JPH02235525A - Manufacture of screw rotor - Google Patents

Manufacture of screw rotor

Info

Publication number
JPH02235525A
JPH02235525A JP5214489A JP5214489A JPH02235525A JP H02235525 A JPH02235525 A JP H02235525A JP 5214489 A JP5214489 A JP 5214489A JP 5214489 A JP5214489 A JP 5214489A JP H02235525 A JPH02235525 A JP H02235525A
Authority
JP
Japan
Prior art keywords
die
tooth
core
toothed
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5214489A
Other languages
Japanese (ja)
Other versions
JPH0698406B2 (en
Inventor
Hiroshi Kaneda
金田 博
Yoshikazu Fujisawa
義和 藤沢
Masami Hoshi
星 雅巳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP1052144A priority Critical patent/JPH0698406B2/en
Publication of JPH02235525A publication Critical patent/JPH02235525A/en
Publication of JPH0698406B2 publication Critical patent/JPH0698406B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To form a rotor having high accuracy by extruding a toothed stock having a linear tooth or a gentle spiral tooth and a core hole, applying a torque to both ends of the toothed stock, while obstructing the deformation of the core hole part with a mandrel, and imparting an angle of torsion to a final angle of torsion. CONSTITUTION:A die 1 for a first stage is formed by combining a male die 2 and a female die 3. As for the male die 2, a mandrel 4 is connected to the center with four pieces of arms 5, passage 6 communicates with a confluence chamber 7 and the mandrel 4 protrudes a little. The female die 3 has a center hole 8 and a radial tooth form groove 9, and on a base end face 3a side, the mandrel 4 goes into the center hole 8. A female die 34 is provided with a tooth form groove 9A having no torsion which extends radially from a center hole 8A. A toothed stock W1 in which a linear tooth 11A extended from a base part 10A is formed and a core hole 12A is opened in the center is obtained. A female die 3B is provided with a tooth groove part 9B having an angle of torsion alpha from the center hole 8B and a phase difference (e) exists on the inlet side and the outlet side. A toothed stock W2 in which a spiral tooth 11B of alpha1 from a base part 10B and a core hole 12B in the center are formed can be formed.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、スクリュウ圧縮機、スクリュウポンプ等に用
いられるねじれ歯をもつスクリュウロータを製造する方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for manufacturing a screw rotor with helical teeth used in screw compressors, screw pumps, and the like.

(従来の技術) スクリュウロータを塑性加工により能率的に生産する手
段として、従来、特開昭50−158013に見られる
ように、無孔のボス部のまわりに直線状の歯をもつ素材
を押出し成形し、次に該素材にねじり変形を加えてねじ
り歯を形成する方法や、特開昭62−6319(lに見
られるように、ダイスにねじれ角をもつ歯形溝と芯型を
設け、該ダイスから素材を押出して1回の加工でねじり
歯と芯孔をもつスクリュウロータを成形する方法などが
知られている。
(Prior art) As a means of efficiently producing screw rotors by plastic working, a material with linear teeth is conventionally extruded around a non-porous boss portion, as seen in Japanese Patent Application Laid-Open No. 50-158013. There is a method in which the material is formed and then torsionally deformed to form twisted teeth, and a die is provided with a tooth profile groove and a core mold with a helical angle, as seen in JP-A No. 62-6319 (1). A known method is to extrude a material from a die and form a screw rotor with twisted teeth and a core hole in a single process.

(発明が解決しようとする課題) スクリュウ圧縮機、ポンプ等においては、ねじり歯のね
じれ角は、圧縮比等の要求性能によって決定され、たと
えば40@内外のねじれ角を必要とする場合がある。
(Problems to be Solved by the Invention) In screw compressors, pumps, etc., the helix angle of the helix teeth is determined by the required performance such as compression ratio, and may require a helix angle of 40° or more, for example.

