JPH02235722A - Manufacture of biaxially orientated nylon 6 film - Google Patents

Manufacture of biaxially orientated nylon 6 film

Info

Publication number
JPH02235722A
JPH02235722A JP5941489A JP5941489A JPH02235722A JP H02235722 A JPH02235722 A JP H02235722A JP 5941489 A JP5941489 A JP 5941489A JP 5941489 A JP5941489 A JP 5941489A JP H02235722 A JPH02235722 A JP H02235722A
Authority
JP
Japan
Prior art keywords
film
stretching
bubble
sigmatd
sigmamd
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5941489A
Other languages
Japanese (ja)
Other versions
JPH0628903B2 (en
Inventor
Masao Takashige
真男 高重
Yuichi Oki
祐一 大木
Takeo Hayashi
武夫 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Petrochemical Co Ltd
Original Assignee
Idemitsu Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Petrochemical Co Ltd filed Critical Idemitsu Petrochemical Co Ltd
Priority to JP1059414A priority Critical patent/JPH0628903B2/en
Priority to EP90104444A priority patent/EP0386759B1/en
Priority to DE69021607T priority patent/DE69021607T2/en
Priority to AU51214/90A priority patent/AU622777B2/en
Priority to US07/492,884 priority patent/US5094799A/en
Priority to KR1019900003201A priority patent/KR0154330B1/en
Publication of JPH02235722A publication Critical patent/JPH02235722A/en
Publication of JPH0628903B2 publication Critical patent/JPH0628903B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To enable continuous production to be achieved without difficulty, while the excellent forming stability in orientating and deforming the title film is obtained by setting a maximum orientation stress in the moving direction and one in the axial direction of the film each to a specified value. CONSTITUTION:A blank film 1 passes between the nip rolls 2 of a pair, and then while the film is heated by a heater 3 (set temperature of 300 deg.C) with the gas injected thereinto, it is expanded into a bubble 6 by blowing air (air volume of 15m<3>/min) from an air ring 4 at the beginning point of orientation. Said film is biaxially oriented simultaneously by taking up it with a pair of nip rolls 7 downstream. The maximum orientation stress sigmaMD in the moving direction(MD) of the film, and the maximum orientation stress sigmaTD in the axial direction(TD) of the film are respectively set in 600kg/cm<2=sigmaTD<=1300kg/cm<2> and 600kg/cm<2=sigmaMD<=1300kg/cm<2>. When sigmaMD and sigmaTD exceed 1300kg/cm<2>, since the bubble in orientating is often broken, its continuous production is not achieved. When sigmaMD and sigmaTD are lower than 600kg/cm<2>, since the bubble in orientating becomes unstable, the thickness accuracy of the film is reduced, where the value of a commodity is lost.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、二軸延伸ナイロン6フィルムの製造方法に関
し、食品包装分野、工業材料分野等において利用するこ
とができる. [背景技術] チューブラー法により同時二軸延伸されて製造されたナ
イロンフィルムは、強度、透明性等の機械的及び光学的
特性が良好であるという優れた特徴を有している. [発明が解決しようとする課題] 従来のチューブラー法により得られた二軸延伸ナイロン
フィルムは、一般に厚さ精度が低いため、巻き姿が悪化
したり、印刷、ラミネート、製袋等の二次加工時におけ
る不良が発生したりして、その包装用、工業用フィルム
としての使用が制限されていた.これは、延伸用原反フ
ィルムの作製時に、厚さ精度を押出ダイで調整しても±
2〜6%程度の厚さむらが発生することに加えて、従来
のチューブラー法によれば、延伸時にその厚さむらが更
に2倍以上に悪化することによるからである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing a biaxially stretched nylon 6 film, and can be used in the food packaging field, industrial materials field, etc. [Background Art] Nylon films produced by simultaneous biaxial stretching using the tubular method have excellent mechanical and optical properties such as strength and transparency. [Problems to be Solved by the Invention] Biaxially stretched nylon films obtained by the conventional tubular method generally have low thickness accuracy, resulting in poor winding appearance and problems with secondary processes such as printing, laminating, and bag making. Defects occur during processing, which limits its use as packaging and industrial films. This is because even if the thickness accuracy is adjusted using the extrusion die when producing the original film for stretching,
This is because, in addition to the occurrence of thickness unevenness of about 2 to 6%, according to the conventional tubular method, the thickness unevenness is further worsened by more than twice as much during stretching.

