JPH02234466A - Semiconductor memory cell and manufacture thereof - Google Patents

Semiconductor memory cell and manufacture thereof

Info

Publication number
JPH02234466A
JPH02234466A JP1055317A JP5531789A JPH02234466A JP H02234466 A JPH02234466 A JP H02234466A JP 1055317 A JP1055317 A JP 1055317A JP 5531789 A JP5531789 A JP 5531789A JP H02234466 A JPH02234466 A JP H02234466A
Authority
JP
Japan
Prior art keywords
trench
insulating film
oxide film
memory cell
charge storing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1055317A
Other languages
Japanese (ja)
Other versions
JP2794750B2 (en
Inventor
Masato Sakao
坂尾 眞人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP1055317A priority Critical patent/JP2794750B2/en
Publication of JPH02234466A publication Critical patent/JPH02234466A/en
Application granted granted Critical
Publication of JP2794750B2 publication Critical patent/JP2794750B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To maintain a large capacitance by a method wherein an information storing part is formed along an insulating film formed on the sidewall of a trench formed on a semiconductor substrate, the bottom of the trench and an insulated-gate field effect transistor. CONSTITUTION:A capacitance part is composed of a cell plate 10, a charge storing electrode 8 and a capacitive insulating film 9 isolating them from each other which are buried in a trench formed on a silicon substrate 1. A silicon oxide film 7 is provided between the charge storing electrode 8 and the sidewall of the trench. The silicon oxide film 7 is also provided between the charge storing electrode 8 and a first interlayer insulating film 6. A diffusion layer 12 is formed in the bottom of the trench by impurity diffusion from the charge storing electrode 8. The cell plate 10 is isolated from a bit line 14 by a second interlayer insulating film 11. Element isolation is provided by a silicon oxide film 2 formed on the silicon substrate 1. As the charge storing electrode 8 is not only formed in the trench but also extended over a switching transistor, a required capacitance can be obtained with a small cell area.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は大規模化に好適な1トランジスタ・1キャパシ
タ型半導体メモリセルとその製造方法に関する. 〔従来の技術〕 MOSダイナミックメモリは、1970年のIKビット
ダイナミック・ランダム・アクセス・メモリの発売を出
発点として、以後3年に4倍の割合で大規模化がなされ
、そのメモリセルの面積は一世代に0.3〜0.4倍に
縮小されてきた.メモリセルは縮小しても、ソフトエラ
ー耐性は低下させないといった観点から、セル容量の確
保が重要な問題となっている。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a one-transistor/one-capacitor type semiconductor memory cell suitable for large-scale storage and a method for manufacturing the same. [Prior Art] Starting with the release of IK-bit dynamic random access memory in 1970, MOS dynamic memory has expanded in scale by a factor of four in the last three years, and the area of its memory cells has increased. It has been reduced by 0.3 to 0.4 times in one generation. Ensuring cell capacity is an important issue from the perspective of maintaining soft error resistance even when memory cells are reduced in size.

この問題を解決する方法のーっに電子情報通信学会技術
報告〔シリコン材料・デバイス〕・SDM88−39、
53ページに「16メガビットDRAMのプロセス技術
」と題して発表された方法がある.この方法では第3図
に示すようにシリコン基板1に形成された溝内に電荷蓄
積電極8を含む容量部を埋込みセル面積を増大させるこ
となく容量を確保している。
IEICE Technical Report [Silicon Materials and Devices] SDM88-39, which explains how to solve this problem.
On page 53, there is a method presented under the title ``16 megabit DRAM process technology.'' In this method, as shown in FIG. 3, a capacitor portion including a charge storage electrode 8 is buried in a trench formed in a silicon substrate 1, thereby securing the capacitance without increasing the cell area.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

このような構造で、メモリ動作に必要な容量を確保しな
がらセル面積を縮小するためには、小さい開口面積で深
い溝を形成する技術が必要となる。しかし、そのような
溝の加工は、シリコン基板のダメージ、溝形成の崩れと
いった問題を生じ、実現できない。そのため、このよう
な構造でのセル面積の縮小は講加工技術の限界により制
限されてしまう。さらに、メモリセル間隔が小さくなる
ことによる講容量間のリークも重要な問題となってくる
In such a structure, in order to reduce the cell area while securing the capacity necessary for memory operation, a technique for forming a deep trench with a small opening area is required. However, such groove processing cannot be realized because it causes problems such as damage to the silicon substrate and collapse of the groove formation. Therefore, reduction of the cell area in such a structure is limited by the limitations of processing technology. Furthermore, leakage between capacitances due to the narrowing of the memory cell spacing becomes an important problem.

