JPH02234403A - Gas insulation transformer - Google Patents

Gas insulation transformer

Info

Publication number
JPH02234403A
JPH02234403A JP5547789A JP5547789A JPH02234403A JP H02234403 A JPH02234403 A JP H02234403A JP 5547789 A JP5547789 A JP 5547789A JP 5547789 A JP5547789 A JP 5547789A JP H02234403 A JPH02234403 A JP H02234403A
Authority
JP
Japan
Prior art keywords
gas
transformer
cooler
transformer tank
insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5547789A
Other languages
Japanese (ja)
Inventor
Yoshito Ebisawa
海老沢 義人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP5547789A priority Critical patent/JPH02234403A/en
Publication of JPH02234403A publication Critical patent/JPH02234403A/en
Pending legal-status Critical Current

Links

Landscapes

  • Transformer Cooling (AREA)

Abstract

PURPOSE:To sufficiently secure an amount of circulation gas to be generated by natural convection while improving a cooling characteristic by covering the gas piping, through which insulation gas flows from a transformer tank to a cooler, with an insulating material. CONSTITUTION:The subject transformer has the constitution wherein an outer peripheral surface of the gas piping 5a connecting the upper part of a transformer 1 and a cooler 4 set up on a floor of the upper layer story of the transformer tank 1 is covered with an insulating material 9. Accordingly, insulation gas warmed by heat to be generated in the transformer contents reaches the upper part of the cooler 4 from the upper part of the transformer tank 1 through the gas piping 5a. However, since the gas piping 5a is covered with the insulating material 9, the temperature of the insulation gas scarcely drops, and the gas is taken into the cooler 4 even when the transformer tank and the cooler 4 are set up in the separated places. Thereby, a weight difference from the cooled insulation gas returning to the lower part of the transformer tank 1 from the lower part of the cooler 4 through the gas piping 5b increases so as to sufficiently secure a circulating gas amount to be generated by natural convection for improving cooling efficiency.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は冷却構造を改良したガス絶縁変圧器に関する。[Detailed description of the invention] [Purpose of the invention] (Industrial application field) The present invention relates to a gas insulated transformer with an improved cooling structure.

(従来の技術) 近年、変圧器はその設置場所の制約から都市近郊或いは
大都市地下変電所に設置される場合が多くなってきてい
る。したがって、このような場所に設置される変圧器に
おいては難燃性の要求が更に高くなっている。
(Prior Art) In recent years, transformers have been increasingly installed in underground substations near cities or in large cities due to restrictions on where they can be installed. Therefore, requirements for flame retardancy are becoming even higher for transformers installed in such locations.

そこで、最近では従来の浦人変圧器に代えて絶縁冷却媒
体として絶縁特性の優れたSF6ガス等の絶縁ガスを用
いて変圧器の絶縁及び冷却を行なうガス絶縁変圧器が実
用化されている。
Therefore, recently, gas insulated transformers have been put into practical use in place of the conventional Uraho transformers, which insulate and cool the transformers by using an insulating gas such as SF6 gas, which has excellent insulating properties, as an insulating cooling medium.

しかし、この絶縁ガス変圧器は従来の油入変圧器に比べ
冷却特性に劣る欠点がある。すなわち、絶縁ガスの比熱
及び熱交換効率が絶縁油に比べ特性的に大きく下回って
いるため冷却効率が悪い。
However, this insulating gas transformer has the disadvantage of inferior cooling characteristics compared to conventional oil-immersed transformers. That is, the specific heat and heat exchange efficiency of the insulating gas are significantly lower than those of the insulating oil, resulting in poor cooling efficiency.

このため油入変圧器の場合なら自冷方式が適用できる変
圧器容量のものであっても、ガス絶縁変圧器の場合には
冷却装置を大きくしたり、また20〜30MVA程度の
変圧器でも冷却効率を上げるため、送風機を用いたガス
の強制循環方式を適用せざるを得ない場合がある。
For this reason, even if the transformer capacity is such that a self-cooling method can be applied to an oil-immersed transformer, a cooling device must be increased in the case of a gas-insulated transformer, and even a transformer with a capacity of about 20 to 30 MVA must be cooled. In order to increase efficiency, it may be necessary to apply a forced circulation method of gas using a blower.