また、従来法によれば、延伸変形時のバブルが安定しな
いため、バブルが横揺れを起こしたり、時には破袋する
虞れもあった. なお、特公昭49−47269号公報によれば、ポリー
ε一カプラミド樹脂を溶融押出して得られる管状フィル
ムを急冷固化して実質的に無定形で、かつ実質的に水素
結合のないポリーε一力ブラミド樹脂管状フィルムをそ
の水分含量が2%未満の状態に維持し、延伸前に45〜
70゛Cの温度でチューブ延伸を行い、その際の延伸倍
率を縦横それぞれ2.0〜4.0倍の範囲で2軸延伸を
行うことを特徴とする2軸分子配向したポリ−6−カプ
ラミド樹脂フィルムの製造方法が提案されている.また
、特公昭53−15914号公報によれば、ポリアミド
未延伸チューブ状フィルムを50〜90゜Cの温度に加
熱した後、延伸開始点と延伸終了点間の雰囲気温度を1
80〜250℃保つことにより延伸開始点を固定し、横
方向と縦方向の最終延伸倍率差を0.2〜0.6の範囲
に維持しながら気体圧力により縦方向に2.5〜3.7
倍、横方向に3.0〜4.0倍の倍率で同時二軸延伸を
行うことを特徴とするボリアミドフィルムのチェーブ状
二軸延伸方法が提案されている。
In addition, according to the conventional method, the bubbles are not stable during stretching and deformation, so there is a risk that the bubbles may sway and sometimes break. According to Japanese Patent Publication No. 49-47269, a tubular film obtained by melt-extruding a poly-ε-capramide resin is rapidly cooled and solidified to produce a poly-ε-capramide resin which is substantially amorphous and substantially free of hydrogen bonds. The Bramide resin tubular film was maintained at a moisture content of less than 2% and 45 to 40% before stretching.
Poly-6-capramide with biaxial molecular orientation, characterized by carrying out tube stretching at a temperature of 70°C, and carrying out biaxial stretching at a stretching ratio of 2.0 to 4.0 times in the longitudinal and lateral directions. A method for manufacturing resin film has been proposed. According to Japanese Patent Publication No. 53-15914, after heating an unstretched polyamide tubular film to a temperature of 50 to 90°C, the atmospheric temperature between the stretching start point and the stretching end point is adjusted to 1.
The stretching start point is fixed by maintaining the temperature at 80 to 250°C, and while maintaining the final stretching ratio difference between the transverse and longitudinal directions in the range of 0.2 to 0.6, the stretching ratio is 2.5 to 3. 7
A method of biaxially stretching a polyamide film in the shape of a tube has been proposed, which is characterized by carrying out simultaneous biaxial stretching at a magnification of 3.0 to 4.0 times in the transverse direction.

しかし、このような延伸倍率又は延伸温度の制御に基づ
く製造方法によっては、良好なフィルムが得られる成形
条件を必ずしも的確に規定することができなかった. 本発明は、チューブラー法による二軸延伸ナイロンフィ
ルムの中、特に二軸延伸ナイロン6フィルムについて、
延伸時の成形状態を安定させることができると共に、得
られるフィルムの厚さ精度を良好にすることができる製
造方法を提供することを目的とする. [課題を解決するための手段] 本発明は、チューブラー法による二軸延伸ナイロン6フ
ィルムの製造方法において、延伸に関与する各種パラメ
ータを実験によりil認した結果、フィルムの移動方向
(MD)の最大延伸応力をσl及びフィルムの幅方向(
TD)の最大延伸応力をσテDをパラメータとしてとり
、これに基づき製造条件を設定することにより、良好な
結果が得られることを見出した。即ち、本発明において
は、σ、。及びσ?。をそれぞれ、 6 0 0 kg/cd≦era” 1 3 0 0 
kg/c4600kg/cj≦σ。≦1300kg/C
l&に設定したことを特徴とする. 但し、σ。とσ.は、それぞれ下式で表される。
However, depending on the manufacturing method based on controlling the stretching ratio or stretching temperature, it has not always been possible to accurately define molding conditions to obtain a good film. The present invention relates to biaxially stretched nylon 6 films produced by the tubular method, particularly biaxially stretched nylon 6 films.
The purpose of the present invention is to provide a manufacturing method that can stabilize the forming state during stretching and improve the thickness accuracy of the obtained film. [Means for Solving the Problems] The present invention provides a method for producing biaxially stretched nylon 6 film using the tubular method, and as a result of conducting experiments to determine various parameters involved in stretching, The maximum stretching stress is expressed as σl and the width direction of the film (
It has been found that good results can be obtained by taking the maximum stretching stress of TD) as a parameter and setting the manufacturing conditions based on this. That is, in the present invention, σ. and σ? . respectively, 600 kg/cd≦era”1300
kg/c4600kg/cj≦σ. ≦1300kg/C
It is characterized by being set to l&. However, σ. and σ. are respectively expressed by the following formulas.

