JPH02238272A - Laminated type evaporator - Google Patents

Laminated type evaporator

Info

Publication number
JPH02238272A
JPH02238272A JP5492189A JP5492189A JPH02238272A JP H02238272 A JPH02238272 A JP H02238272A JP 5492189 A JP5492189 A JP 5492189A JP 5492189 A JP5492189 A JP 5492189A JP H02238272 A JPH02238272 A JP H02238272A
Authority
JP
Japan
Prior art keywords
refrigerant
evaporator
path
tube
distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5492189A
Other languages
Japanese (ja)
Other versions
JP2687551B2 (en
Inventor
Keiji Suzumura
恵司 鈴村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP1054921A priority Critical patent/JP2687551B2/en
Publication of JPH02238272A publication Critical patent/JPH02238272A/en
Application granted granted Critical
Publication of JP2687551B2 publication Critical patent/JP2687551B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/03Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits
    • F28D1/0308Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other
    • F28D1/0325Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other the plates having lateral openings therein for circulation of the heat-exchange medium from one conduit to another
    • F28D1/0333Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other the plates having lateral openings therein for circulation of the heat-exchange medium from one conduit to another the plates having integrated connecting members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/008Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for vehicles
    • F28D2021/0085Evaporators

Abstract

PURPOSE:To disperse an overheating region and to improve thermal exchanging efficiency by disposing the downstream end regions of U-shaped and inverted U-shaped flat passages at the same side with respect to air passing direction to an evaporator. CONSTITUTION:A refrigerant distribution passage 14 composed of a series of tanks 13 is split into upper and lower passages of disposition of U-shaped and inverted U-shaped tubes 10a, 10b, refrigerant is split into upper and lower air discharge sides to an evaporator body. The refrigerants finished to evaporate while being introduced from a rear face to a front face with respect to an air flow via the tube elements 10 are again gathered by a refrigerant collecting passage 15 split into upper and lower air flow sides of tube element disposition formed of tanks 13 group, and sucked into a compressor through upper and lower branch tubes 34 opposed to the inlet side branch tube and refrigerant discharge tubes 6. In this case, the overheating regions of the elements are dispersed vertically and laterally to eliminate irregular thermal distribution of the evaporator to be entirely made uniform. Thus, the thermal exchanging efficiency can be improved.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は,例えば自動車用空調装置に使用されるエバボ
レータの如き積層型蒸発器に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a stacked evaporator such as an evaporator used, for example, in an automobile air conditioner.

(従来の技術) 熱交換器の能力を上昇させるために,流体を細い管に分
割して流し,これにより表面積の増大及び流体中心から
管壁面までの距離の短縮化を図り熱交換効率を高めるこ
とが一般に行われている。
(Prior art) In order to increase the capacity of a heat exchanger, the fluid is divided into thin tubes and passed through them. This increases the surface area and shortens the distance from the center of the fluid to the tube wall, increasing heat exchange efficiency. This is commonly done.

自動車用エアコンのエバポレータに使用される積層型熱
交換器においても交換器内部で,主に8〜10程の数に
分流することにより上述した効果を得ている。
In the laminated heat exchanger used in the evaporator of an automobile air conditioner, the above-mentioned effect is obtained by dividing the heat into mainly about 8 to 10 parts inside the exchanger.

しかしながら,この分流数を増加させることは,偏流の
発生を招き,流れにくくなる部位ができ全体の熱分布が
悪化するという結果をもたらす。
However, increasing the number of branched flows causes uneven flow, creating areas where the flow becomes difficult and resulting in a deterioration of the overall heat distribution.

そこで,冷媒がエバボレータ本体に入る前に,冷媒分配
流路を2分割して各分配流路が受け持つ分流数は増さず
に,全体としての分流数を2倍に増大することにより偏
流(不均一な分配)を防ぎつつ熱交換効率を高めること
が講じられている。
Therefore, before the refrigerant enters the evaporator main body, the refrigerant distribution channel is divided into two, and the number of branches handled by each distribution channel is not increased, but by doubling the overall number of branches, Measures have been taken to increase heat exchange efficiency while preventing uniform distribution.

エバボレータ内部では冷媒の蒸発が行われ,その際の気
化熱によりこれを通過゛する空気は冷却される。エバボ
レータの冷媒蒸発部はほぼO℃近辺になり熱分布は良い
The refrigerant is evaporated inside the evaporator, and the heat of evaporation cools the air passing through it. The temperature in the refrigerant evaporation section of the evaporator is approximately 0°C, and the heat distribution is good.

ところで.エバボレータの冷媒排出口近傍は過熱領域(
スーパーヒート)と呼ばれ,この部位は冷媒を完全蒸気
にする必要から5〜10℃に温度設定される。この過熱
領域をエバボレータのどの位置に持たせるかで全体の熱
分布,ひいては車両に供給される空気の温度分布,冷却
温度に大きく影響する。
by the way. The area near the refrigerant outlet of the evaporator is the overheating area (
The temperature of this part is set at 5 to 10 degrees Celsius because it is necessary to completely vaporize the refrigerant. Where in the evaporator this overheating area is located greatly affects the overall heat distribution, and ultimately the temperature distribution and cooling temperature of the air supplied to the vehicle.