しかるに、前記従来技術における前者の、直線状の歯を
もつ素材をねじり加工する方法を用いてねじれ角40″
の加工をすると、加工量が大きいため歯の全長にわたっ
て均一なねじれ角を得ることができなかったり、各歯の
ねじれ角が揃わなかったりするおそれがある。
However, by using the former method of twisting a material with straight teeth in the prior art, the helix angle was 40''.
When machining, the amount of machining is large, so it may not be possible to obtain a uniform helix angle over the entire length of the teeth, or the helix angles of each tooth may not be the same.

また、後者の、歯形溝にねじれ角を設けたダイスで成形
する方法においては、該ねじれ角が大きいため歯形溝に
おける押出しに対する抵抗が大きく、薄い歯形をもつ雌
ロー夕は歯形部が形成されないおそれがあり、型の摩耗
も大きい。
In addition, in the latter method of molding using a die with a helix angle in the tooth profile groove, the helix angle is large, so there is a large resistance to extrusion in the tooth profile groove, and there is a risk that the tooth profile part will not be formed in a female rotor with a thin tooth profile. There is a lot of wear on the mold.

したがって、本発明は、従来技術のこれらの難点を克服
して、芯孔をもつと共に精度のよいロー夕を容易に製作
する手段を得ることを課題とする。
Therefore, it is an object of the present invention to overcome these drawbacks of the prior art and to provide a means for easily manufacturing a rotor having a core hole and high precision.

(課題を解決するための手段) 本発明の前記課題の解決手段の一つは、中心穴と該中心
穴から放射状に伸びる複数個の歯形溝と該中心穴内に保
持した芯型を備えるダイスから芯孔をもつ歯付き素材を
押出す工程と、該歯付き素材の芯孔内に芯金を挿入して
該歯付き素材に冷間又は熱間でねじりを加える工程とか
らなることを特徴とする。
(Means for Solving the Problems) One of the means for solving the problems of the present invention is to use a die that includes a center hole, a plurality of tooth-shaped grooves extending radially from the center hole, and a core mold held within the center hole. It is characterized by comprising a step of extruding a toothed material having a core hole, and a step of inserting a core metal into the core hole of the toothed material and applying a cold or hot twist to the toothed material. do.

また、解決手段の他の一つは、中心穴と該中心穴から放
射状に伸びる複数個の歯形溝を備えるダイスから歯付き
素材を押出す工程と、該歯付き素材に芯孔を明ける工程
と、該歯付き素材の芯孔内に芯金を挿入して該歯付き素
材に冷間又は熱間でねじりを加える工程とからなること
を特徴とする。
Another solution includes the steps of extruding a toothed material from a die having a center hole and a plurality of tooth-shaped grooves extending radially from the center hole, and drilling a core hole in the toothed material. The method is characterized by comprising the steps of inserting a metal core into the core hole of the toothed material and twisting the toothed material in a cold or hot manner.

(作 用) 前記の手段の一つでは、直線歯又は緩やかなねじれ歯と
芯孔とをもつ歯付き素材が押出され、次の工程で芯金で
芯孔部の変形を阻止しながら歯付き素材の両端にねじり
力が加えられ、ロー夕の最終ねじれ角にねじれ角が付与
される。
(Function) In one of the above methods, a toothed material having straight teeth or gently twisted teeth and a core hole is extruded, and in the next step, a toothed material is formed with a core metal while preventing deformation of the core hole. A twisting force is applied to both ends of the material, imparting a twist angle to the final twist angle of the rotor.

また、前記の他の一つの手段では、歯付き素材を成形し
たのち芯孔を穿孔し、該芯孔に芯金を挿入してねじり力
が加えられて最終のねじり角が付与される。
In the other method described above, after forming the toothed material, a core hole is bored, a core metal is inserted into the core hole, and a twisting force is applied to give the final twist angle.

(実施例) 以下図面を参照して実施例を説明する。第1図において
1は雌ロー夕の第1工程用のダイスで、雄ダイス2と雌
ダイス3を組合せてなるものである。雄ダイス2は、中
心にマン、ドレル4が4本のアーム5で連設され、各ア
ーム間の通路6、6・・・は合流室7に連通し、マンド
レル4の先端が合流室7の端部から若干突出している。
(Example) An example will be described below with reference to the drawings. In FIG. 1, 1 is a die for the first step of the female rotor, which is a combination of a male die 2 and a female die 3. The male die 2 has a mandrel 4 in the center connected to it by four arms 5, passages 6, 6... between the arms communicate with the merging chamber 7, and the tip of the mandrel 4 connects to the merging chamber 7. It protrudes slightly from the end.