σno= ( F X B,lo) /AF = T 
/ r ここで、Fは延伸力(ICg) 、BMIIはMD方向
の延伸倍率、Aは原反フィルムの断面積(aa) 、T
はニップロールの回転トルク(kg−cm)、rはニッ
プロールの半径(C11)である。
σno=(FXB,lo)/AF=T
/ r Here, F is the stretching force (ICg), BMII is the stretching ratio in the MD direction, A is the cross-sectional area of the original film (aa), T
is the rotational torque of the nip roll (kg-cm), and r is the radius of the nip roll (C11).

σ,,一(ΔPxR)/t ここで、ΔPはバブル内圧力(kg/CI1)、Rはバ
ブル半径(cm)、tはフィルムの厚さ(elm)であ
る. σ。とσア。が1300kg/dより越える場合には、
延伸途上のバブルの破袋が頻発するため、連続生産がで
きなくなる.また、σ。とσ.が600 kg/cdよ
り下回る場合には、延伸途上のバブルが不安定になるた
め、フィルムの厚さ精度が悪く、商品価値を有しない.
そして、σ。とσi1は、いずれも好ましくは、上限を
1200kg/cdとし、下限を7 0 0 kg/c
dとする.[実施例] .lLJLl上 相対帖度η,−3.7のナイロン6(宇部興産■製)を
用い、環状ダイ(直径75m)から押し出した後、冷却
槽(水温1 5 ”C )で冷却して厚さ120μの管
状原反フイルムを作製した.次に、第1図に示すように
、この原反フイルム1を一対のニップロール2間に挿通
した後、中に気体を圧太しなからヒータ3(設定温度3
10゜C)で加熱すると共に、延伸開始点にエアーリン
グ4よりエアー5(風量15イ/分)を吹き付けてバブ
ル6に膨張させ、下流側の一対のニップロール7で引き
取ることにより、同時二軸延伸を行った。この延伸倍率
は、フィルムの移動方向(MD)に3.0倍及びフィル
ムの幅方向(TD)に3.2倍であった. この同時二軸延伸の際、バブル6内の圧力、バブル6の
半径、ニンプロール1.7の回転&、駆動モータの負荷
、トルク等を特定の値に設定して、得られるフィルムの
移動方向(MD)の最大延伸応力σ。及びフィルムの幅
方向(TD)の最大延伸応力σ,Dを調整した。
σ,,1(ΔPxR)/t Here, ΔP is the bubble internal pressure (kg/CI1), R is the bubble radius (cm), and t is the film thickness (elm). σ. and σa. If it exceeds 1300 kg/d,
Continuous production is no longer possible due to frequent bubble breakage during stretching. Also, σ. and σ. If it is less than 600 kg/cd, the bubbles in the process of stretching become unstable, resulting in poor film thickness accuracy and no commercial value.
And σ. and σi1 preferably have an upper limit of 1200 kg/cd and a lower limit of 700 kg/c.
Let it be d. [Example] . Nylon 6 (manufactured by Ube Industries, Ltd.) with a relative thickness η of -3.7 was extruded from an annular die (diameter 75 m), then cooled in a cooling tank (water temperature 15"C) to a thickness of 120 μm. Next, as shown in Fig. 1, this raw film 1 was passed between a pair of nip rolls 2, and after compressing gas inside it, it was heated to a heater 3 (at a set temperature). 3
At the same time, air 5 (air flow rate 15 i/min) is blown from the air ring 4 to the stretching start point to expand it into bubbles 6, which are taken up by a pair of nip rolls 7 on the downstream side, thereby simultaneously biaxially stretching. Stretching was performed. The stretching ratio was 3.0 times in the film movement direction (MD) and 3.2 times in the film width direction (TD). During this simultaneous biaxial stretching, the pressure inside the bubble 6, the radius of the bubble 6, the rotation of the Ninpro roll 1.7, the load and torque of the drive motor, etc. are set to specific values, and the direction of movement of the resulting film ( MD) maximum stretching stress σ. And the maximum stretching stress σ, D in the width direction (TD) of the film was adjusted.