従来の流路2分割式積層型エバボレータの一例として特
開昭82− 119373号公報に開示されるものがあ
る。このエバボレータの過熱領域部分を第6図の斜線部
分で示す。
An example of a conventional stacked evaporator with two flow paths is disclosed in Japanese Patent Application Laid-Open No. 82-119373. The overheating region of this evaporator is shown by the shaded area in FIG.

(発明が解決すべき課題) 自動車用蒸発器の場合,家庭用と異なり,エンジンの回
転数変化に起因するコンプレッサ回転数の変化,車速変
化によるコンデンサ冷却風の風速,風量変化,また,コ
ンデンサ冷却風の温度変化等の外乱を大いに受けるため
,時には膨張弁の温度制御領域を超えてしまい,さらに
過熱度が上昇してしまう場合も起こりうる。そうなった
場合に,過熱領域を通過した空気は,十分に冷却が行わ
れず,その空気が過熱領域以外の部位を通過した空気と
,エバボレータの空気流出側で急激に混合する。このと
き,他の部位を通過した空気よりも高温多湿の過熱領域
通過空気に含まれる水分が凝縮し,白煙と呼ばれる霧状
の空気が車両内へ供給されるという不具合が生じる。
(Problems to be Solved by the Invention) In the case of automobile evaporators, unlike those for home use, there are changes in compressor rotation speed due to changes in engine rotation speed, changes in the speed and volume of condenser cooling air due to changes in vehicle speed, and changes in condenser cooling air. Because it is subject to large disturbances such as wind temperature changes, the temperature control range of the expansion valve may sometimes be exceeded, and the degree of superheat may further increase. In this case, the air that has passed through the overheated area is not cooled sufficiently and is rapidly mixed with the air that has passed through areas other than the overheated area on the air outlet side of the evaporator. At this time, the moisture contained in the air that passes through the superheated region, which is hotter and more humid than the air that has passed through other parts, condenses, causing a problem in which mist-like air called white smoke is supplied into the vehicle.

よって,本発明は,上記不具合を解消する新規な積層型
蒸発器を提供することを目的とする。
Therefore, an object of the present invention is to provide a novel stacked evaporator that eliminates the above-mentioned problems.

(発明による課題の解決手段) 本発明の積層型蒸発器は.一端側に冷媒導入口と冷媒排
出口を有しこれらを連通ずるU字状扁平流路を内部に形
成してなる第一のチューブエレメントと.他端側に冷媒
導入口と冷媒排出口を有しこれらを連通ずる逆U字状扁
平流路を内部に形成してなる第二のチューブエレメント
を多数少くとも一つおきに積層して連接溶着してなり,
前記U字状及び逆U字状扁平流路の下流端域を蒸発器に
対する空気通過方向に関し同一の側に配置したことを特
徴とする。
(Means for solving the problems by the invention) The stacked evaporator of the present invention is as follows. A first tube element having a refrigerant inlet and a refrigerant outlet at one end, and a U-shaped flat flow path communicating between the two. A large number of second tube elements each having a refrigerant inlet and a refrigerant outlet at the other end and forming an inverted U-shaped flat flow path communicating these inside are stacked and welded together at least every other. Then,
It is characterized in that the downstream end regions of the U-shaped and inverted U-shaped flat channels are arranged on the same side with respect to the evaporator in the air passage direction.

そして,前記第一のチューブエレメントの各冷媒導入口
及び各冷媒排出口を拡開部を介してそれぞれ連通し前記
一端側に冷媒分配路及び冷媒集合路を積層方向に形成す
ると共に.前記第二のチューブエレメントの各冷媒導入
口及び各冷媒排出口を拡開部を介してそれぞれ連通し前
記他端側に冷媒分配路及び冷媒集合路を積層方向に形成
し,前記両端側各分配路に冷媒導入管を,前記両端側各
集合路に冷媒排出管をそれぞれ接続することが好ましい
Each refrigerant inlet and each refrigerant outlet of the first tube element are communicated with each other through an enlarged portion, and a refrigerant distribution path and a refrigerant collection path are formed in the stacking direction on the one end side. Each refrigerant inlet and each refrigerant outlet of the second tube element are communicated through an enlarged portion, and a refrigerant distribution path and a refrigerant collection path are formed in the stacking direction on the other end side, and each of the refrigerant distribution paths on both ends It is preferable that a refrigerant inlet pipe is connected to the passage, and a refrigerant discharge pipe is connected to each of the collecting passages on both ends.

また,前記両端側各冷媒分配路は,蒸発器の空気流出側
に形成される好ましい。
Preferably, the refrigerant distribution channels on both ends are formed on the air outflow side of the evaporator.

更に,蒸発器の空気流入側に配される冷媒導入管は,該
蒸発器の中央部にて該蒸発器を貫通し蒸発器の空気流出
側両端側に形成される各冷媒分配路に分岐接続すると共
に,蒸発器の空気流入側に前記冷媒導入管と近接して配
される冷媒排出管は,蒸発器の空気流入側両端側に形成
される各冷媒集合路に分岐接続することができる。
Furthermore, the refrigerant introduction pipe arranged on the air inflow side of the evaporator passes through the evaporator at the center of the evaporator and is branched to each refrigerant distribution path formed at both ends of the air outflow side of the evaporator. In addition, a refrigerant discharge pipe disposed close to the refrigerant introduction pipe on the air inflow side of the evaporator can be branched and connected to each refrigerant collection path formed at both ends of the air inflow side of the evaporator.