一方、最近の変圧器は難燃性の要求に加えて変電所等の
保守人員削減の観点から無保守、無点検の要求も強まっ
ている。これらの要求を満たすためには、20〜30M
VA容量程度のガス絶縁変圧器に対しても完全自動化す
ることが望まれている。
On the other hand, recent transformers are required not only to be flame retardant, but also to require no maintenance or inspection from the perspective of reducing maintenance personnel at substations, etc. In order to meet these requirements, 20-30M
It is desired that gas insulated transformers of approximately VA capacity be fully automated.

次にこのようなガス絶縁変圧器の中で特に自冷ガス変圧
器の問題点を説明する。
Next, the problems of self-cooled gas transformers among such gas insulated transformers will be explained.

第2図は従来の内鉄形の自冷ガス変圧器の概念図である
。第2図に示すように変圧器タンク1の中に鉄心2及び
巻線3からなる変圧器中身が納められると共に絶縁及び
冷却媒体であるSF.ガス等の絶縁ガス7が所定の圧力
で封入されている。
FIG. 2 is a conceptual diagram of a conventional core type self-cooling gas transformer. As shown in FIG. 2, the contents of the transformer consisting of an iron core 2 and windings 3 are housed in a transformer tank 1, and SF, which is an insulation and cooling medium. An insulating gas 7 such as gas is sealed at a predetermined pressure.

また、変圧器中身の外側面と変圧器タンク1の内壁との
間には絶縁ガス7を鉄心2や巻線3内に効果的に循環さ
せるように工夫されたガス仕切板6が設けられている。
Further, a gas partition plate 6 is provided between the outer surface of the transformer contents and the inner wall of the transformer tank 1, which is designed to effectively circulate the insulating gas 7 into the iron core 2 and the windings 3. There is.

一方、変圧器タンク1の外部には温められた絶縁ガスを
冷却するため、変圧器タンク1の上,下部とガス配管5
a,5bにより接続された冷却器4が設けられている。
On the other hand, outside of the transformer tank 1, in order to cool the warmed insulating gas, the upper and lower parts of the transformer tank 1 and gas piping 5 are installed.
A cooler 4 connected by a and 5b is provided.

したがって、かかる自冷ガス絶縁変圧器においては、変
圧器タンク1内で温められた絶縁ガス7は自然対流によ
ってタンク上部と冷却器4の上部との間を接続したガス
配管5aを通して冷却器4内に取入れられ、ここで冷却
された絶縁ガスはさらに冷却器4の下部と変圧器タンク
1の下部との間を接続したガス配管5bを通して変圧器
タンク1内に戻るいう循環作用が行なわれる。
Therefore, in such a self-cooling gas insulated transformer, the insulating gas 7 heated in the transformer tank 1 passes into the cooler 4 through the gas pipe 5a connecting the upper part of the tank and the upper part of the cooler 4 by natural convection. The insulating gas cooled here is further circulated back into the transformer tank 1 through the gas pipe 5b connecting the lower part of the cooler 4 and the lower part of the transformer tank 1.

ところで、このような構成のガス絶縁変圧器を例えば大
都市の地下変電所に設置する場合、冷却器4を設置スペ
ースの関係で変圧器タンク1が配設されたフロアーと異
なる上層階のフロアーに設置されることがある。
By the way, when a gas insulated transformer with such a configuration is installed, for example, in an underground substation in a large city, the cooler 4 may be placed on an upper floor different from the floor on which the transformer tank 1 is installed due to installation space. It may be installed.

第3図はこのような状態で設置されたガス絶縁変圧器の
構成例を示すもので、その基本構造は第1図と同じであ
る。すなわち、第3図に示すように冷却器4を変圧器タ
ンク1が配設されたフロアーの上層階のフロアーに設け
られた架台8に設置し、この冷却器4の上,下部と変圧
器タンク1の上,下部との間を長形のガス配管5a,5
bによりそれぞれ接続するようにしている。
FIG. 3 shows an example of the configuration of a gas insulated transformer installed in such a state, and its basic structure is the same as that in FIG. 1. That is, as shown in FIG. 3, the cooler 4 is installed on a pedestal 8 provided on the upper floor of the floor where the transformer tank 1 is installed, and the upper and lower parts of the cooler 4 and the transformer tank are connected to each other. A long gas pipe 5a, 5 is connected between the upper and lower parts of 1.
They are connected to each other by b.