本発明の目的は、メモリセルの面積を増大することなく
、より大きな容量を確保すると共に、溝容量間のリーク
を抑制することのできるメモリセルとその構造方法を提
供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a memory cell and its structure method that can secure a larger capacity and suppress leakage between trench capacitances without increasing the area of the memory cell.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の半導体メモリセルは、情報蓄積部となる容量と
絶縁ゲート型電界効果トランジスタとを有する半導体メ
モリセルにおいて、前記情報蓄積部が半導体基板に形成
された溝の側壁に付された絶縁膜と前記溝の底部と前記
絶縁ゲート型電界効果トランジスタ上に沿って形成され
ている。
The semiconductor memory cell of the present invention has a capacitor and an insulated gate field effect transistor serving as an information storage section, in which the information storage section includes an insulating film attached to a side wall of a trench formed in a semiconductor substrate. The groove is formed along the bottom of the trench and above the insulated gate field effect transistor.

本発明の半導体メモリセルの製造方法は、半導体基板に
絶縁ゲート型電界効果トランジスタに溝を掘り込む工程
と、前記溝の内面の絶縁膜上と絶縁ゲート型電界効果ト
ランジスタ上に連続した情報蓄積部となる容量を設ける
工程とを含んで構成される。
The method for manufacturing a semiconductor memory cell of the present invention includes the steps of digging a groove in a semiconductor substrate for an insulated gate field effect transistor, and a continuous information storage portion on an insulating film on the inner surface of the groove and on the insulated gate field effect transistor. The structure includes a step of providing a capacitance that becomes .

〔実施例〕〔Example〕

次に、本発明の実施例について図面を参照して説明する
Next, embodiments of the present invention will be described with reference to the drawings.

第1図は本発明のメモリセルの一実施例の断面図である
FIG. 1 is a cross-sectional view of one embodiment of a memory cell of the present invention.

シリコン基板1に形成されソース・ドレイン領域として
作用する二つの高濃度拡散層5と、ゲート酸化膜3を介
して積層されたゲート電極4とで電界効果トランジスタ
が構成される。このゲート電極4は第1層間絶縁膜6に
埋め込まれる。また、二つの高濃度拡散層5のうちの一
つは、第1層間絶縁膜6に形成されたコンタクト孔を通
してビット線14に接続されている。
A field effect transistor is constituted by two heavily doped diffusion layers 5 formed on a silicon substrate 1 and functioning as source/drain regions, and a gate electrode 4 laminated with a gate oxide film 3 interposed therebetween. This gate electrode 4 is embedded in the first interlayer insulating film 6. Further, one of the two high concentration diffusion layers 5 is connected to the bit line 14 through a contact hole formed in the first interlayer insulating film 6.

容量部はシリコン基板1上に形成された講内に埋込まれ
たセルプレート10と電荷蓄積電8i!8と両者を隔離
する容量絶縁膜9とからなり、電荷蓄積電極8と講側壁
の間にはシリコン酸化膜7が介在し、また電荷蓄積電極
8と第1層間絶縁膜との間にもシリコン酸化膜7が介在
する。溝底部には、電荷蓄積電極8より不純物拡散して
形成された拡散層12がある。またセルプレート10と
ビット線14とは第2層間絶縁膜11で隔離され、素子
分離はシリコン基板1に形成されたシリコン酸化膜2に
よりなされている。
The capacitor section includes a cell plate 10 embedded in a cell formed on a silicon substrate 1 and a charge storage capacitor 8i! A silicon oxide film 7 is interposed between the charge storage electrode 8 and the first interlayer insulation film, and a silicon oxide film 7 is interposed between the charge storage electrode 8 and the first interlayer insulation film. An oxide film 7 is present. At the bottom of the groove, there is a diffusion layer 12 formed by diffusing impurities from the charge storage electrode 8 . Further, the cell plate 10 and the bit line 14 are isolated by a second interlayer insulating film 11, and element isolation is performed by a silicon oxide film 2 formed on the silicon substrate 1.