一方、雌ダイス3は、中心穴8とこれに続く放射状の歯
形溝9を有し、基端面3a側で中心穴8内にマンドレル
4が入り込んでいる。この雌ダイス3は、第2図(a)
又は第3図(a)に示す構成を備えている。第2図(a
)の雌ダイス3Aは、中心穴8Aから放射状に伸びるね
じれのない5個の歯形溝9Aを備えており、これを用い
て素材を押出すと、第2図(b)に示すように基部10
Aから放射状に伸びる直歯11Aが形成され、同時にマ
ンドレル4によって中心に芯孔12Aが開けられた歯付
き素材l,が形成される。
On the other hand, the female die 3 has a center hole 8 and a radial tooth-shaped groove 9 following the center hole 8, and the mandrel 4 is inserted into the center hole 8 on the base end surface 3a side. This female die 3 is shown in Fig. 2(a).
Alternatively, it has the configuration shown in FIG. 3(a). Figure 2 (a
) is equipped with five non-twisted tooth grooves 9A extending radially from the center hole 8A, and when the material is extruded using these, the base 10 is formed as shown in FIG. 2(b).
Straight teeth 11A extending radially from A are formed, and at the same time, a toothed material 1 with a core hole 12A drilled in the center by the mandrel 4 is formed.

これに対して第3図(a)の雌ダイス3Bは、中心穴8
bから放射状に伸びると共に長手力向に対して例えば2
0″のねじれ角をもつ5個の歯溝部9bを備えており、
点線で示す入口側と実線の出口側と実線の出口側との間
には位相差eが存在する。
On the other hand, the female die 3B in FIG. 3(a) has a center hole 8.
For example, it extends radially from b and in the longitudinal force direction.
It is equipped with five tooth groove parts 9b with a helix angle of 0'',
A phase difference e exists between the inlet side indicated by the dotted line, the outlet side indicated by the solid line, and the outlet side indicated by the solid line.

これを用いると第3図山)に示すように、基部10Bか
ら仲びα,−20@のねじれ角をもつねじれ歯11Bと
、中心に芯孔12Bが形成された歯付き素材−2が形成
される。
When this is used, as shown in Fig. 3, a twisted tooth 11B with a helix angle of α, -20@ from the base 10B and a toothed material 2 with a core hole 12B formed in the center are formed. be done.

第1図のダイス1にアルミ合金を高熱したビレットを押
込むと、雄ダイス2のアーム5、5・・・で四つに分割
され矢印Aで示すように通路6、6・・・を通って合流
室7に至り、ここで溶着して再び一体になり雌ダイス3
に押込まれる。雄ダイス2をこのような構造にすること
により、マンドレル4を短くすることができて芯振れに
よる芯孔のずれが生じることがない。また、二のような
雄ダイス2を用いず、長いコンテナにマンドレルを装着
して雌ダイス3を接続すると、その基端面3aにおいて
ビレットに対して大きな抵抗が生じるが、この雄ダイス
2を用いると実際上小さい抵抗で押出すことができる。
When a billet of highly heated aluminum alloy is pushed into die 1 in Fig. 1, it is divided into four parts by arms 5, 5, etc. of male die 2, and passes through passages 6, 6, etc. as shown by arrow A. It reaches the merging chamber 7, where it is welded and becomes one body again, and the female die 3
pushed into. By making the male die 2 have such a structure, the mandrel 4 can be shortened and the core hole will not be misaligned due to core runout. Moreover, if a mandrel is attached to a long container and the female die 3 is connected without using the male die 2 as shown in 2, a large resistance will be generated against the billet at the base end surface 3a, but if this male die 2 is used, It can be extruded with practically low resistance.

