02238509A publication Critical patent/JPH02238509A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Electrical Variables (AREA)

Abstract

PURPOSE:To obtain the reference voltage having no dependency on the power supply fluctuation and the temperature fluctuation based on a 2nd power supply by obtaining the same temperature coefficient between the 1st and 2nd resistors and using a reference voltage source having no dependence on the power supply fluctuation and the temperature fluctuation. CONSTITUTION:A voltage follower which inputs the reference voltage V1 consists of an operational amplifier 1, a transistor TR 2, a 1st resistor 3, and a reference voltage source 5. The collector of the TR 2 is connected to an output terminal 6 and also to a 2nd power terminal 8 via a 2nd resistor 7. The temperature coefficients of both resistors 3 and 7 are set equal to each other so that R2/R1 is kept constant when the resistance values of the 1st and 2nd resistors are referred to as R1 and R2. Then the source 5 is stable to the power supply fluctuation and the temperature fluctuation. Thus it is possible to obtain a reference output that is subject to a 2nd power supply and not dependent on the fluctuation of both the power supply and the temperature.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は基準電圧回路に関し、特に温度変動及び電源変
動に対して安定な基準電圧回路に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a reference voltage circuit, and more particularly to a reference voltage circuit that is stable against temperature fluctuations and power supply fluctuations.

「従来の技術」 温度変動及び電源変動に対して安定な基準電圧回路とし
て、従来より、第2図に示すようなバンドギャップリフ
ァレンス回路が知られている。以下、第2図に基きこの
回路の構成を説明する。
"Prior Art" A bandgap reference circuit as shown in FIG. 2 has been known as a reference voltage circuit that is stable against temperature fluctuations and power supply fluctuations. The configuration of this circuit will be explained below based on FIG.

出力端子11と第1の電源端子(低レベル)12との間
には3つのトランジスタ13,14.15が接続されて
おり、これらのトランジスタ13〜15には第2の電源
端子(高レベル)16と出力端子11との間に接続され
た電流源17からの電流工。が供給されるようになって
いる。第1のトランジスタ13のコレクタは第1の抵抗
器18を介して出力端子11に接続され、第2のトラン
ジスタ14のコレクタは第2の抵抗器19を介して出力
端子11に接続され、第3のトランジスタ15のコレク
タは直接出力端子11に接続されている。第1のトラン
ジスタ13のベースは同トランジスタ13のコレクタに
接続されると共に、次段のトランジスタ14のベースに
接続されている。
Three transistors 13, 14, 15 are connected between the output terminal 11 and a first power terminal (low level) 12, and these transistors 13 to 15 are connected to a second power terminal (high level). 16 and the output terminal 11 from a current source 17 . is being supplied. The collector of the first transistor 13 is connected to the output terminal 11 via the first resistor 18, the collector of the second transistor 14 is connected to the output terminal 11 via the second resistor 19, and the collector of the second transistor 14 is connected to the output terminal 11 via the second resistor 19. The collector of the transistor 15 is directly connected to the output terminal 11. The base of the first transistor 13 is connected to the collector of the same transistor 13, and is also connected to the base of the next stage transistor 14.

トランジスタ14のコレクタは更に次の段のトランジス
タ15のベースに接続されている。第2のトランジスタ
14のエミッタは第3の抵抗器20?介して第1の電源
端子12に接続され、第1及び第3のトランジスタ13
.15のエミッタは直接第1の電源端子12に接続され
ている。
The collector of transistor 14 is further connected to the base of transistor 15 in the next stage. The emitter of the second transistor 14 is connected to the third resistor 20? connected to the first power supply terminal 12 through the first and third transistors 13
.. 15 emitters are directly connected to the first power supply terminal 12.

以上の構成において、第1、第2、第3の抵抗器18,
19.20の抵抗値を夫々R11R21R3、抵抗器1
8.19に流れる電流を夫々Il+IN、第1、第2、
第3のトランジスタl3,14.15のベースΦエミッ
タ間電圧を夫々VB■1、VB■2、VBE3とすると
、抵抗器20(R3)に流れる電流Ir?3は下記(1
)式で与えられる。
In the above configuration, the first, second, and third resistors 18,
19.Respectively the resistance value of 20 is R11R21R3, resistor 1
8.19 The current flowing through Il+IN, first, second,
Assuming that the base Φ emitter voltages of the third transistors l3, 14.15 are VB■1, VB■2, and VBE3, respectively, the current Ir flowing through the resistor 20 (R3)? 3 is as below (1
) is given by the formula.