電荷畜積電極8は後に説明するように、素子分離領域上
から、溝の内面を含んで電界効果トランジスタの上にま
で延設した多結晶シリコン層を加工したものである. 第2図<a)〜(f)は本発明のメモリセルの製造方法
の実施例を説明するための工程順に示した断面図である
As will be explained later, the charge accumulation electrode 8 is a processed polycrystalline silicon layer extending from above the element isolation region to above the field effect transistor, including the inner surface of the groove. FIGS. 2A to 2F are cross-sectional views shown in order of steps for explaining an embodiment of the method for manufacturing a memory cell of the present invention.

以後、説明の便のためトランジスタとして、nチャネル
型を用いた例を示す。pチャネル型にするにはシリコン
基板と拡散層の導電型をそれぞれnチャネルの場合と逆
にすれば良い。
Hereinafter, for convenience of explanation, an example using an n-channel type transistor will be shown. To make a p-channel type, the conductivity types of the silicon substrate and the diffusion layer may be reversed from those of the n-channel type.

まず、第2図(a>に示すように、面方位〈100)p
型シリコン基板1に熱酸化により厚さ約40nmのマス
ク酸化膜16を形成し、次に、CVD法によりシリコン
窒化膜17を約120nmの厚さに堆積し、ホトリソグ
ラフィ技術を用いて素子領域上にマスク酸化膜16とシ
リコン窒化膜17が残る様にパターニングした後、熱酸
化して厚さ約600nmのシリコン酸化膜2を形成する
. 次に、第2図(b)に示すように、シリコン窒化膜17
とマスク酸化膜16をウェットエッチング法で除去した
後、950゜C@素雰囲気中で熱酸化して厚さ約20n
mのゲート酸化膜3を形成する。次に、CVD法により
多結晶シリコン膜を約500nmの厚さに堆積し、通常
のホトリソグラフィ技術によりゲート電極4を形成する
。次に、n−MOSFET領域にヒ素を加速エネルギー
1 00keV、ドーズ量5 X 1 0 1 5 c
 m − 2で注入し、n型高濃度拡散層5を形成する
First, as shown in Figure 2 (a), the surface orientation is <100)p
A mask oxide film 16 with a thickness of about 40 nm is formed on the mold silicon substrate 1 by thermal oxidation, then a silicon nitride film 17 is deposited with a thickness of about 120 nm by CVD, and a photolithography technique is used to deposit the mask oxide film 16 on the element region. After patterning so that mask oxide film 16 and silicon nitride film 17 remain, thermal oxidation is performed to form silicon oxide film 2 with a thickness of about 600 nm. Next, as shown in FIG. 2(b), the silicon nitride film 17
After removing the mask oxide film 16 by wet etching, it is thermally oxidized at 950°C in an elementary atmosphere to a thickness of about 20 nm.
A gate oxide film 3 having a thickness of m is formed. Next, a polycrystalline silicon film is deposited to a thickness of about 500 nm by CVD, and a gate electrode 4 is formed by ordinary photolithography. Next, arsenic was applied to the n-MOSFET region at an acceleration energy of 100 keV and a dose of 5×1015c.
m −2 is implanted to form an n-type high concentration diffusion layer 5.

次に、第2図(c)に示すように、ゲート電極4の直下
のゲート酸化膜jを残して、他の部分をウェットエッチ
ングする。次に、CVD法によりシリコン酸化膜を堆積
し、第1層間絶縁膜6とする。次に、通常のホトリソグ
ラフイ技術により、レジスト23のパターンを形成する
Next, as shown in FIG. 2(c), the gate oxide film j directly under the gate electrode 4 is left, and other parts are wet-etched. Next, a silicon oxide film is deposited by the CVD method to form the first interlayer insulating film 6. Next, a pattern of the resist 23 is formed using a normal photolithography technique.