前記の第1工程で作られた歯付き素材讐,又はlI12
は、次の第2工程においてねじりを付加される。この第
2工程においては、歯付き素材は冷間又は200〜25
0℃の熱間で加工される。素材一,又はW2に第4図に
示すように芯孔内に芯金13を挿入して固定チャック1
4とロールチャック15のウレタンゴム製のホルダ14
a , 15aで把持し、ロールチャックl5を矢印1
Bの方向にねじることにより、基部IOから伸びる歯に
例えばα2−40″のねじれをもつねじれ歯l1が形成
され、かつ基部lOに芯孔12をもつ歯付き素材−3と
なる。
The toothed material made in the first step, or lI12
is twisted in the next second step. In this second step, the toothed material is cold or 200 to 25
Processed hot at 0°C. Insert the core bar 13 into the core hole of the material 1 or W2 as shown in FIG.
4 and the urethane rubber holder 14 of the roll chuck 15
a, 15a, and move the roll chuck l5 in the direction of arrow 1.
By twisting in the direction B, twisted teeth 11 having a twist of α2-40'', for example, are formed on the teeth extending from the base IO, and a toothed material 3 having a core hole 12 in the base IO is obtained.

前記芯金13を挿入することにより、ねじり加工時に基
部10及び芯孔12が変形するのを防止し、したがって
該変形に伴う歯11の変形も防止する。
By inserting the core metal 13, the base 10 and the core hole 12 are prevented from being deformed during twisting, and therefore the teeth 11 are also prevented from being deformed due to the deformation.

歯1lの精度は芯孔l2と芯金13の間のクリアランス
Cが小さい方が概して高く、アルミ合金の雌ロー夕につ
いて異なる直径の芯金によりクリアランスCを変化させ
てねじり加工後の隣接する2枚の歯11aとflbのリ
ード差を求めると、第10図の曲線LDが得られた。ク
リアランスCが小さければリード差は小さくなり精度は
向上するが、あまりクリアランスCを小さくすると芯孔
12に芯金13がロックするロック領域Kとなる。
The accuracy of the teeth 1l is generally higher when the clearance C between the core hole l2 and the core metal 13 is smaller, and the clearance C of the female rotor of aluminum alloy can be changed by using core metals of different diameters to improve the accuracy of the two adjacent teeth after twisting. When the lead difference between the two teeth 11a and flb was determined, the curve LD shown in FIG. 10 was obtained. If the clearance C is small, the lead difference will be small and the accuracy will be improved, but if the clearance C is made too small, a locking region K will occur where the core metal 13 is locked in the core hole 12.

このように、芯金13を挿入してねじり加工することに
より精度の良好なロータ素材讐3を得ることができるが
、この歯付き素材誓3は、加熱時の温度分布の不均一な
どによってねじれ角の誤差が避け難く、チャック部分で
は歪も生じるので、必要あればこれを修正するために第
3工程以下の整形加工が施される。第3工程に用いられ
る整形ダイス17は第5図に示され、その歯溝18は第
3図(a)の雌ダイス3Bに比べる約2倍のねじれ角を
もつものであり、したがって前面と後面の位相差は2e
である。
In this way, the rotor material 3 with good accuracy can be obtained by inserting the core metal 13 and twisting it, but this toothed material 3 may be twisted due to uneven temperature distribution during heating. Corner errors are unavoidable, and distortion also occurs in the chuck portion, so shaping is performed in the third and subsequent steps to correct this, if necessary. The shaping die 17 used in the third step is shown in FIG. 5, and its tooth grooves 18 have a helix angle approximately twice as large as that of the female die 3B in FIG. 3(a). The phase difference is 2e
It is.

この整形ダイス17を固定し、第2工程で得られた歯付
き素材W.を押込んでチャックで先端をつかみ、ねじり
ながら引抜くとねじり角のばらつきは修正され、第6図
<a> (b)に示す雌のロータlI14が得られる。
This shaping die 17 is fixed, and the toothed material W obtained in the second step. By pushing it in, grasping the tip with a chuck, and pulling it out while twisting, the variation in the twist angle is corrected, and the female rotor 114 shown in FIG. 6<a>(b) is obtained.