I n3= (VBIEI  Vna2) / R3 
  − ( 1 )一方、トランジスタのベース●エミ
ッタ間電圧VB■は一般に下記(2)式により表される
I n3= (VBIEI Vna2) / R3
- (1) On the other hand, the base-emitter voltage VB of a transistor is generally expressed by the following equation (2).

VBH=VT aノn (Ic / Is )   −
 (2)ここで、V.=kT/q (k ;ボルツマン
定数、T;絶対温度、q;電子の電荷)の式が成立し、
Icはコレクタ電流、Lは飽和電流である。従って、(
1)式は下記(3)式により表すことができる。
VBH=VT anon (Ic/Is) −
(2) Here, V. The formula =kT/q (k: Boltzmann's constant, T: absolute temperature, q: electron charge) holds,
Ic is the collector current, and L is the saturation current. Therefore, (
Equation 1) can be expressed by Equation (3) below.

■+?3= {VT +11n(I1 /I2)}/R
3・・・ (3) ココテ、トランジスタ14のエミソタ接地電流増幅率β
。がβ。》1であるとすると、抵抗器19(R2)の電
圧降下■2は下記(4)式により与えられる。
■+? 3= {VT +11n(I1 /I2)}/R
3... (3) Cocote, emitter grounding current amplification factor β of transistor 14
. is β. >>1, the voltage drop (2) of the resistor 19 (R2) is given by the following equation (4).

V2岬R2●IR3 = (R2 /R3 )−vT@ノn(L/I2)・・
・(4) 出力電圧をV。とするとV。は下記(5)式により表さ
れる。
V2 Misaki R2●IR3 = (R2 /R3)-vT@non(L/I2)...
・(4) Set the output voltage to V. Then V. is expressed by the following formula (5).

Vo ” Vna3+ (R2 / R3 )  ” 
VT●ノn(Is/Iz)      ・・・(5)こ
のV。を温度Tで微分すると、下記(6)式が成立する
Vo “Vna3+ (R2 / R3)”
VT●non (Is/Iz) ... (5) This V. When is differentiated with respect to temperature T, the following equation (6) is established.

δVo δT ここで、 するには、(6)式から下記(7)式が成立する必要が
ある。
δVo δT Here, in order to do so, the following equation (7) needs to hold true from equation (6).

゛1゛ 即ち、この(7)式を満足するR21R3+It+工2
を選択すれば温度依存性を解消することができる。
゛1゛That is, R21R3+It+Work2 that satisfies this formula (7)
By selecting , temperature dependence can be eliminated.

このバンドギャップリファレンス回路では、(5)式か
ら明らかなように、飽和電流I8の温度による影響が排
除されると共に、上記(7)式を溝足するようにR.,
R3,L ,I2を選択することにより、VBHの温度
依存性が除去され、極めて安定した温度特性が得られる
。また、電源電圧の変動によって電流値I。が変化して
もVB+!3の変動が微小で無視できる場合は、出力電
圧■。
In this bandgap reference circuit, as is clear from equation (5), the influence of temperature on saturation current I8 is eliminated, and R. ,
By selecting R3, L and I2, the temperature dependence of VBH is removed and extremely stable temperature characteristics can be obtained. Also, the current value I changes due to fluctuations in the power supply voltage. Even if changes, VB+! If the fluctuation in 3 is small and can be ignored, the output voltage ■.

は一定である。is constant.

[発明が解決しようとする課題コ しかしながら、上述した従来の基準電圧回路では、第1
の電源を基準とした温度変動番電源変動に依存しない基
準電圧は得られるが、第2の電源を基準とした温度変動
●電源変動に依存しない基準電圧は得られない。また、
(7)式を満足するように、R2 r R3+  It
 +  I2を選択すると、第1の電源端子と出力端子
との間の電圧は、約1.2rVJ程度に決定されてしま
い、任意の基準電圧が得られないという欠点がある。
[Problems to be Solved by the Invention]However, in the conventional reference voltage circuit described above, the first
It is possible to obtain a reference voltage that does not depend on temperature fluctuations with the second power supply as a reference, but it is not possible to obtain a reference voltage that does not depend on temperature fluctuations with the second power supply as a reference. Also,
R2 r R3+ It so as to satisfy formula (7)
When +I2 is selected, the voltage between the first power supply terminal and the output terminal is determined to be approximately 1.2 rVJ, and there is a drawback that an arbitrary reference voltage cannot be obtained.