次に、第2図(d)に示すように、レジスト23をマス
クにして異方性エッチングを行って溝24を形成し、講
24の内面も含めたウエハー全面にCVD法によりシリ
コン酸化膜7を堆積する。次に、ホトリソグラフイ技術
によりシリコン酸化膜7を堆積する。次に、ホトリソグ
ラフイ技術によりレジスト26を形成する。
Next, as shown in FIG. 2(d), grooves 24 are formed by anisotropic etching using the resist 23 as a mask, and a silicon oxide film 7 is formed on the entire surface of the wafer including the inner surface of the grooves 24 by CVD. Deposit. Next, a silicon oxide film 7 is deposited by photolithography. Next, a resist 26 is formed by photolithography.

次に、第2図(e)に示すように、レジスト26をマス
クにしてシリコン酸化膜7と第1層間絶縁膜6を異方性
エッチングする。次に、CVD法により多結晶シリコン
層27を堆積させた後、ヒ素をイオン注入すると、多結
晶シリコン層27を通して?1I24の底部にヒ素が拡
散し、拡散層12が形成される. 次に、第2図(f)に示すように、多結晶シリコン層2
7をホトリソグラフィ技術とドライエッチング技術によ
りエッチングして電荷蓄積電極8を形成する.熱酸化し
て電荷蓄積電極8の上に熱酸化膜の容量絶縁M9を形成
する。この上にCVD法により多結晶シリコン膜を堆積
させ、ホトリソグラフィ技術とドライエッチング技術に
よりパターニングしてセルプレート10を形成する。
Next, as shown in FIG. 2(e), the silicon oxide film 7 and the first interlayer insulating film 6 are anisotropically etched using the resist 26 as a mask. Next, after depositing a polycrystalline silicon layer 27 by the CVD method, arsenic ions are implanted through the polycrystalline silicon layer 27. Arsenic diffuses into the bottom of 1I24, forming a diffusion layer 12. Next, as shown in FIG. 2(f), a polycrystalline silicon layer 2
7 is etched using photolithography and dry etching techniques to form a charge storage electrode 8. A capacitive insulation M9 of a thermal oxide film is formed on the charge storage electrode 8 by thermal oxidation. A polycrystalline silicon film is deposited thereon by CVD and patterned by photolithography and dry etching to form cell plate 10.

次に、CVD法によりシリコン酸化膜の第2層間絶縁膜
11を堆積した後、コンタクト孔をあけ、アルミニウム
でビット線14を形成すると第1図に示すような構造の
メモリセルが得られる。
Next, a second interlayer insulating film 11 of a silicon oxide film is deposited by the CVD method, a contact hole is made, and a bit line 14 is formed of aluminum, thereby obtaining a memory cell having the structure shown in FIG.

本実施例によって得られるメモリセルは電荷蓄積電極が
溝内のみならず、スイッチングトランジスタの上にまで
延設されているため、小さなセル面積で所望の容量を得
ることができ、また溝側壁と電荷蓄NI電極とはシリコ
ン酸化M7を介して絶縁されているので、セル間の干渉
も抑えられる。
In the memory cell obtained in this example, the charge storage electrode extends not only inside the trench but also over the switching transistor, so the desired capacity can be obtained with a small cell area, and the charge storage electrode Since it is insulated from the storage NI electrode via silicon oxide M7, interference between cells can also be suppressed.