第7図、第8図は夫々前記の雌ロータ電に噛合う雄ロー
夕で4個の丸歯を有する。第7図の雄ロータlI15は
、略半円形の丸歯19、19・・・と芯孔20を有し、
該丸歯に対応する歯溝をもつ雌ダイス、チャック及び整
形ダイスを用いて、前記第1、第2、第3工程と同じ手
順で加工される。
FIGS. 7 and 8 each show a male rotor that meshes with the female rotor and has four round teeth. The male rotor lI15 in FIG. 7 has approximately semicircular round teeth 19, 19... and a core hole 20,
Using a female die, a chuck, and a shaping die having tooth grooves corresponding to the round teeth, processing is performed in the same procedure as the first, second, and third steps.

第8図の雄ローター6は、略半円形かつ中空のねじれ歯
21をもち、中空部22によって軽量化を図ったもので
、この雄ロークリ,を成形するには第1工程で雄ダイス
2に代えて長いコンテナとマンドレルを用いると共に、
該マンドレルを囲んで4個の型金を設け、半溶融の素材
又は高熱したビレットを押込んで成形し、第2、第3工
程は前記のものと同じ手段で行なう。
The male rotor 6 shown in FIG. 8 has approximately semicircular and hollow twisted teeth 21, and is lightened by the hollow part 22. In order to mold this male rotor, the male die 2 is used in the first step. Alternatively, use a long container and mandrel, and
Four molds are provided surrounding the mandrel, and a semi-molten material or a heated billet is pressed into the mold, and the second and third steps are carried out by the same means as described above.

このようにして成形した雌ロータlA4と雄ローター5
又はW,には、芯孔12と20に軸が挿入固定され、ロ
ー夕かみ合い面で摩擦及び騒音が発生するのを防止する
ために、雌雄のロータを僅かの間隙を維持しながら同期
回転をさせるための連動ギヤが該軸に固定される。
Female rotor lA4 and male rotor 5 formed in this way
Or W, the shafts are inserted and fixed in the core holes 12 and 20, and the male and female rotors are rotated synchronously while maintaining a small gap in order to prevent friction and noise from occurring on the rotor engagement surfaces. An interlocking gear is fixed to the shaft.

しかし、ねじれ歯全体にわたって常に一定の間隙をもつ
精度にすることは困難で、運転中に部分的な接触が生じ
ることがある。この場合に生じる摩擦、騒音を減少させ
るため、ロー夕の少なくとも一方に第4工程として減摩
樹脂層のコーティングが行なわれる。第9図は雌ロータ
14.に減摩樹詣層23を形成した例を示し、該樹脂層
23には、ベースとして例えばポリイミド、ボリアミド
、ポリアミドイミド、エボキシ、ポリ塩化ビニル、シリ
コン・エボキシ、シリコン・ウレタン、シリコン・ポリ
エステル等の合成樹脂が用いられ、減摩剤として例えば
GrSM032、WS2、BN, (CP)n SSn
粉末、PTFE等を添加し、複合コーティングして10
〜1500jmの膜厚にする。
However, it is difficult to maintain a constant gap accuracy over the entire helical tooth, and partial contact may occur during operation. In order to reduce the friction and noise generated in this case, at least one of the rotors is coated with an anti-friction resin layer as a fourth step. FIG. 9 shows the female rotor 14. An example is shown in which an anti-friction resin layer 23 is formed, and the resin layer 23 is made of synthetic materials such as polyimide, polyamide, polyamideimide, epoxy, polyvinyl chloride, silicone epoxy, silicone urethane, silicone polyester, etc. as a base. A resin is used, and as a lubricant, for example, GrSM032, WS2, BN, (CP)n SSn
Add powder, PTFE, etc., and apply composite coating to 10
The film thickness should be ~1500jm.

この膜によって金属同士の接触が防止され摺動特性が向
上する。
This film prevents metal-to-metal contact and improves sliding characteristics.