更に,第一及び第二のチューブエレメントの扁平流路断
面積を冷媒分配路及び冷媒集合路を2分割しない場合に
おける扁平流路断面積のl/2とすることも好ましい。
Furthermore, it is also preferable that the cross-sectional area of the flat flow path of the first and second tube elements is set to 1/2 of the cross-sectional area of the flat flow path in the case where the refrigerant distribution path and the refrigerant collecting path are not divided into two.

チューブエレメントの配置に関し,一及び二の各チュー
ブエレメントをー,二交互に配することができるが,こ
れ以外にも,二のチューブエレメントの2つおきに一の
チューブエレメントを,あるいは一のチューブエレメン
トの2つおきに二のチューブエレメントを配することも
できる。
Regarding the arrangement of the tube elements, it is possible to arrange the first and second tube elements alternately. It is also possible to arrange a second tube element for every second element.

(作用) 冷媒導入管より上下各分配路に導入された冷媒は,各分
配路が受け持つU字チューブ内を流れ,冷媒の蒸発が行
われ,この気化熱により空気は冷却される。チューブエ
レメントは,一と二のチューブエレメントが交互に配さ
れているため,各チューブエレメントの過熱領域は,上
下及び左右に分散される(第5図斜線部分参照)。これ
によりエバボレータの熱分布偏在が解消され全体に均等
化される。
(Function) The refrigerant introduced into the upper and lower distribution channels from the refrigerant introduction pipe flows through the U-shaped tubes assigned to each distribution channel, where the refrigerant evaporates and the air is cooled by the heat of evaporation. Since the first and second tube elements are arranged alternately, the overheating area of each tube element is distributed vertically and horizontally (see the shaded area in Figure 5). This eliminates the uneven distribution of heat in the evaporator and makes it uniform throughout.

また,本配置構成は,過熱領域と非過熱領域とが交互に
隣接して存在するため.外乱による一層の過熱を抑制し
安定した冷凍サイクルが行える。
In addition, in this arrangement, overheating areas and non-overheating areas exist adjacent to each other alternately. A stable refrigeration cycle can be performed by suppressing further overheating caused by external disturbances.

前記拡開部は,チューブエレメントの一端側にチューブ
エレメント積層方向に突出して該チューブエレメントと
一体形成されるタンク部により構成することができる。
The expanded portion may be constituted by a tank portion that projects from one end of the tube element in the stacking direction of the tube elements and is integrally formed with the tube element.

また,このタンク部の連接及び一及び二のチューブエレ
メント配置構成により蒸発器の両端側にそれぞれ冷媒分
配路を形成することができ,これら分配路は蒸発器の空
気流出側に配されることが好ましい。
Furthermore, by connecting the tank parts and arranging the first and second tube elements, refrigerant distribution paths can be formed at both ends of the evaporator, and these distribution paths can be placed on the air outflow side of the evaporator. preferable.

(実施例) 以下,本発明の一実施例を図面に基づき説明する。第1
図は本実施例の積層型エバボレータの外観図である。
(Example) Hereinafter, an example of the present invention will be described based on the drawings. 1st
The figure is an external view of the laminated evaporator of this embodiment.

このエバボレータ20は,チューブエレメント10と,
蛇腹状のコルゲートフィン27とを多数交互に連接し,
その両端にサイドプレート2を取り付けている積層型の
ものである。
This evaporator 20 includes a tube element 10,
A large number of bellows-shaped corrugated fins 27 are connected alternately,
It is a laminated type with side plates 2 attached to both ends.

一のチューブエレメント,すなわちU字チューブ10a
は,第8図に示すように,全体として極く浅い盆状をな
すメインプレート1を2枚合わせて最中の皮状に貼り合
わせてなる扁平な管板部材で,その中央部において縦方
向に一部を残して突出し空間を2分割する仕切壁30に
よりU字流路9を形成している。
One tube element, that is, the U-shaped tube 10a
As shown in Fig. 8, is a flat tube plate member made by laminating two main plates 1, which have an extremely shallow tray shape as a whole, in a skin shape in the middle. A U-shaped flow path 9 is formed by a partition wall 30 that divides the protruding space into two, leaving a portion of the space.

メインプレート1は,第3図に示すように,端側に冷媒
導入口7と冷媒排出口8を有し,これらを前記U字流路
9により連通している。11は,この冷媒流路に迷路形
状を与えて熱交換効率を向上させるための斜方向に配向
させて設けた小さな打出しリブ群である。
As shown in FIG. 3, the main plate 1 has a refrigerant inlet 7 and a refrigerant outlet 8 on its end side, which are communicated through the U-shaped passage 9. Reference numeral 11 denotes a group of small ribs oriented obliquely to give the refrigerant flow path a labyrinth shape and improve heat exchange efficiency.