本実施例においては、フイルムの移動方向(MD)の最
大延伸応力σ。は9 5 0 kg/cd、またフィル
ムの幅方向(TD)の最大延伸応力σ7。は960kg
/cdであった.なお、これらのσllゎとσTDは、
下弐より算出したものである。
In this example, the maximum stretching stress σ in the moving direction (MD) of the film. is 950 kg/cd, and the maximum stretching stress in the width direction (TD) of the film is σ7. is 960kg
/cd. In addition, these σllゎ and σTD are
This is calculated from the second part.

6 HB= ( F X B.e) / AF − T
 / r T = [97.450X ( 1 − 1. ) X
0.22] /Nここで、Fは延伸力(kg)、BH6
はMD方向の延伸倍率、Aは原反フィルムの断面積(c
j) 、Tはトルク(kg−cm) 、rはニップロー
ルの半径(cm)、Iは運転時のモータ電流(A)、I
。は空運転時のモータ電流(A)、Nはニップロールの
回転数(rps )である.なお、上記トルクTの具体
的数値は、実施例に係る特定のニツプロールに関するも
のである. σ,。=(ΔP x R ) / t ここで、ΔPはバブル内圧力(kg/eta) 、Rは
バブル半径(am)、tはフイルムの厚さ(1)である
. σ、.及びσT.をこのように条件設定した本実施例に
係る二軸延伸ナイロン6フィルムの製造において、24
時間の連続製造を行ったところ、延伸変形時のバブル6
は横揺れなどがなく、安定であり、また得られた二軸延
伸ナイロン6フィルム8の厚さのばらつきは±4%と厚
さ精度が非常に良好であった. 2〜10 上記実施例1と同様にして、実施例2〜10に係る二軸
延伸ナイロン6フィルム8の製造を行った.但し、MD
延伸倍率とTD延伸倍率、エアーリング4の風量、ヒー
タ3の設定温度については、次のように条件を異ならせ
た. MD延伸倍率については、実施例2〜8.10を3.0
、実施例9を3.4とした. TD延伸倍率については、実施例2〜6,9,10を3
.2、実施例7を3.0、実施例8を3.4とした. エアーリング4の風量については、実施例2.3,7〜
10を15イ/分、実施例4を5ポ/分、実施例6を4
5ポ/分とした. ヒータ3の設定温度については、実施例2を330℃、
実施例3を280゜C1実施例4〜9を310℃、実施
例10を370゜Cとした.冷却槽の冷却水については
、いずれも15℃とした. また、同時二軸延伸の際、各実施例毎に、フィルムの移
動方向(MD)の最大延伸応力σ。とフィルムの幅方向
(TD)の最大延伸応力σTllとが略等しい適当な値
となるように、バブル6内の圧力、バプル6の半径、ニ
ップロール1.7の回転数、駆動モータの負荷、トルク
等を特定の値に設定した。
6 HB= (FX B.e) / AF - T
/ r T = [97.450X (1 - 1.)
0.22] /N where F is stretching force (kg), BH6
is the stretching ratio in the MD direction, A is the cross-sectional area of the original film (c
j), T is the torque (kg-cm), r is the radius of the nip roll (cm), I is the motor current during operation (A), I
. is the motor current (A) during idle operation, and N is the rotation speed (rps) of the nip roll. Note that the specific numerical value of the torque T mentioned above is related to a specific nip roll according to an example. σ,. = (ΔP x R ) / t Here, ΔP is the bubble internal pressure (kg/eta), R is the bubble radius (am), and t is the film thickness (1). σ,. and σT. In the production of the biaxially stretched nylon 6 film according to this example with the conditions set in this way, 24
When continuous manufacturing was performed, bubbles 6 during stretching deformation were observed.
The film was stable with no horizontal vibration, and the thickness variation of the obtained biaxially stretched nylon 6 film 8 was ±4%, which showed very good thickness accuracy. 2-10 Biaxially stretched nylon 6 films 8 according to Examples 2-10 were produced in the same manner as in Example 1 above. However, MD
The conditions for the stretching ratio and TD stretching ratio, the air volume of the air ring 4, and the set temperature of the heater 3 were varied as follows. Regarding the MD stretching ratio, Examples 2 to 8.10 were set to 3.0.
, Example 9 was set as 3.4. Regarding the TD stretching ratio, Examples 2 to 6, 9, and 10 were
.. 2. Example 7 was set as 3.0, and Example 8 was set as 3.4. Regarding the air volume of the air ring 4, Examples 2.3, 7 to
10 at 15 I/min, Example 4 at 5 I/min, Example 6 at 4
The rate was set at 5 points/minute. Regarding the set temperature of the heater 3, Example 2 was set to 330°C;
Example 3 was heated to 280°C, Examples 4 to 9 were heated to 310°C, and Example 10 was heated to 370°C. The temperature of the cooling water in the cooling tank was 15°C. In addition, during simultaneous biaxial stretching, the maximum stretching stress σ in the moving direction (MD) of the film was determined for each example. The pressure inside the bubble 6, the radius of the bubble 6, the rotational speed of the nip roll 1.7, the load of the drive motor, and the torque are adjusted so that the maximum stretching stress σTll in the width direction (TD) of the film is approximately equal to the appropriate value. etc. were set to specific values.