上記実施例において、容量絶縁膜つとしてシリコンの熱
酸化膜を用いたが、容量値を大きくすること、信頼性を
高めることを主目的としてシリコン酸化膜と、シリコン
窒化膜のどちらか一方あるいは両方を用いて1層〜3層
構造としても良いことはもちろんである。
In the above embodiment, a silicon thermal oxide film was used as the capacitor insulating film, but for the main purpose of increasing the capacitance value and improving reliability, either a silicon oxide film, a silicon nitride film, or both were used. It goes without saying that a one-layer to three-layer structure may be formed using the above.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、容量部の構成要
素である電荷蓄積電極が溝内から連続してスイッチング
トランジスタ上に延設されているなめ、小さなメモリセ
ル面積で、大きな容量を確保できる.さらに、電荷蓄積
電極の埋め込まれている溝の側壁には絶縁膜が付されて
いるので、セう間隔を小さくしてもセル間干渉が生じに
くい構造となっている.また、スイッチングトランジス
タと電荷M積電極の接合部分、いわゆるセルコンタクト
がセルファラインで形成できるため、メモリセル面積の
縮小に有利であるという効果が得られる.
As explained above, according to the present invention, the charge storage electrode, which is a component of the capacitor section, extends continuously from within the groove onto the switching transistor, thereby ensuring a large capacitance with a small memory cell area. can. Furthermore, since an insulating film is attached to the sidewalls of the groove in which the charge storage electrode is embedded, the structure is such that interference between cells is unlikely to occur even if the gap between the cells is small. Furthermore, since the junction between the switching transistor and the charge M product electrode, that is, the so-called cell contact, can be formed by a self-alignment line, an advantageous effect can be obtained in reducing the memory cell area.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のメモリセルの一実施例の断面図、第2
図(a)〜(f)は本発明のメモリセルの製造方法の一
実施例を示した断面図、第3図は従来のメモリセルの一
例の断面図である。 1・・・p型シリコン基板、2・・・シリコン酸化膜、
3・・・ゲート酸化膜、4・・・ゲート電極、5・・・
高濃度拡散層、6・・・第1層間絶縁膜、7・・・酸化
シリコン膜、8・・・電荷蓄積電極、9・・・容量絶縁
膜、10・・・セルプレート、11・・・第2層間絶縁
膜、12・・・拡散層、14・・・ビット線、16・・
・マスク酸化膜、17・・・シリコン窒化膜、24・・
・溝、27・・・多結晶シリコン層、30・・・層間絶
縁膜、37・・・拡散層。
FIG. 1 is a cross-sectional view of one embodiment of the memory cell of the present invention, and FIG.
Figures (a) to (f) are cross-sectional views showing one embodiment of the method for manufacturing a memory cell of the present invention, and FIG. 3 is a cross-sectional view of an example of a conventional memory cell. 1...p-type silicon substrate, 2...silicon oxide film,
3... Gate oxide film, 4... Gate electrode, 5...
High concentration diffusion layer, 6... First interlayer insulating film, 7... Silicon oxide film, 8... Charge storage electrode, 9... Capacitive insulating film, 10... Cell plate, 11... Second interlayer insulating film, 12... Diffusion layer, 14... Bit line, 16...
・Mask oxide film, 17...Silicon nitride film, 24...
- Groove, 27... polycrystalline silicon layer, 30... interlayer insulating film, 37... diffusion layer.

Claims (2)

【特許請求の範囲】[Claims] (1)情報畜積部となる容量と絶縁ゲート型電界効果ト
ランジスタとを有する半導体メモリセルにおいて、前記
蓄積部が半導体基板に形成された溝の側壁に付された絶
縁膜と前記溝の底部と前記絶縁ゲート型電界効果トラン
ジスタ上に沿って形成されていることを特徴とする半導
体メモリセル。
(1) In a semiconductor memory cell having a capacitor and an insulated gate field effect transistor serving as an information storage section, the storage section includes an insulating film attached to a side wall of a trench formed in a semiconductor substrate and a bottom of the trench. A semiconductor memory cell, characterized in that it is formed along the insulated gate field effect transistor.
(2)半導体基板に絶縁ゲート型電界効果トランジスタ
を設ける工程と、前記シリコン基板に溝を掘り込む工程
と、前記溝の側壁にのみ絶縁膜を形成する工程と、前記
溝の内面の絶縁膜上と絶縁ゲート型電界効果トランジス
タ上に連続した情報蓄積部となる容量を設ける工程とを
含むことを特徴とする半導体メモリセルの製造方法。
(2) a step of providing an insulated gate field effect transistor on a semiconductor substrate; a step of digging a trench in the silicon substrate; a step of forming an insulating film only on the side walls of the trench; and a step of forming an insulating film on the inner surface of the trench. and providing a capacitor serving as a continuous information storage section on an insulated gate field effect transistor.
JP1055317A 1989-03-07 1989-03-07 Semiconductor memory cell and manufacturing method thereof Expired - Lifetime JP2794750B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1055317A JP2794750B2 (en) 1989-03-07 1989-03-07 Semiconductor memory cell and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1055317A JP2794750B2 (en) 1989-03-07 1989-03-07 Semiconductor memory cell and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH02234466A true JPH02234466A (en) 1990-09-17
JP2794750B2 JP2794750B2 (en) 1998-09-10