前記導入口7及び排出口8にそれぞれ連なるプレート1
の上端部には積層方向に突出部12が区画形成され,プ
レート貼り合わせにより各2つのタンク13aが形成さ
れている。
A plate 1 connected to the inlet port 7 and the outlet port 8, respectively.
Projections 12 are defined at the upper end in the stacking direction, and two tanks 13a are formed by bonding plates together.

また,プレートlの他端側には,前記と同様な構成によ
りU字流路9と隔絶して2つのタンク13bがこのプレ
ート1の貼り合わせにより形成される。
Further, on the other end side of the plate 1, two tanks 13b are formed by bonding the plates 1 together, separated from the U-shaped flow path 9, with the same configuration as described above.

二のチューブエレメント,すなわち逆U字チューブ10
bは,このーのチューブエレメント10aを逆さに配置
することにより構成することができる。これにより,冷
媒導入口及び排出口は下側に,下側タンクは上側にそれ
ぞれ移り,U字流路は逆U字に形成される。
The second tube element, namely the inverted U-shaped tube 10
b can be constructed by arranging this tube element 10a upside down. As a result, the refrigerant inlet and outlet are moved to the lower side, the lower tank is moved to the upper side, and the U-shaped flow path is formed into an inverted U-shape.

これら一及び二のチューブエレメントlOa及びlOb
は,第2図に示すように,交互に隣接して配される。
These one and two tube elements lOa and lOb
are arranged adjacent to each other alternately as shown in FIG.

チューブエレメントの各タンク側面にはそれぞれ通孔1
2a及び12b’があけられ,隣接する各タンク側面は
相互に貼り合わされるので,エバボレータ上下端側にタ
ンク13によりそれぞれ冷媒分配路l4及び冷媒集合路
l5が形成される。これら冷媒流路l4及び15は,空
気流れ方向16に対して分配路14が下流側,集合路l
5が上流側にくるように配置される。
There is one through hole on each tank side of the tube element.
2a and 12b' are opened and the side surfaces of adjacent tanks are bonded to each other, so that a refrigerant distribution path l4 and a refrigerant collection path l5 are respectively formed by the tank 13 on the upper and lower end sides of the evaporator. These refrigerant flow paths l4 and 15 are such that the distribution path 14 is on the downstream side with respect to the air flow direction 16, and the collecting path l4 is on the downstream side with respect to the air flow direction 16.
5 is placed on the upstream side.

このタンク部流路構成は.他の流路に比べて流路径が非
常に大きくなっているため,その流路抵抗は問題となら
ないくらい小さく,これによって流体の流れが疎外され
不均一流を生むということはない。
The flow path configuration of this tank is as follows. Since the flow path diameter is very large compared to other flow paths, the flow path resistance is so small that it does not pose a problem, and this does not alienate the flow of the fluid and cause non-uniform flow.

サイドプレート2は,板部材で,エバボレータの両端を
保護すると共に,その−1二下端段部2aは,冷媒導入
及び排出ブロックの取付部を構成している。そして,導
入・排出ブロックの冷媒流路接続に対応して一方側に通
孔が設けられている。
The side plate 2 is a plate member that protects both ends of the evaporator, and its -1 lower end step portion 2a constitutes a mounting portion for a refrigerant introduction and discharge block. A through hole is provided on one side corresponding to the refrigerant flow path connection of the introduction/discharge block.

冷媒導入管5は,第9図に示すように,エバボレータ2
0の空気流入側に配され,その通過部5aはエバボレー
タ20のコルゲートフィン部を貫通し,その先端部5b
は空気流出側に配される冷媒分割部28を介して上下分
岐管31に接続している。
The refrigerant introduction pipe 5 is connected to the evaporator 2 as shown in FIG.
0, its passage portion 5a passes through the corrugated fin portion of the evaporator 20, and its tip portion 5b
is connected to the upper and lower branch pipes 31 via a refrigerant dividing section 28 arranged on the air outflow side.

上下分岐管31の先端部は,それぞれ,冷媒導入ブロッ
ク3a及び3bと接続し,このブロック3a及び3b内
は,通孔32, 33によりそれぞれ空気流出側に位置
する上下各分配路14に連通している。
The tips of the upper and lower branch pipes 31 are connected to refrigerant introduction blocks 3a and 3b, respectively, and the insides of these blocks 3a and 3b are communicated with upper and lower distribution channels 14 located on the air outflow side through through holes 32 and 33, respectively. ing.

通過部5aは,角筒状にプレス加工され,その各側面は
コルゲートフィン27及゛びチューブエレメント10と
密に接触している。これにより,すきまがなくなり空気
の冷却もれを阻止すると共に,ろう付を丸パイプに比べ
一層強固に行える。
The passage portion 5a is pressed into a rectangular tube shape, and each side thereof is in close contact with the corrugated fins 27 and the tube element 10. This eliminates gaps, preventing cooling air from leaking, and allows for stronger brazing compared to round pipes.

冷媒導入管5より導入された冷媒は,分割部28及び上
下分岐管31により上下各分配路14に2分割される。
The refrigerant introduced from the refrigerant introduction pipe 5 is divided into two into upper and lower distribution passages 14 by the dividing portion 28 and the upper and lower branch pipes 31.