したがって、このような状態で設置されたガス絶縁変圧
器においては、絶縁ガス7は自然対流によって変圧器タ
ンク1と冷却器4との間を配管5a,5bを通して図示
矢印11のように循環するが、この場合自然対流を生じ
させる力(以下循環力し称す)は温ためられた絶縁ガス
と冷却された絶縁ガスの単位体禎当りの重量差によって
生じる。
Therefore, in a gas insulated transformer installed in such a state, the insulating gas 7 circulates between the transformer tank 1 and the cooler 4 through the pipes 5a and 5b as shown by the arrow 11 by natural convection. In this case, the force that causes natural convection (hereinafter referred to as circulation force) is generated by the difference in weight per unit body of the heated insulating gas and the cooled insulating gas.

ここで、絶縁ガスが変圧器タンク1の下部よりタンク内
に流入する位置をA,絶縁ガスが冷却器4の上部より冷
却器内に流入する位置をBとしたとき、Aより変圧器中
身を経由し変圧器タンク1の上部よりガス配管5aを通
してBに至るガス経路Iと、Bより冷却器4を経由し冷
却器下部からガス配管5bを通してAに至るガス経路■
について注目して見る。ガス経路Iは変圧器中身より発
生する熱によって温ためられた絶縁ガスが充満している
のに対し、ガス経路■は冷却器4により冷却された絶縁
ガスが充満している。
Here, if the position where the insulating gas flows into the tank from the bottom of the transformer tank 1 is A, and the position where the insulating gas flows into the cooler from the top of the cooler 4 is B, then the contents of the transformer are determined from A. A gas route I that goes from the upper part of the transformer tank 1 to B through the gas pipe 5a, and a gas route that goes from B to A through the cooler 4 and from the lower part of the cooler through the gas pipe 5b.
Let's pay attention to this. The gas path I is filled with insulating gas warmed by heat generated from the contents of the transformer, while the gas path I is filled with insulating gas cooled by the cooler 4.

そこで、これらガス経路I.IIに充満しているそれぞ
れの絶縁ガス重量を、単位体積当りのガス重量を積算し
て求めるとガス経路Iに比べガス゜経路■のガス重量の
方が重いことになる。換言すれば、Aの位置におけるガ
ス重量によって生じる圧力はガス経路Iに比べガス経路
Hの方が高いことになる。
Therefore, these gas paths I. When the weight of each insulating gas filled in II is determined by integrating the gas weight per unit volume, the gas weight of gas route II is heavier than that of gas route I. In other words, the pressure generated by the gas weight at position A is higher in gas path H than in gas path I.

したがって、絶縁ガスの自然対流はこの圧力の差が循環
力となるので、絶縁ガスをより多く循環させて冷却特性
を向上させるにはこの圧力差が大きい程良いことになる
Therefore, in the natural convection of the insulating gas, this difference in pressure becomes a circulation force, so the larger the difference in pressure, the better in order to circulate more insulating gas and improve the cooling characteristics.

(発明が解決しようとする課題) しかし、前述したように変圧器タンク1に設置されたフ
ロアーの上層階のフロアーに冷却器4が設けられた場合
、これらの間を結ぶガス経路,特に変圧器タンク1の上
部から冷却器4に至るガス配管5aが長くなると、この
配管部分の絶縁ガスが冷却されて単位体積当りの絶縁ガ
ス重量が重くなるため、A位置での絶縁ガス重量との差
が小さくなり、自然対流を生じさせる循環力が低減して
しまうことになる。
(Problem to be Solved by the Invention) However, as described above, when the cooler 4 is installed on the floor above the floor installed in the transformer tank 1, the gas path connecting these, especially the transformer When the gas piping 5a from the top of the tank 1 to the cooler 4 becomes longer, the insulating gas in this piping part is cooled and the insulating gas weight per unit volume increases, so the difference between the insulating gas weight at position A and the insulating gas weight at position A increases. This results in a reduction in the circulation force that causes natural convection.

本発明は変圧器タンクと冷却器とが離れた場所に設置さ
れている場合でも自然対流によって生じる循環ガス量を
充分確保でき、冷却特性を向上させることができるガス
絶縁変圧器を提供することを目的とする。
An object of the present invention is to provide a gas-insulated transformer that can secure a sufficient amount of circulating gas generated by natural convection and improve cooling characteristics even when a transformer tank and a cooler are installed at separate locations. purpose.