σ。及びσ?。をそれぞれ適当な値に条件設定した各実
施例に係る二軸延伸ナイロン6フィルム8の製造におい
て、24時間の連続製造を行い、延伸変形時のバブル6
の安定性を観察、評価し、また得られた二軸延伸ナイロ
ン6フィルム8の厚さのばらつき、即ち厚さ精度の測定
と評価及び総合評価を行った結果を下記の表1にまとめ
て示す.上笠■上二l 上記実施例と同様にして、比較例1〜8に係る二軸延伸
ナイロンフィルムの製造を行った.但し、MD延伸倍率
とTD延伸倍率、エアーリング4の風量、ヒータ3の設
定温度、冷却水の水温については、次のように条件を異
ならせた. MD延伸倍率については、比較例1〜4.8を3.0、
比較例5を3.6、比較例6を2.4、比較例7を3.
4とした. TD延伸倍率については、比較例1〜6.8を3.2、
比較例7を3.4とした. エアーリング4の風量については、比較例1,2,5〜
8を15ボ/分、比較例3をOポ/分、比較例4を55
ポ/分とした. ヒータ3の温度については、比較例lを400℃、比較
例2を260″C5比較例3〜8を310℃とした. 冷却水の水温については、比較例1〜7を15℃、比較
例日を45℃とした. また、同時二軸延伸の際、上記実施例と同様に、各比較
例毎に、びりとσ?。とが略等しい適当な値となるよう
に、バブル6内の圧力、バプル6の半径等を特定の値に
設定した. σ。及びσTDをそれぞれ適当な値に条件設定した各比
較例に係る二軸延伸ナイロン6フィルムの製造において
、24時間の連続製遣を行い、延伸変形時のバブルの安
定性を観察、評価し、また得られた二軸延伸ナイロン6
フィルムの厚さ精度の測定と評価及び総合評価を行った
結果を下記の表1に併せて示す. この表で、成形安定性の◎、O、△及び×は、それぞれ
折径の変動幅が1%以下、2%以下、5%以下及び5%
を越えることを示す.また、厚さ精度の○、Δ及び×は
、それぞれ6%以下、10%以下及び10%を越えるこ
とを示す.そして、総合評価の◎は工業生産に最適、O
は工業生産に通、Δは工業生産可能であるが、トラブル
が多少発生、×は工業生産不可能をそれぞれ示す.この
表の実施例及び比較例より、フィルムの移動方向(MD
)の最大延伸応力σl411及びフィルムの幅方向(T
D)の最大延伸応力σTDが、いずれも6 0 0 k
g/cd以上、1300kg/cj以下の場合に、バブ
ル6の良好な成形安定性と共に、二軸延伸ナイロン6フ
ィルム8の良好な厚さ精度が得られることがわかる. る.また、得られる二軸延伸ナイロン6フィルムの厚さ
精度が向上するため、品質の良好な製品を提供すること
ができる.
σ. and σ? . In manufacturing the biaxially stretched nylon 6 film 8 according to each example in which the conditions were set to appropriate values, continuous manufacturing was performed for 24 hours, and the bubble 6 during stretching deformation was carried out.
The results of observing and evaluating the stability of the obtained biaxially stretched nylon 6 film 8, measuring and evaluating the thickness accuracy, that is, the thickness accuracy, and comprehensive evaluation are summarized in Table 1 below. .. Kamikasa ■Upper 2l Biaxially stretched nylon films according to Comparative Examples 1 to 8 were produced in the same manner as in the above Examples. However, the following conditions were used for the MD draw ratio and TD draw ratio, the air volume of the air ring 4, the set temperature of the heater 3, and the temperature of the cooling water. Regarding the MD stretching ratio, Comparative Examples 1 to 4.8 were 3.0,
Comparative Example 5 was 3.6, Comparative Example 6 was 2.4, and Comparative Example 7 was 3.6.
I gave it a 4. Regarding the TD stretching ratio, Comparative Examples 1 to 6.8 were 3.2,
Comparative Example 7 was set to 3.4. Regarding the air volume of air ring 4, Comparative Examples 1, 2, 5 to
8 at 15 po/min, Comparative Example 3 at 0 po/min, Comparative Example 4 at 55