同様な構成により,第1図に示すように空気流入側に配
される冷媒排出管6が冷媒集合部29及び上下分岐管3
4を介して空気流入側に位置する上下各冷媒集合路l5
に接続されている。
With a similar configuration, as shown in FIG.
Upper and lower refrigerant collecting passages 15 located on the air inflow side via 4
It is connected to the.

第7図は,配管の別の実施例を示し,第1図で後面(空
気流出側)回わり込んでいる導入管を排出管と同じ前面
(空気流入側)に配置している。
FIG. 7 shows another embodiment of the piping, in which the inlet pipe that wraps around the rear (air outflow side) in FIG. 1 is placed on the same front (air inflow side) as the discharge pipe.

第7(A)図は,冷媒導入部におけるバイブ51を水平
方向曲部51aを介してエバポレータ前面端部にて曲げ
ているので,冷却コアに向う空気の流れ1Bを疎外する
ことはないが,ただエバボレータ全体の外形が大きくな
る。
In FIG. 7(A), the vibrator 51 in the refrigerant introduction part is bent at the front end of the evaporator via the horizontally bent part 51a, so the air flow 1B toward the cooling core is not alienated. However, the overall external size of the evaporator becomes larger.

第7(B)図は.垂直方向曲部52aを使用している点
が第7’(A)図に示すものとは異なり,この場合,外
形が大きくなることはないが,空気の流れはやや疎外さ
れる。
Figure 7(B) is. It differs from the one shown in FIG. 7'(A) in that a vertically bent portion 52a is used, and in this case, although the external shape is not increased, the air flow is somewhat restricted.

第7(C)図は,空気流れの疎外を回避するために,冷
却コア領域外より配管58を行うものである。この場合
,上記疎外回避は達成されるものの,全体の外形は大き
くなる傾向にある。
In FIG. 7(C), piping 58 is installed from outside the cooling core area in order to avoid alienation of air flow. In this case, although the above-mentioned alienation avoidance is achieved, the overall size tends to become larger.

以上の構成になるエバポレータ20は,製作に当って各
構成部材を熱伝導性の良い例えばアルミニウム等の薄金
属板をプレス加工にて成型し,予め表面をろう材をもっ
て被覆しておき,配管を含めそれぞれ仮組立し,治具に
よってこの状態を固定させながらろう材の溶融温度(例
えば600℃前後)にまで加熱されているろう付炉に納
めることによって,各構成部材は一体に接合されるもの
である。
In manufacturing the evaporator 20 having the above structure, each component is formed by pressing a thin metal plate such as aluminum with good thermal conductivity, the surface is coated with a brazing material in advance, and the piping is connected. Each component is joined together by temporarily assembling each component, and then fixing this state with a jig and placing it in a brazing furnace heated to the melting temperature of the brazing material (e.g. around 600℃). It is.

(実施例の作用) 3N2図に冷媒の流れを示す。コンデンサにより凝縮さ
れた液冷媒はレシーバを通過後,膨張弁をとおりエバボ
レータへ導入される。ここで空気流れ方向16に対して
前面から,後ろ面に廻りこんだ冷媒導入管5によりエバ
ボレータ本体に冷媒が導入される。一連のタンクl3に
より構成される冷媒分配路14は,U字チューブ10a
と逆U字チューブ10bとの配置構成により上下に分割
しており,冷媒は図中で後面側(空気流出側)上下2系
統に分割されエバポレータ本体部へ流れこむことになる
。エバボレータ本体部はメインプレート1を相対するよ
うにして形成されるチューブエレメントIOとコルゲー
トフィン27との交互連接により構成され,冷媒は各分
配路の受け持つチューブエレメントに均等分配されこれ
ら各チューブエレメント10のリブllのついた内部を
流れ蒸発を行い,コルゲートフィン27を通して蒸発潜
熱を空気から奪うことに.より,空気を冷却する。
(Effects of Example) Figure 3N2 shows the flow of refrigerant. After passing through the receiver, the liquid refrigerant condensed by the condenser is introduced into the evaporator through an expansion valve. Here, refrigerant is introduced into the evaporator main body from the front side in the air flow direction 16 through the refrigerant introduction pipe 5 that goes around the rear side. A refrigerant distribution path 14 constituted by a series of tanks l3 includes a U-shaped tube 10a.
The refrigerant is divided into upper and lower parts due to the arrangement of the and inverted U-shaped tubes 10b, and the refrigerant is divided into two systems, upper and lower, on the rear side (air outflow side) in the figure, and flows into the evaporator main body. The evaporator main body is constructed by alternately connecting tube elements IO and corrugated fins 27, which are formed with the main plate 1 facing each other, and the refrigerant is evenly distributed to the tube elements in charge of each distribution path. The air flows through the ribbed interior and evaporates, and the latent heat of evaporation is removed from the air through the corrugated fins 27. This cools the air.

冷媒の蒸発温度は,エバポレータの凍結を防止するため
に通常θ℃近辺に設定される。
The evaporation temperature of the refrigerant is usually set around θ°C to prevent the evaporator from freezing.