[発明の構成] (課題を解決するための手段) 本発明は上記の目的を達成するため、変圧器タンク内に
鉄心、巻線からなる変圧器中身と共に所定圧力で絶縁ガ
スを封入し、変圧器タンク外に冷却器を設けてこれら変
圧器タンクと冷却器間を絶縁ガスが循環するガス配管に
より接続するようにしたガス絶縁変圧器において、前記
変圧器タンクから前記冷却器に向かって絶縁ガスが流れ
るガス配管を断熱材により覆うようにしたものである。
[Structure of the Invention] (Means for Solving the Problems) In order to achieve the above-mentioned object, the present invention has an insulating gas sealed at a predetermined pressure in a transformer tank together with the contents of the transformer consisting of an iron core and windings. In a gas insulated transformer in which a cooler is provided outside the transformer tank and the transformer tank and the cooler are connected by gas piping through which insulating gas circulates, the insulating gas flows from the transformer tank toward the cooler. The gas pipe through which the gas flows is covered with a heat insulating material.

(作用) このような構成の絶縁ガス変圧器にあっては、変圧器タ
ンクから冷却器に向かって絶縁ガスが流れるガス配管を
断熱材で覆うことにより、その間の距離が長くても変圧
器タンク内で温ためられた絶縁ガスの温度低下が小さく
なるので、冷却器より変圧器タンクに戻る冷却された絶
縁ガスとの重量差を大きくすることが可能となり、自然
対流によって生じる循環ガス量を充分確保できる。
(Function) In an insulating gas transformer with such a configuration, by covering the gas pipe through which insulating gas flows from the transformer tank to the cooler with a heat insulating material, even if the distance between them is long, This reduces the temperature drop of the insulating gas heated inside the transformer, making it possible to increase the weight difference between the cooled insulating gas that returns from the cooler to the transformer tank, and ensuring that the amount of circulating gas generated by natural convection is sufficient. Can be secured.

(実施例) 以下本発明の一実施例を図面を参照して説明する。(Example) An embodiment of the present invention will be described below with reference to the drawings.

第1図は本発明による絶縁ガス変圧器の構成例を示すも
ので、第3図と同一部分には同一符号を付してその説明
を省略し、ここでは異なる点についてのみ述べる。
FIG. 1 shows an example of the structure of an insulated gas transformer according to the present invention, and the same parts as in FIG. 3 are given the same reference numerals, and the explanation thereof will be omitted, and only the different points will be described here.

本実施例では、第1図に示すように変圧器タンク1の上
部とこの変圧器タンク1の上層階のフロアに設置された
冷却器4の上部との間を接続したガス配管5aの外周面
を断熱材9により覆う横成としたものである。
In this embodiment, as shown in FIG. This is a horizontal structure covered with a heat insulating material 9.

このような構成とすれば、変圧器中身で生じる熱により
温ためられた絶縁ガスは変圧器タンク1の上部よりガス
配管5aを通して冷却器4の上部に至るが、この場合ガ
ス配管5aが断熱材9で覆われているので、変圧器タン
クと冷却器4とが離れた場所に設置されていても絶縁ガ
スの温度はほとんど低下することなく冷却器4内に取入
れられる。したがって、冷却器4の下部よりガス配管5
bを通して変圧器タンク1の下部に戻る冷却された絶縁
ガスとの重量差が大きくなり、自然対流によって生じる
循環ガス量を充分確保することができるので、冷却効果
を向上させることができる。
With such a configuration, the insulating gas heated by the heat generated inside the transformer reaches the upper part of the cooler 4 from the upper part of the transformer tank 1 through the gas pipe 5a, but in this case, the gas pipe 5a is made of heat insulating material. 9, even if the transformer tank and the cooler 4 are installed at a separate location, the temperature of the insulating gas is introduced into the cooler 4 with almost no drop. Therefore, the gas pipe 5 is connected to the lower part of the cooler 4.
The weight difference with the cooled insulating gas that returns to the lower part of the transformer tank 1 through b becomes large, and a sufficient amount of circulating gas generated by natural convection can be secured, so that the cooling effect can be improved.

なお、上記実施例では変圧器タンク1とその外部に設け
られた冷却器4との間を自然対流によって絶縁ガスを完
全自冷方式で循環させる場合について述べたが、例えば
冷却器4の内部に設けられた送風機により強制的に絶縁
ガスを循環させる場合でも、本発明を適用すれば絶縁ガ
スの循環力を補助的に高めることができる。
In the above embodiment, a case has been described in which the insulating gas is completely self-cooled by natural convection between the transformer tank 1 and the cooler 4 provided outside the transformer tank 1. Even when the insulating gas is forcibly circulated by the provided blower, the circulation force of the insulating gas can be supplementarily increased by applying the present invention.