Port/minute. Regarding the temperature of the heater 3, Comparative Example 1 was set at 400°C, Comparative Example 2 was set at 260"C5, Comparative Examples 3 to 8 were set at 310°C. Regarding the temperature of the cooling water, Comparative Examples 1 to 7 were set at 15°C, Comparative Example The temperature was set at 45°C. In addition, during simultaneous biaxial stretching, as in the above-mentioned examples, for each comparative example, the inside of the bubble 6 was adjusted so that the vibration and σ? The pressure, the radius of bubble 6, etc. were set to specific values. In the production of biaxially stretched nylon 6 film according to each comparative example in which σ and σTD were set to appropriate values, continuous production for 24 hours was carried out. The stability of the bubbles during stretching deformation was observed and evaluated, and the resulting biaxially stretched nylon 6
The results of measuring and evaluating film thickness accuracy and comprehensive evaluation are also shown in Table 1 below. In this table, ◎, O, △, and × for forming stability indicate the fluctuation range of fold diameter of 1% or less, 2% or less, 5% or less, and 5%, respectively.
This shows that it exceeds . Also, ○, Δ, and × for thickness accuracy indicate 6% or less, 10% or less, and more than 10%, respectively. And the overall evaluation ◎ is suitable for industrial production, O
indicates that industrial production is possible, Δ indicates that industrial production is possible but some trouble may occur, and × indicates that industrial production is impossible. From the examples and comparative examples in this table, the moving direction of the film (MD
) maximum stretching stress σl411 and film width direction (T
The maximum stretching stress σTD of D) is 600 k in both cases.
It can be seen that when the weight is greater than or equal to g/cd and less than or equal to 1300 kg/cj, not only good molding stability of the bubble 6 but also good thickness accuracy of the biaxially stretched nylon 6 film 8 can be obtained. Ru. Furthermore, since the thickness accuracy of the resulting biaxially stretched nylon 6 film is improved, it is possible to provide a product with good quality.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例に係る製造方法で使用する装置の概略図
である. 1・・・原反フィルム、3・・・ヒータ、4・・・エア
ーリング、6・・・バブル、8・・・二軸延伸ナイロン
6フイルム. 出願人  出光石油化学株式会社