チューブエレメント10により空気流れに対して後ろ面
より前面に導かれつつ蒸発を終えた冷媒は,タンク13
群により形成され前記チューブエレメント配置構成によ
り前面側(空気流入側)上下に分割された冷媒集合路1
5により再び集められ,導入側分岐管と対向する上下分
岐管34を通り冷媒排出管6によりコンブレッサヘ吸入
される。
The refrigerant that has finished evaporating while being guided from the rear to the front with respect to the air flow by the tube element 10 is transferred to the tank 13.
A refrigerant collection path 1 formed by a group and divided into upper and lower sections on the front side (air inflow side) by the tube element arrangement configuration.
5, the refrigerant is collected again by the refrigerant discharge pipe 6 through the upper and lower branch pipes 34 facing the inlet branch pipe, and is sucked into the compressor by the refrigerant discharge pipe 6.

冷媒の排出口温度は,コンブレッサの液圧縮を防止する
ために,蒸発温度より5〜10℃上昇するように膨張弁
(図示せず)により設定される。
The refrigerant outlet temperature is set by an expansion valve (not shown) to be 5 to 10° C. higher than the evaporation temperature in order to prevent liquid compression in the compressor.

第5図は,過熱領域17(斜線部分)の分布状態を示す
。l6は空気流れ方向を示し図示は空気流れが図面表側
より裏側へ向うことを示す。
FIG. 5 shows the distribution of overheated regions 17 (shaded areas). 16 indicates the air flow direction, and the illustration shows that the air flow is from the front side to the back side of the drawing.

上下分岐管31より下側分配路14bに導入された冷媒
は,この分配路14bと導入口7が連通ずる各逆U字チ
ューブfobに流入する。このチューブ10b内の冷媒
は,第5図裏面下部から上部へ,そして裏面上部から表
面上部へと回わり,更に表面下部へと移行して排出口8
より流出しこれら排出口8に連通ずる下側集合路15b
に集められる。各排出口8付近は,過熱領域17bを形
成し,これら過熱領域17bは,逆U字チューブ10b
によってエバボレータ下部に左右分散される。
The refrigerant introduced into the lower distribution path 14b from the upper and lower branch pipes 31 flows into each inverted U-shaped tube fob with which this distribution path 14b and the inlet 7 communicate. The refrigerant in this tube 10b circulates from the lower part of the back surface to the upper part in FIG.
A lower collecting passage 15b that flows out from the drain port 8 and communicates with these discharge ports 8
are collected in. The vicinity of each discharge port 8 forms a superheating region 17b, and these superheating regions 17b are connected to the inverted U-shaped tube 10b.
It is distributed to the left and right at the bottom of the evaporator.

同様にして,上側分配路L4aに導入された冷媒は,こ
の分配路14aより導入口7を介して各U字チューブl
Oaに流入し,このチューブlOa内を第5図裏面上部
から下部へ,そして裏面下部から表面下部へと回わり,
更に表面上部へと移行して排出口8より流出し上側集合
路15aに集められる。
Similarly, the refrigerant introduced into the upper distribution path L4a is passed from this distribution path 14a through the inlet 7 to each U-shaped tube l.
Flows into the tube lOa, flows from the upper part of the back side to the lower part in Fig. 5, and from the lower part of the back side to the lower part of the front side,
Further, it moves to the upper part of the surface, flows out from the discharge port 8, and is collected in the upper collection path 15a.

U字チューブ10aの排出口付近は過熱領域17aを形
成し,これら過熱領域17aは,U字チューブ10aに
よってエバボレータ上部に左右分散される。
The vicinity of the discharge port of the U-shaped tube 10a forms overheating regions 17a, and these overheating regions 17a are distributed to the left and right in the upper part of the evaporator by the U-shaped tube 10a.

各チューブエレメントの扁平流路過熱領域は,これらチ
ューブエレメントの配置構成により過熱領域と非過熱領
域とが交互に形成される。
The flat channel overheating area of each tube element is formed into an overheating area and a non-overheating area alternately depending on the arrangement of these tube elements.

(発明の効果) 本発明の積層型蒸発器は,チューブエレメントの配置構
成により,その過熱領域を分散させこれにより均一な空
気冷却を果たすことができると共に,過熱領域と非過熱
領域とを交互に配置形成し過度の過熱を抑制することが
できる。
(Effects of the Invention) The stacked evaporator of the present invention can distribute the superheated region by the arrangement of the tube elements, thereby achieving uniform air cooling, and alternately divides the superheated region and non-superheated region. Excessive overheating can be suppressed by forming an arrangement.

また,本蒸発器は,冷媒を2分割して導入する構成であ
るため,偏流の発生を招くことなくなお従来の2倍の分
流数が確保され,冷媒の熱交換効率を大いに高めること
ができると共に流路抵抗も大幅に低下する。
In addition, since this evaporator has a configuration in which the refrigerant is introduced in two parts, twice the number of divided flows than before is ensured without causing uneven flow, and the heat exchange efficiency of the refrigerant can be greatly increased. At the same time, the flow path resistance is also significantly reduced.