本発明はかかる問題点に鑑みてなされたものであって、
第2の電源を基準とした温度変動惨電源変動に依存しな
い任意の基準電圧が得られる基準電圧回路を提供するこ
とを目的とする。
The present invention has been made in view of such problems, and includes:
It is an object of the present invention to provide a reference voltage circuit that can obtain an arbitrary reference voltage that does not depend on temperature fluctuations and power fluctuations based on a second power supply.

[課題を解決するための手段] 本発明に係る基準電圧回路は、演算増幅器と、この演算
増幅器の正相入力端子と第1の電源端子との間に接続さ
れた基準電圧源と、前記演算増幅器の逆相入力端子と第
1の電源端子との間に接続された第1の抵抗器と、ベー
スが前記演算増幅器−6一 ?正相出力端子に接続されエミッタが前記演算増幅器の
逆相入力端子に接続されコレクタが基準電圧出力端子に
接続されたトランジスタと、このトランジスタのコレク
タと第2の電源端子との間に接続された第2の抵抗器と
を具備したことを特徴とする。
[Means for Solving the Problems] A reference voltage circuit according to the present invention includes an operational amplifier, a reference voltage source connected between a positive phase input terminal of the operational amplifier and a first power supply terminal, and a reference voltage circuit connected to the operational amplifier. a first resistor connected between the negative phase input terminal of the amplifier and the first power supply terminal; and a base of the operational amplifier-6? a transistor connected to a positive phase output terminal, an emitter connected to a negative phase input terminal of the operational amplifier, and a collector connected to a reference voltage output terminal; and a transistor connected between the collector of this transistor and a second power supply terminal. It is characterized by comprising a second resistor.

[作用コ 基準電圧源の電圧をV1、第1の抵抗器の抵抗値をR 
z第2の抵抗器の抵抗値をR2とする。
[The voltage of the reference voltage source is V1, and the resistance value of the first resistor is R.
z Let the resistance value of the second resistor be R2.

演算増幅器、トランジスタ及び第1の抵抗器はボルテー
ジフォロワーを構成しており、基準電圧源の電圧V,と
第1の抵抗器の両端に生ずる電圧とは等しくなる。従っ
て、第1の抵抗器に流れる電流はVl /Rl となり
、トランジスタのベース電流及び増幅器の入力電流は無
視できるとすると、1・ランジスタのコレクタ電流もV
■/R■となり、第2の抵抗器の両端の電圧はR2 X
 (Vl /Rl )となる。よって、第1の抵抗器と
第2の抵抗器の温度係数を等しくシ、電源変動働温度変
動に依存しない基準電圧源を用いることにより、第2の
電源を基準とした電源変動●温度変動に依存しない出力
電圧が得られる。また、出力電圧は、RIとR2との比
を変えることにより、任意の値に設定することができる
The operational amplifier, the transistor, and the first resistor constitute a voltage follower, and the voltage V of the reference voltage source is equal to the voltage appearing across the first resistor. Therefore, the current flowing through the first resistor is Vl /Rl, and assuming that the base current of the transistor and the input current of the amplifier can be ignored, the collector current of the transistor is also Vl
■/R■, and the voltage across the second resistor is R2
(Vl/Rl). Therefore, by setting the temperature coefficients of the first resistor and the second resistor to be equal and using a reference voltage source that does not depend on power supply fluctuations and working temperature fluctuations, power fluctuations with respect to the second power supply as a reference. An independent output voltage is obtained. Furthermore, the output voltage can be set to any value by changing the ratio between RI and R2.

[実施例] 次に、本発明の実施例について添付の図面を参照して説
明する。
[Example] Next, an example of the present invention will be described with reference to the accompanying drawings.