Family

ID=12995176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1055317A Expired - Lifetime JP2794750B2 (en) 1989-03-07 1989-03-07 Semiconductor memory cell and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2794750B2 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61107768A (en) * 1984-10-31 1986-05-26 Fujitsu Ltd Semiconductor memory device
JPS61177771A (en) * 1985-02-04 1986-08-09 Mitsubishi Electric Corp Manufacture of semiconductor device
JPS61292956A (en) * 1985-06-21 1986-12-23 Hitachi Ltd Semiconductor device
JPS62120070A (en) * 1985-11-20 1987-06-01 Toshiba Corp Semiconductor memory
JPS62136069A (en) * 1985-12-10 1987-06-19 Hitachi Ltd Semiconductor device and manufacture of the same
JPS62137863A (en) * 1985-12-12 1987-06-20 Matsushita Electronics Corp Semiconductor memory device
JPS62257764A (en) * 1986-04-30 1987-11-10 Sharp Corp Semiconductor memory device
JPS6384149A (en) * 1986-09-29 1988-04-14 Hitachi Ltd Manufacture of semiconductor memory
JPS63228664A (en) * 1987-03-18 1988-09-22 Fujitsu Ltd Dynamic random access memory device
JPS63278268A (en) * 1987-03-10 1988-11-15 Fujitsu Ltd Dynamic random-access memory cell

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61107768A (en) * 1984-10-31 1986-05-26 Fujitsu Ltd Semiconductor memory device
JPS61177771A (en) * 1985-02-04 1986-08-09 Mitsubishi Electric Corp Manufacture of semiconductor device
JPS61292956A (en) * 1985-06-21 1986-12-23 Hitachi Ltd Semiconductor device
JPS62120070A (en) * 1985-11-20 1987-06-01 Toshiba Corp Semiconductor memory
JPS62136069A (en) * 1985-12-10 1987-06-19 Hitachi Ltd Semiconductor device and manufacture of the same
JPS62137863A (en) * 1985-12-12 1987-06-20 Matsushita Electronics Corp Semiconductor memory device
JPS62257764A (en) * 1986-04-30 1987-11-10 Sharp Corp Semiconductor memory device
JPS6384149A (en) * 1986-09-29 1988-04-14 Hitachi Ltd Manufacture of semiconductor memory
JPS63278268A (en) * 1987-03-10 1988-11-15 Fujitsu Ltd Dynamic random-access memory cell
JPS63228664A (en) * 1987-03-18 1988-09-22 Fujitsu Ltd Dynamic random access memory device

Also Published As

Publication number Publication date
JP2794750B2 (en) 1998-09-10

Similar Documents

Publication Publication Date Title
US6255684B1 (en) DRAM cell configuration and method for its production
JPH0653435A (en) Integrated circuit cell
JP3222944B2 (en) Method for manufacturing capacitor of DRAM cell
JPH0982912A (en) Semiconductor storage device and its manufacture
JPH02312269A (en) Semiconductor memory device and manufacture thereof
JP3449754B2 (en) DRAM manufacturing method
US5231044A (en) Method of making semiconductor memory elements
JPH0374848A (en) Semiconductor device and manufacture thereof
KR930004985B1 (en) Dram cell having a stacked capacitor and method of fabricating therefor
JP2794761B2 (en) Semiconductor memory cell and manufacturing method thereof
JP2689682B2 (en) Method for manufacturing semiconductor memory cell
JPH0423467A (en) Manufacture of semiconductor memory
JPH02234466A (en) Semiconductor memory cell and manufacture thereof
JPH0382155A (en) Semiconductor memory cell and manufacture thereof
JPH03165557A (en) Semiconductor device provided with stacked capacitor cell
JPH0563155A (en) Semiconductor device and its manufacture
JP3214615B2 (en) Semiconductor storage device
JPH03183162A (en) Manufacture of semiconductor memory
JPH01119053A (en) Semiconductor memory device
JP3120633B2 (en) Semiconductor memory device and manufacturing method thereof
JP3079558B2 (en) Method of forming semiconductor memory cell
JPH03257859A (en) Semiconductor device and manufacture thereof
JP3067316B2 (en) Method of forming semiconductor memory cell
JP2827377B2 (en) Semiconductor integrated circuit
JP2969789B2 (en) Method for manufacturing semiconductor memory device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080626

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090626

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090626

Year of fee payment: 11