FIG. 1 is a schematic diagram of the apparatus used in the manufacturing method according to the example. DESCRIPTION OF SYMBOLS 1... Raw film, 3... Heater, 4... Air ring, 6... Bubble, 8... Biaxially stretched nylon 6 film. Applicant Idemitsu Petrochemical Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] (1)チューブラー法による二軸延伸ナイロン6フィル
ムの製造方法において、 フィルムの移動方向(MD)の最大延伸応力をσ_M_
D、フィルムの幅方向(TD)の最大延伸応力をσ_T
_Dとしたとき、σ_M_D及びσ_T_Dをそれぞれ
600kg/cm^2≦σ_T_D≦1300kg/c
m^2600kg/cm^2≦σ_M_D≦1300k
g/cm^2に設定したことを特徴とする二軸延伸ナイ
ロン6フィルムの製造方法。 但し、前記σ_M_Dとσ_T_Dは、それぞれ下式で
表される。 σ_M_D=(F×B_M_D)/A F=T/r ここで、Fは延伸力(kg)、B_M_DはMD方向の
延伸倍率、Aは原反フィルムの断面積(cm^2)、ニ
ップロールの回転Tはトルク(kg−cm)、rはニッ
プロールの半径(cm)である。 σ_T_D=(ΔP×R)/t ここで、ΔPはバブル内圧力(kg/cm^2)、Rは
バブル半径(cm)、tはフィルムの厚さ(cm)であ
る。
(1) In the manufacturing method of biaxially stretched nylon 6 film using the tubular method, the maximum stretching stress in the film movement direction (MD) is σ_M_
D, the maximum stretching stress in the width direction (TD) of the film is σ_T
When __D, σ_M_D and σ_T_D are each 600 kg/cm^2≦σ_T_D≦1300 kg/c
m^2600kg/cm^2≦σ_M_D≦1300k
A method for producing a biaxially stretched nylon 6 film, characterized in that the film is set at g/cm^2. However, σ_M_D and σ_T_D are each expressed by the following formulas. σ_M_D=(F×B_M_D)/A F=T/r Here, F is the stretching force (kg), B_M_D is the stretching ratio in the MD direction, A is the cross-sectional area of the raw film (cm^2), and the rotation of the nip roll. T is the torque (kg-cm), and r is the radius of the nip roll (cm). σ_T_D=(ΔP×R)/t Here, ΔP is the bubble internal pressure (kg/cm^2), R is the bubble radius (cm), and t is the film thickness (cm).
JP1059414A 1989-03-10 1989-03-10 Method for producing biaxially stretched nylon 6 film Expired - Lifetime JPH0628903B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP1059414A JPH0628903B2 (en) 1989-03-10 1989-03-10 Method for producing biaxially stretched nylon 6 film
EP90104444A EP0386759B1 (en) 1989-03-10 1990-03-08 Process for producing biaxially oriented nylon film
DE69021607T DE69021607T2 (en) 1989-03-10 1990-03-08 Process for the production of biaxially oriented nylon films.
AU51214/90A AU622777B2 (en) 1989-03-10 1990-03-09 Process for producing biaxially oriented nylon film
US07/492,884 US5094799A (en) 1989-03-10 1990-03-09 Process for producing biaxially oriented nylon film
KR1019900003201A KR0154330B1 (en) 1989-03-10 1990-03-10 Process of preparing biaxially oriented nylon film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1059414A JPH0628903B2 (en) 1989-03-10 1989-03-10 Method for producing biaxially stretched nylon 6 film