第1図は本発明の実施例に係る基準電圧回路の構成を示
す回路図である。演算増幅回路1は、その正相出力端子
がトランジスタ2のベースに11 続されてトランジス
タ2を駆動する。トランジスタ2のエミッタは演算増幅
器1の逆相入力端子に帰還入力されると共に、第1の抵
抗器3を介して第1の電源端子4に接続されている。そ
して、演算増幅器1の正相入力端子は基準電圧v1を生
成する基準電圧源5を介して第1の電源端子4に接続さ
れている。つまり、演算増幅器1、トランジスタ2、第
1の抵抗器3及び基準電圧源5は、基準電圧■1を入力
とするボルテージフォロワーを構成する。また、1・ラ
ンジスタ2のコレクタは出力端子6に接続されると共に
、第2の抵抗器7を介して第2の電源端子8に接続され
ている。
FIG. 1 is a circuit diagram showing the configuration of a reference voltage circuit according to an embodiment of the present invention. The operational amplifier circuit 1 has its positive phase output terminal connected to the base of the transistor 2 to drive the transistor 2. The emitter of the transistor 2 is fed back into the negative phase input terminal of the operational amplifier 1 and is also connected to the first power supply terminal 4 via the first resistor 3 . The positive phase input terminal of the operational amplifier 1 is connected to the first power supply terminal 4 via a reference voltage source 5 that generates a reference voltage v1. That is, the operational amplifier 1, the transistor 2, the first resistor 3, and the reference voltage source 5 constitute a voltage follower that receives the reference voltage (1) as an input. Further, the collector of transistor 1 is connected to an output terminal 6 and is also connected to a second power supply terminal 8 via a second resistor 7.

以上のように構成された本実施例の回路において、いま
第1の抵抗器3及び第2の抵抗器7の抵抗値を夫々R,
,R2とする。ボルテージフォロワーの出力である第1
の抵抗器3の両端電圧は基桑電圧V,に等しいから、抵
抗器3に流れる電流値はV./R,となる。ここで、ト
ランジスタ2のベース電流及び演算増幅器1の入力電流
は無視できるものとすると、トランジスタ2のコレクタ
電流もvi /Rlとなり、第2の抵抗器7の両端電圧
は(R2 /R,)V.となる。
In the circuit of this embodiment configured as described above, the resistance values of the first resistor 3 and the second resistor 7 are now set to R, respectively.
, R2. The first, which is the output of the voltage follower
Since the voltage across the resistor 3 is equal to the base voltage V, the value of the current flowing through the resistor 3 is V. /R. Here, assuming that the base current of transistor 2 and the input current of operational amplifier 1 can be ignored, the collector current of transistor 2 is also vi /Rl, and the voltage across the second resistor 7 is (R2 /R,)V .. becomes.

従って、R2 /Rlが一定となるように、第1の抵抗
器3と第2の抵抗器7の温度係数を等しく設定し、基準
電圧源5として温度変動及び電源変動に対して安定した
ものを選定すれば、温度及び電源の変動に依存しない基
準出力で、しかも第2の電源を基準とした基準出力が得
られる。そして、この基準出力はR1とR2との比、又
は基準電圧v1の値によって任意に設定可能である。
Therefore, in order to keep R2/Rl constant, the temperature coefficients of the first resistor 3 and the second resistor 7 are set to be equal, and the reference voltage source 5 is one that is stable against temperature fluctuations and power supply fluctuations. If selected, it is possible to obtain a reference output that is independent of temperature and power supply fluctuations and that is based on the second power supply. This reference output can be arbitrarily set by the ratio of R1 and R2 or the value of the reference voltage v1.