そして減摩樹脂層を被覆したのちの雌雄のロー夕の間隙
が適正かつ均一でない場合は、第5工程として減摩樹脂
層の表層をホブで切削するか、砥石で研削して除去して
修正し、耐摩耗性をもつ高精度のスクリュウロータが得
られる。
If the gap between the male and female rotors after being coated with the anti-friction resin layer is not correct and uniform, the fifth step is to remove the surface layer of the anti-friction resin layer by cutting it with a hob or grinding it with a grindstone and correct it. Therefore, a high precision screw rotor with wear resistance can be obtained.

次に第11図により別の製造方法を説明する。Next, another manufacturing method will be explained with reference to FIG.

同図において25はダイスで雄ダイス2Bと雌ダイス2
7からなるが、このダイス25は、第1図のダイス1と
異なりマンドレルが設けられておらず、雄ダイス26に
通路28と合流室29のみが設けられ、雌ダイス27は
第1図と同じ構造をもつ。
In the same figure, 25 is a die, male die 2B and female die 2.
Unlike the die 1 in FIG. 1, this die 25 is not provided with a mandrel, and the male die 26 is provided with only a passage 28 and a merging chamber 29, and the female die 27 is the same as in FIG. Has a structure.

したがって、該ノズル25にビレットを押込むと雌ダイ
ス27からは芯孔のない歯付き素材が押出され、芯孔は
該素材にドリル等を用いて穿設される。芯孔穿孔後は、
ダイス1で作られた歯付き素材と同様に芯金を挿入して
ねじり加工が行なわれる。このダイス25を用いるとき
は押出し圧力が低くてすむ。
Therefore, when the billet is pushed into the nozzle 25, a toothed material without a core hole is extruded from the female die 27, and the core hole is drilled in the material using a drill or the like. After drilling the core hole,
Similar to the toothed material made with die 1, a core metal is inserted and twisting is performed. When this die 25 is used, the extrusion pressure can be low.

(発明の効果) 本発明は、以上のように押出し成形による歯付き素材の
成形とねじり加工を組合せ、該ねじり加工において芯孔
に挿入した芯金で芯孔の変形を阻止しながら成形加工を
行なうから精度の高いロー夕が得られる。
(Effects of the Invention) As described above, the present invention combines forming of a toothed material by extrusion and twisting, and in the twisting process, the forming process is performed while preventing deformation of the core hole with a core bar inserted into the core hole. By doing this, you will be able to obtain highly accurate row measurements.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a) (b)は本発明の第1工程に用いるダイ
スの背面図及び縦断面図、第2図(a)は直歯の歯付き
素材を成形する雌ダイスの正面図、同(b)はその製品
、第3図(a)はねじれ歯の歯付き素材を成形する雌ダ
イスの正面図、同(b)はその製品、第4図は第2工程
の説明図、第5図は第3工程用の整形ダイスの正面図、
第6図(a) (b)は雌ロー夕の正面図及び断面図、
第7図(a) (b)は雄ロー夕の正面図及び断面図、
第8図(a) (b)は他の雄ロー夕の正面図及び断面
図、第9図は樹脂層を被覆したロー夕の断面図、第10
図は製品精度を示す図表、第11図は別の製造方法の実
施に用いるダイスの縦断面図である。 1、25・・・ダイス 2、26・・・雄ダイス 3、3A, 3B, 27・・・雌ダイス9、9^、9
B・・・歯形溝 17・・・整形ダイス W1、lll2、6・・・歯付き素材 一4、−5、賀S・・・ロータ 第10図 外3名 第11図 第4図 12B 第6図(a) 第6図(b)
Figures 1(a) and 1(b) are a back view and a vertical cross-sectional view of a die used in the first step of the present invention, and Figure 2(a) is a front view of a female die for molding a raw material with straight teeth. (b) is the product, Figure 3 (a) is a front view of the female die for forming the toothed material with twisted teeth, Figure 4 (b) is the product, Figure 4 is an explanatory diagram of the second step, The figure is a front view of the shaping die for the third process.
Figures 6(a) and 6(b) are a front view and a sectional view of the female rotor;
Figures 7(a) and 7(b) are a front view and a sectional view of the male rotor;
Figures 8(a) and 8(b) are front views and cross-sectional views of other male rotors, Figure 9 is a cross-sectional view of a rotor coated with a resin layer, and Figure 10 is a cross-sectional view of a rotor coated with a resin layer.
The figure is a chart showing product accuracy, and FIG. 11 is a longitudinal cross-sectional view of a die used in another manufacturing method. 1, 25...Dice 2, 26...Male die 3, 3A, 3B, 27...Female die 9, 9^, 9
B... Tooth profile groove 17... Shaping die W1, lll2, 6... Toothed material 14, -5, S... Rotor 3 people outside of Figure 10 Figure 11 Figure 4 Figure 12B 6 Figure (a) Figure 6 (b)