Publications (2)

Publication Number Publication Date
JPH02235722A true JPH02235722A (en) 1990-09-18
JPH0628903B2 JPH0628903B2 (en) 1994-04-20

Family

ID=13112592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1059414A Expired - Lifetime JPH0628903B2 (en) 1989-03-10 1989-03-10 Method for producing biaxially stretched nylon 6 film

Country Status (1)

Country Link
JP (1) JPH0628903B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05192997A (en) * 1992-01-23 1993-08-03 Idemitsu Petrochem Co Ltd Manufacture of biaxially oriented ny 6/mxd 6 blend film
JPH05192995A (en) * 1992-01-23 1993-08-03 Idemitsu Petrochem Co Ltd Manufacture of ny 6/mxd 6/ny 6 biaxially oriented multi-layered film
JP2008540156A (en) * 2005-05-04 2008-11-20 ブリュックナー マシーネンバウ ゲーエムベーハー High-strength polypropylene-based protective film for packaging, its production and use
JP2013028660A (en) * 2011-07-26 2013-02-07 Idemitsu Unitech Co Ltd Method for producing easily tearable biaxially oriented nylon film and easily tearable biaxially oriented nylon film
WO2014148279A1 (en) * 2013-03-19 2014-09-25 出光ユニテック株式会社 Method for manufacturing multilayer stretched film, and multilayer stretched film

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4947269A (en) * 1972-08-31 1974-05-07
JPS61120725A (en) * 1984-11-16 1986-06-07 Asahi Chem Ind Co Ltd Production of stretched thermoplastic resin film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4947269A (en) * 1972-08-31 1974-05-07
JPS61120725A (en) * 1984-11-16 1986-06-07 Asahi Chem Ind Co Ltd Production of stretched thermoplastic resin film

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05192997A (en) * 1992-01-23 1993-08-03 Idemitsu Petrochem Co Ltd Manufacture of biaxially oriented ny 6/mxd 6 blend film
JPH05192995A (en) * 1992-01-23 1993-08-03 Idemitsu Petrochem Co Ltd Manufacture of ny 6/mxd 6/ny 6 biaxially oriented multi-layered film
JP2008540156A (en) * 2005-05-04 2008-11-20 ブリュックナー マシーネンバウ ゲーエムベーハー High-strength polypropylene-based protective film for packaging, its production and use
JP2013028660A (en) * 2011-07-26 2013-02-07 Idemitsu Unitech Co Ltd Method for producing easily tearable biaxially oriented nylon film and easily tearable biaxially oriented nylon film
WO2014148279A1 (en) * 2013-03-19 2014-09-25 出光ユニテック株式会社 Method for manufacturing multilayer stretched film, and multilayer stretched film

Also Published As

Publication number Publication date
JPH0628903B2 (en) 1994-04-20

Similar Documents

Publication Publication Date Title
EP0386759B1 (en) Process for producing biaxially oriented nylon film
JP2013022773A (en) Biaxially oriented nylon film for cold molding, laminate film, and molding
JPH02235722A (en) Manufacture of biaxially orientated nylon 6 film
WO2013089081A1 (en) Biaxially oriented nylon film, method for manufacturing biaxially oriented nylon film, and laminate packaging material
JPH0637081B2 (en) Method for producing biaxially stretched nylon 6-66 copolymer film
JP4817276B2 (en) Method for producing porous membrane
US4034055A (en) Tubular film of polyethylene terephthalate and process for the production thereof
JP4902158B2 (en) Stretched nylon film and method for producing the same
JP2617659B2 (en) Method for producing easily tearable film
JPH03128225A (en) Production of biaxially oriented nylon 66 film
JPH03158226A (en) Manufacture of biaxially stretched multilayered film
JPH1016047A (en) Manufacture of polyamide film and biaxially oriented polyamide film obtained by the manufacture
JPH10296853A (en) Manufacture of biaxially oriented polyamide film
JPH05131539A (en) Biaxially oriented polyamide film and production thereof
JPH01237118A (en) Polypropylene film and its manufacture
JPS60217134A (en) Manufacture of tubular simultaneous biaxial orientation polyether ketone film
JPH0344893B2 (en)
JP2001064415A (en) Polyamide film improved in sliding property and production of the same film
JP2690143B2 (en) Method for producing tubular polycarbonate resin film
US3576934A (en) Treatment of polymeric materials
JP2617658B2 (en) Method for producing easily tearable film
JPH05192995A (en) Manufacture of ny 6/mxd 6/ny 6 biaxially oriented multi-layered film
JPS62121032A (en) Biaxially oriented fluorine stretched film and its manufacture
JPS6015122A (en) Method of forming polyethylene blown film
JPH0459131B2 (en)

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090420

Year of fee payment: 15

EXPY Cancellation because of completion of term