更に,第5項の蒸発器によれば,上記効果に加えて境膜
伝熱係数の増加を果たすことができる。
Furthermore, according to the evaporator of item 5, in addition to the above effects, the film heat transfer coefficient can be increased.

冷媒を2分割して導入する場合は,その流量が一定であ
るとするとチューブ内を流れる冷媒流速はl/2となる
。流速がl/2となると境膜伝熱係数は低下の傾向を示
す。そこで,扁平流路断面積を1/2としこれにより流
速を同一に保つことにより上記不具合を解消することが
できる。
When the refrigerant is introduced in two parts and the flow rate is constant, the flow rate of the refrigerant flowing inside the tube is 1/2. When the flow rate becomes 1/2, the film heat transfer coefficient tends to decrease. Therefore, the above-mentioned problem can be solved by reducing the cross-sectional area of the flat flow path to 1/2, thereby keeping the flow velocity the same.

これにより,熱交換効率の一層の向上を果たすことがで
きる。
This makes it possible to further improve heat exchange efficiency.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は,本発明の一実施例を示す積層型エバボレータ
の外観図,第2図は,同エバボレータにおける冷媒の流
れを示す図,第3図は,メインプレートの正面図,第4
(A)図は,第3図におけるA−A線及びC−C線断面
共通の断面図,第4(B)図は,第3図B−B線断面図
,第5図は.過熱領域(斜線部分)分布を示す一部省略
したエバボレータ正面図,第6図は,従来の過熱領域(
斜線部分)を示す説明図,第7図は配管の別の実施例を
示し,第7(A)図は水平方向曲部を用いて,第7(B
)図は垂直方向曲部を用いてそれぞれ接続した例を示し
,第7(C)図は曲部を用いずに冷却コア領域外より接
続した例を示し,第8図は.U字チューブの分解図,第
9図は,導入管の接続構成を示す分解図,を夫々示す。 1・・・メインプレート 5・・・冷媒導入管 10・・・チューブエレメ l3・・・タンク ■5・・・冷媒集合路 27・・・コルゲートフィ 2・・・サイドプレート 6・・・冷媒排出管 ント l4・・・冷媒分配路 l7・・・過熱領域 ン 第3(2I 第4(A)図 第4(B)図 第6図 第7(B)図 ゝ旧 第7(A)図 第8図
Figure 1 is an external view of a stacked evaporator showing an embodiment of the present invention, Figure 2 is a diagram showing the flow of refrigerant in the evaporator, Figure 3 is a front view of the main plate,
(A) is a sectional view common to the A-A line and C-C line in FIG. 3, FIG. 4(B) is a sectional view taken along the B-B line in FIG. 3, and FIG. Figure 6, a partially omitted front view of the evaporator showing the distribution of the overheating area (hatched area), shows the distribution of the overheating area (shaded area) of the conventional overheating area (
Fig. 7 shows another embodiment of the piping, and Fig. 7(A) shows the horizontally bent part.
) Figure shows an example in which connections are made using vertical bends, Figure 7 (C) shows an example in which connections are made from outside the cooling core area without using bends, and Figure 8 shows an example in which connections are made from outside the cooling core area without using bends. FIG. 9 is an exploded view of the U-shaped tube, and an exploded view showing the connection configuration of the introduction pipe. 1... Main plate 5... Refrigerant inlet pipe 10... Tube element l3... Tank ■5... Refrigerant collection path 27... Corrugated pipe 2... Side plate 6... Refrigerant discharge Pipe l4... Refrigerant distribution line l7... Overheating area No. 3 (2I) Figure 8

Claims (5)