〔発明の効果] 以上述べたように本発明によれば、変圧器タンクと冷却
器とが離れた場所に設置されている場合でも自然対流に
よって生じる循環ガス量を充分確保でき、冷却特性を向
上させることができるガス絶縁変圧器を提供できる。
[Effects of the Invention] As described above, according to the present invention, even when the transformer tank and the cooler are installed at separate locations, a sufficient amount of circulating gas generated by natural convection can be secured, and the cooling characteristics are improved. We can provide gas insulated transformers that can

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明によるガス絶縁変圧器の一実施例を示す
構成図、第2図及び第3図は配置構成の異なる従来の配
置の異なるガス絶縁変圧器をそれぞ4れ示す構成図であ
る。 1・・・変圧器タンク、2・・・鉄心、3・・・巻線、
4・・・冷却器’5a,5b・・・ガス配管、6・・・
ガス仕切板、7・・・絶縁ガス、8・・・架台、9・・
・断熱材。 出願人代理人 弁理士 鈴江武彦 第 図 第 図
FIG. 1 is a configuration diagram showing one embodiment of a gas insulated transformer according to the present invention, and FIGS. 2 and 3 are configuration diagrams each showing four conventional gas insulated transformers with different layouts. be. 1...Transformer tank, 2...Iron core, 3...Winding wire,
4...Cooler '5a, 5b...Gas piping, 6...
Gas partition plate, 7... Insulating gas, 8... Frame, 9...
・Insulation material. Applicant's Representative Patent Attorney Takehiko Suzue

Claims (1)

【特許請求の範囲】[Claims] 変圧器タンク内に鉄心、巻線からなる変圧器中身と共に
所定圧力で絶縁ガスを封入し、変圧器タンク外に冷却器
を設けてこれら変圧器タンクと冷却器間を絶縁ガスが循
環するガス配管により接続するようにしたガス絶縁変圧
器において、前記変圧器タンクから前記冷却器に向かっ
て絶縁ガスが流れるガス配管を断熱材により覆ったこと
を特徴とするガス絶縁変圧器。
Gas piping in which insulating gas is sealed at a predetermined pressure in the transformer tank together with the transformer contents consisting of the iron core and windings, a cooler is provided outside the transformer tank, and the insulating gas circulates between the transformer tank and the cooler. What is claimed is: 1. A gas insulated transformer configured to be connected by a gas insulated transformer, characterized in that a gas pipe through which insulating gas flows from the transformer tank toward the cooler is covered with a heat insulating material.
JP5547789A 1989-03-08 1989-03-08 Gas insulation transformer Pending JPH02234403A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5547789A JPH02234403A (en) 1989-03-08 1989-03-08 Gas insulation transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5547789A JPH02234403A (en) 1989-03-08 1989-03-08 Gas insulation transformer

Publications (1)

Publication Number Publication Date
JPH02234403A true JPH02234403A (en) 1990-09-17

Family

ID=12999693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5547789A Pending JPH02234403A (en) 1989-03-08 1989-03-08 Gas insulation transformer

Country Status (1)

Country Link
JP (1) JPH02234403A (en)

Similar Documents

Publication Publication Date Title
JP2007173685A (en) Stationary induction electric apparatus
ES2255310T3 (en) SYSTEM AND METHOD FOR A GROUND-REFRIGERATED DISTRIBUTION TRANSFORMER.
JPH02234403A (en) Gas insulation transformer
US2990528A (en) Lightweight distribution transformer
US6399876B1 (en) Transformer cooling method and apparatus thereof
JP3148044B2 (en) Gas cooled stationary electrical equipment
JPH11176651A (en) Static induction electric apparatus
JPH1022135A (en) Cooling system for stationary induction apparatus
JPH10116737A (en) Gas insulated transformer
JPH0650685B2 (en) Gas insulation equipment
JPH05326284A (en) Gas insulating transformer
JP3321588B2 (en) Gas insulated transformer
JPH01204406A (en) Gas insulated transformer
JPH1116742A (en) Static induction equipment
JPS63160316A (en) Self-cooled gas-insulated transformer
JPS63160217A (en) Self-cooled gas-filled transformer
JPS62229914A (en) Self-cooled gas insulated transformer
JP3097588B2 (en) Sound insulation for gas insulated electrical equipment
JPS62154708A (en) Gas-insulated transformer
JP3936623B2 (en) Oil-filled electrical equipment cooling system
JPH01179303A (en) Stationary induction electric apparatus
JPS61150205A (en) Transformer
JPH05114519A (en) Gas sending type gas insulated transformer
JPS646527B2 (en)
JPS6072205A (en) Foil-wound transformer