Claims (1)

【特許請求の範囲】 1、中心穴と該中心穴から放射状に伸びる複数個の歯形
溝と該中心穴内に保持した芯型を備えるダイスから芯孔
をもつ歯付き素材を押出す工程と、該歯付き素材の芯孔
内に芯金を挿入して該歯付き素材に冷間又は熱間でねじ
りを加える工程とからなることを特徴とするスクリュウ
ロータの製造方法。 2、ダイスの歯形溝にねじれを設け、緩やかなねじれ角
のねじれ歯をもつ歯付き素材を押出すことを特徴とする
請求項(1)記載のスクリュウロータの製造方法。 3、中心穴と該中心穴から放射状に伸びる複数個の歯形
溝を備えるダイスから歯付き素材を押出す工程と、該歯
付き素材に芯孔を明ける工程と、該歯付き素材の芯孔内
に芯金を挿入して該歯付き素材に冷間又は熱間でねじり
を加える工程とからなることを特徴とするスクリュウロ
ータの製造方法。
[Claims] 1. A step of extruding a toothed material having a core hole from a die including a center hole, a plurality of tooth grooves extending radially from the center hole, and a core mold held within the center hole; A method for manufacturing a screw rotor, comprising the steps of inserting a core metal into a core hole of a toothed material and applying cold or hot twist to the toothed material. 2. The method for manufacturing a screw rotor according to claim 1, wherein the toothed groove of the die is twisted, and a toothed material having twisted teeth with a gentle helix angle is extruded. 3. A step of extruding a toothed material from a die having a center hole and a plurality of tooth-shaped grooves extending radially from the center hole, a step of drilling a core hole in the toothed material, and a step of extruding the toothed material in the core hole of the toothed material. A method for producing a screw rotor, comprising the steps of: inserting a metal core into the toothed material and twisting the toothed material in a cold or hot manner.
JP1052144A 1989-03-06 1989-03-06 Screw rotor manufacturing method Expired - Lifetime JPH0698406B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1052144A JPH0698406B2 (en) 1989-03-06 1989-03-06 Screw rotor manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1052144A JPH0698406B2 (en) 1989-03-06 1989-03-06 Screw rotor manufacturing method

Publications (2)

Publication Number Publication Date
JPH02235525A true JPH02235525A (en) 1990-09-18
JPH0698406B2 JPH0698406B2 (en) 1994-12-07

Family

ID=12906683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1052144A Expired - Lifetime JPH0698406B2 (en) 1989-03-06 1989-03-06 Screw rotor manufacturing method

Country Status (1)

Country Link
JP (1) JPH0698406B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006233816A (en) * 2005-02-23 2006-09-07 Hitachi Industrial Equipment Systems Co Ltd Manufacturing method of screw rotor
JP2013233585A (en) * 2012-05-10 2013-11-21 Sankyo Tateyama Inc Shape material
CN113649429A (en) * 2021-08-17 2021-11-16 山东大学 Extrusion device and extrusion method for hollow helical surface rotor profile with inner key groove
CN113894171A (en) * 2021-10-13 2022-01-07 北京科技大学 Screw rod three-roller driving extrusion forming device and process

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103042064B (en) * 2012-12-27 2015-05-13 娄底市文昌科技有限公司 Extrusion mold for manufacturing rotor parts of automotive air conditioner and manufacturing technology
CN106623474B (en) * 2017-01-17 2018-10-19 辽源飞跃工模具有限公司 A kind of inside and outside extrusion die for carrying spiral fin proximate matter of pipe