【特許請求の範囲】[Claims] (1)一端側に冷媒導入口と冷媒排出口を有しこれらを
連通するU字状扁平流路を内部に形成してなる第一のチ
ューブエレメントと、他端側に冷媒導入口と冷媒排出口
を有しこれらを連通する逆U字状扁平流路を内部に形成
してなる第二のチューブエレメントを多数少くとも一つ
おきに積層して連接溶着してなり、前記U字状及び逆U
字状扁平流路の下流端域を蒸発器に対する空気通過方向
に関し同一の側に配置したことを特徴とする積層型蒸発
器。
(1) A first tube element having a refrigerant inlet and a refrigerant outlet at one end and a U-shaped flat flow path communicating between them, and a refrigerant inlet and a refrigerant outlet at the other end. A large number of second tube elements each having an inverted U-shaped flat channel having an outlet and communicating with each other are stacked and welded together at least every other. U
1. A stacked evaporator characterized in that the downstream end regions of the letter-shaped flat channels are arranged on the same side of the evaporator in the air passage direction.
(2)前記第一のチューブエレメントの各冷媒導入口及
び各冷媒排出口を拡開部を介してそれぞれ連通し前記一
端側に冷媒分配路及び冷媒集合路を積層方向に形成する
と共に、前記第二のチューブエレメントの各冷媒導入口
及び各冷媒排出口を拡開部を介してそれぞれ連通し前記
他端側に冷媒分配路及び冷媒集合路を積層方向に形成し
、前記両端側各分配路に冷媒導入管を、前記両端側各集
合路に冷媒排出管をそれぞれ接続したことを特徴とする
請求項1記載の積層型蒸発器。
(2) Each refrigerant inlet and each refrigerant outlet of the first tube element are connected to each other via an enlarged portion, and a refrigerant distribution path and a refrigerant collection path are formed in the stacking direction on the one end side, and Each refrigerant inlet and each refrigerant outlet of the second tube element are communicated through an enlarged portion, and a refrigerant distribution path and a refrigerant collection path are formed in the stacking direction at the other end side, and each distribution path at both ends is connected to each other through an enlarged portion. 2. The laminated evaporator according to claim 1, wherein the refrigerant inlet pipe is connected to each of the collecting passages on both ends of the refrigerant discharge pipe.
(3)前記両端側各冷媒分配路は、蒸発器の空気流出側
に形成される請求項1又は2記載の積層型蒸発器。
(3) The stacked evaporator according to claim 1 or 2, wherein each of the refrigerant distribution channels on both end sides is formed on an air outflow side of the evaporator.
(4)蒸発器の空気流入側に配される冷媒導入管は、該
蒸発器の中央部にて該蒸発器を貫通し蒸発器の空気流出
側両端側に形成される各冷媒分配路に分岐接続すると共
に、蒸発器の空気流入側に前記冷媒導入管と近接して配
される冷媒排出管は、蒸発器の空気流入側両端側に形成
される各冷媒集合路に分岐接続する請求項3記載の積層
型蒸発器。
(4) The refrigerant introduction pipe arranged on the air inflow side of the evaporator passes through the evaporator at the center of the evaporator and branches into each refrigerant distribution path formed at both ends of the air outflow side of the evaporator. 3. A refrigerant discharge pipe arranged close to the refrigerant introduction pipe on the air inflow side of the evaporator is branched and connected to each refrigerant collection path formed on both ends of the air inflow side of the evaporator. The stacked evaporator described.
(5)第一及び第二のチューブエレメントの扁平流路断
面積を冷媒分配路及び冷媒集合路を2分割しない場合に
おける扁平流路断面積の1/2とした請求項1〜4の一
に記載の積層型蒸発器。
(5) The cross-sectional area of the flat flow path of the first and second tube elements is set to 1/2 of the cross-sectional area of the flat flow path in the case where the refrigerant distribution path and the refrigerant collection path are not divided into two. The stacked evaporator described.
JP1054921A 1989-03-09 1989-03-09 Multilayer evaporator Expired - Lifetime JP2687551B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1054921A JP2687551B2 (en) 1989-03-09 1989-03-09 Multilayer evaporator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1054921A JP2687551B2 (en) 1989-03-09 1989-03-09 Multilayer evaporator

Publications (2)

Publication Number Publication Date
JPH02238272A true JPH02238272A (en) 1990-09-20
JP2687551B2 JP2687551B2 (en) 1997-12-08

Family

ID=12984082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1054921A Expired - Lifetime JP2687551B2 (en) 1989-03-09 1989-03-09 Multilayer evaporator

Country Status (1)

Country Link
JP (1) JP2687551B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000040914A1 (en) * 1999-01-07 2000-07-13 Bosch Automotive Systems Corporation Evaporator
EP1331461A2 (en) * 2002-01-25 2003-07-30 Delphi Technologies, Inc. Multi-tank evaporator for improved performance and reduced airside temperature spread

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000040914A1 (en) * 1999-01-07 2000-07-13 Bosch Automotive Systems Corporation Evaporator
EP1331461A2 (en) * 2002-01-25 2003-07-30 Delphi Technologies, Inc. Multi-tank evaporator for improved performance and reduced airside temperature spread
EP1331461A3 (en) * 2002-01-25 2006-07-12 Delphi Technologies, Inc. Multi-tank evaporator for improved performance and reduced airside temperature spread

Also Published As

Publication number Publication date
JP2687551B2 (en) 1997-12-08

Similar Documents

Publication Publication Date Title
JPH02238271A (en) Laminated type evaporator
AU703687B2 (en) Refrigerant evaporator, improved for uniform temperature of air blown out therefrom
KR100261659B1 (en) Refrigerant evaporator
US6431264B2 (en) Heat exchanger with fluid-phase change
JP6540190B2 (en) Cold storage heat exchanger
JPH0886591A (en) Heat exchanger and refrigerant evaporator
JPH0814702A (en) Laminate type evaporator
JP2001221535A (en) Refrigerant evaporator
JPH0473599A (en) Heat exchanger
JPH02238272A (en) Laminated type evaporator
JPS6214751B2 (en)
JP3735983B2 (en) Stacked evaporator
JPH06194001A (en) Refrigerant evaporator
JPH0642885Y2 (en) Refrigerator Evaporator
JPS6391492A (en) Heat exchanger
JP3443786B2 (en) Absorption refrigerator
JP2737286B2 (en) Stacked heat exchanger
JP3633030B2 (en) Evaporator for air conditioner
JPH02106697A (en) Lamination type heat exchanger
JP2000055573A (en) Refrigerant evaporator
JP2001066018A (en) Evaporator
JPH10170188A (en) Heat exchanger
JP7259287B2 (en) Heat exchanger
JP3674079B2 (en) Laminate heat exchanger
JPH0814703A (en) Refrigerant evaporator