=9 [発明の効果] 以上説明したように、本発明によれば、基準出力が第1
の抵抗器と第2の抵抗器との比及び基準電圧源の山力に
よって決定されるので、第1の抵抗器と第2の抵抗器の
温度係数を等し<シ、電源変動φ温度変動に依存しない
基準電圧源を使用することにより、第2の電源を基準と
した電源変動●温度変動に強い基準電圧が得られる。ま
た、第1の抵抗器の抵抗値と第2の抵抗器の抵抗値の比
を設定することにより、任意の基準電圧が得られる。
=9 [Effect of the invention] As explained above, according to the present invention, the reference output
Since it is determined by the ratio of the resistor to the second resistor and the peak power of the reference voltage source, the temperature coefficients of the first resistor and the second resistor are equal, and the power supply fluctuation φ temperature fluctuation By using a reference voltage source that does not depend on the second power supply, a reference voltage that is resistant to power supply fluctuations and temperature fluctuations with respect to the second power supply can be obtained. Furthermore, by setting the ratio between the resistance value of the first resistor and the resistance value of the second resistor, an arbitrary reference voltage can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例に係る基準電圧回路の回路図、
第2図は従来のバンドギャップリファレンス回路の回路
図である。 1;演算増幅器、2;トランジスタ、3;第1の抵抗゛
器、4;第1の電源端子、5;基準電圧源、6;出力端
子、7;第2の抵抗器、8;第2の電源端子
FIG. 1 is a circuit diagram of a reference voltage circuit according to an embodiment of the present invention;
FIG. 2 is a circuit diagram of a conventional bandgap reference circuit. 1; operational amplifier, 2; transistor, 3; first resistor, 4; first power supply terminal, 5; reference voltage source, 6; output terminal, 7; second resistor, 8; second power terminal

Claims (1)

【特許請求の範囲】[Claims] (1)演算増幅器と、この演算増幅器の正相入力端子と
第1の電源端子との間に接続された基準電圧源と、前記
演算増幅器の逆相入力端子と第1の電源端子との間に接
続された第1の抵抗器と、ベースが前記演算増幅器の正
相出力端子に接続されエミッタが前記演算増幅器の逆相
入力端子に接続されコレクタが基準電圧出力端子に接続
されたトランジスタと、このトランジスタのコレクタと
第2の電源端子との間に接続された第2の抵抗器とを具
備したことを特徴とする基準電圧回路。
(1) between an operational amplifier, a reference voltage source connected between the positive phase input terminal of the operational amplifier and the first power supply terminal, and the negative phase input terminal of the operational amplifier and the first power supply terminal; a transistor having a base connected to the positive phase output terminal of the operational amplifier, an emitter connected to the negative phase input terminal of the operational amplifier, and a collector connected to the reference voltage output terminal; A reference voltage circuit comprising a second resistor connected between the collector of the transistor and a second power supply terminal.
JP6040789A 1989-03-13 1989-03-13 Reference voltage circuit Pending JPH02238509A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6040789A JPH02238509A (en) 1989-03-13 1989-03-13 Reference voltage circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6040789A JPH02238509A (en) 1989-03-13 1989-03-13 Reference voltage circuit

Publications (1)

Publication Number Publication Date
JPH02238509A true JPH02238509A (en) 1990-09-20

Family

ID=13141295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6040789A Pending JPH02238509A (en) 1989-03-13 1989-03-13 Reference voltage circuit

Country Status (1)

Country Link
JP (1) JPH02238509A (en)

Similar Documents

Publication Publication Date Title
KR100233761B1 (en) Band-gap reference circuit
GB2131208A (en) Constant current generator circuit
JPS59184924A (en) Current source unit
JP3461276B2 (en) Current supply circuit and bias voltage circuit
JPH02238509A (en) Reference voltage circuit
GB2240442A (en) Threshold voltage generating circuit for integrated circuit
JP2748414B2 (en) Voltage source circuit
JPH05235661A (en) Constant current source circuit
US7164308B2 (en) Temperature compensated bandgap voltage reference
JP2695515B2 (en) Reference voltage generation circuit
JPS5816206B2 (en) constant current circuit
JPS60129818A (en) Reference voltage circuit
JPH0624298B2 (en) Current amplifier circuit
JP3591253B2 (en) Temperature compensation circuit and reference voltage generation circuit using the same
JPH02188811A (en) Constant current circuit
JP3036084B2 (en) Constant voltage circuit
JPH0122288Y2 (en)
JPH0430761B2 (en)
JPH07121256A (en) Current mirror circuit
JPH0610443Y2 (en) Logarithmic conversion circuit
JPH0477329B2 (en)
JPH0685563A (en) Constant current circuit
JPH02224411A (en) Differential amplifier
JPH0680997B2 (en) Multiplication circuit
JPS63175907A (en) Constant-current circuit