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50156013A (en) * 1974-06-06 1975-12-16
JPS5797816A (en) * 1980-12-11 1982-06-17 Kobe Steel Ltd Manufacture of spiral finned tube
JPS58196124A (en) * 1982-05-11 1983-11-15 Sato Koki:Kk Manufacture of flexible pipe
JPS61259838A (en) * 1985-05-10 1986-11-18 Araya Kogyo Kk Production of torsion pipe
JPS6263190A (en) * 1985-09-13 1987-03-19 Jidosha Kiki Co Ltd Production of screw rotor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50156013A (en) * 1974-06-06 1975-12-16
JPS5797816A (en) * 1980-12-11 1982-06-17 Kobe Steel Ltd Manufacture of spiral finned tube
JPS58196124A (en) * 1982-05-11 1983-11-15 Sato Koki:Kk Manufacture of flexible pipe
JPS61259838A (en) * 1985-05-10 1986-11-18 Araya Kogyo Kk Production of torsion pipe
JPS6263190A (en) * 1985-09-13 1987-03-19 Jidosha Kiki Co Ltd Production of screw rotor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006233816A (en) * 2005-02-23 2006-09-07 Hitachi Industrial Equipment Systems Co Ltd Manufacturing method of screw rotor
JP4504836B2 (en) * 2005-02-23 2010-07-14 株式会社日立産機システム Screw rotor manufacturing method
JP2013233585A (en) * 2012-05-10 2013-11-21 Sankyo Tateyama Inc Shape material
CN113649429A (en) * 2021-08-17 2021-11-16 山东大学 Extrusion device and extrusion method for hollow helical surface rotor profile with inner key groove
CN113649429B (en) * 2021-08-17 2022-06-07 山东大学 Extrusion device and extrusion method for hollow helical surface rotor profile with inner key groove
CN113894171A (en) * 2021-10-13 2022-01-07 北京科技大学 Screw rod three-roller driving extrusion forming device and process
CN113894171B (en) * 2021-10-13 2022-12-02 北京科技大学 Screw rod three-roller driving extrusion forming device and process

Also Published As

Publication number Publication date
JPH0698406B2 (en) 1994-12-07

Similar Documents

Publication Publication Date Title
JP4485362B2 (en) Herringbone gear teeth and manufacturing method thereof
US6543132B1 (en) Methods of making mud motors
US4708912A (en) Sintered metal body with at least one toothing
CN102101171A (en) Bevel and hypoid gear and method of manufacture
EP1502721A2 (en) Method of making a rotary tool for chip removing machining
JPH02235525A (en) Manufacture of screw rotor
JPS63149034A (en) Manufacture of helical internal gear
JP2000167619A (en) Extruding die, and extruding method
JPH11230068A (en) Manufacture of rotor
US7677073B2 (en) Method of manufacturing tooth profile part
EP1138416B1 (en) Gear and shaft and forming method thereof
US4489588A (en) Apparatus for manufacturing screw workpieces of a tube semi-product
US5275046A (en) Entrance contour design to streamline metal flow in a forging die
JP2588759B2 (en) Manufacturing method of screw rotor
JP3494349B2 (en) Helical gear manufacturing method
JPS6045021B2 (en) Tools and methods for rolling splines etc.
JPH07310807A (en) Helical pinion gear, manufacture thereof and device therefor
US20040147352A1 (en) Face gear and method of manufacturing the same
CN109759527A (en) A kind of major diameter toothed member multi-pass rolling die and rolling method simultaneously
JP2828108B2 (en) Method and apparatus for extruding sintering material having spiral holes
US3590619A (en) Manufacture of herringbone gears
JP2005342779A (en) Method for forming gear
JP2828146B2 (en) Extrusion molding method and apparatus for helical gear having shaft hole
JP3010178B2 (en) Composite round bar with oil hole
JPH07308729A (en) Helical pinion gear for steering method and device for manufacturing the same