JPH05114519A - Gas sending type gas insulated transformer - Google Patents

Gas sending type gas insulated transformer

Info

Publication number
JPH05114519A
JPH05114519A JP27295791A JP27295791A JPH05114519A JP H05114519 A JPH05114519 A JP H05114519A JP 27295791 A JP27295791 A JP 27295791A JP 27295791 A JP27295791 A JP 27295791A JP H05114519 A JPH05114519 A JP H05114519A
Authority
JP
Japan
Prior art keywords
gas
transformer
tap changer
contents
space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27295791A
Other languages
Japanese (ja)
Other versions
JP3077310B2 (en
Inventor
Kenji Ikeda
健二 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP03272957A priority Critical patent/JP3077310B2/en
Publication of JPH05114519A publication Critical patent/JPH05114519A/en
Application granted granted Critical
Publication of JP3077310B2 publication Critical patent/JP3077310B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Transformer Cooling (AREA)
  • Housings And Mounting Of Transformers (AREA)

Abstract

PURPOSE:To reduce cost by a method wherein inexpensive insulation material can be used by decreasing the temperature to which an on-load tap changer is exposed. CONSTITUTION:A diaphragm 8 is installed between an on-load tap changer 4 and transformer contents which are accommodated in a sealed vessel 1, and their spaces are partitioned. From the view point of insulation gas flow, the spaces are made independent. A gas circulation route is constituted in the following manner. Cooling gas sent out from a gas blower 6 installed in a cooling apparatus 5 is firstly made to flow in the space in which the on-load tap changer 4 is installed, and then introduced into a lower space of the transformer contents by using a gas guide 7. Thereby the on-load tap changer 4 is kept at a low temperature without practcally changing the cooling action of the transformer contents 20.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、SF6 と略称される
六ふっ化硫黄からなる絶縁ガスを絶縁媒体と冷却媒体と
を兼ねて密封容器に封入し高電圧部を有する巻線や鉄心
を含む変圧器中身をその中に収納してなるガス絶縁変圧
器、特に負荷時タップ切換器を備え絶縁ガスを強制的に
循環させる冷却方式が採用された送ガス式ガス絶縁変圧
器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a winding or an iron core having a high voltage portion, which is obtained by enclosing an insulating gas made of sulfur hexafluoride, which is abbreviated as SF 6 , in a hermetically sealed container which serves as an insulating medium and a cooling medium. The present invention relates to a gas-insulated transformer in which the contents of a transformer including the gas-insulated transformer are housed, and more particularly, to a gas-feed type gas-insulated transformer having a load tap changer and adopting a cooling method for forcibly circulating insulating gas.

【0002】[0002]

【従来の技術】図7は従来のガス絶縁変圧器の中身及び
負荷時タップ切換器と冷却構造を示す模式図である。こ
の図において、密封容器13の内部には数気圧の絶縁ガ
スが封入されていて、鉄心2、巻線3と図示しないその
付属部品からなる変圧器中身20が収納され、更に、上
部を密封容器13の上ふた部に取付けられた負荷時タッ
プ切換器2が収納されている。
2. Description of the Related Art FIG. 7 is a schematic view showing the contents of a conventional gas-insulated transformer, a tap changer under load, and a cooling structure. In this figure, a sealed container 13 is filled with an insulating gas of several atmospheres, and a transformer core 20 including an iron core 2, a winding 3 and its not-shown accessory parts is housed therein. An on-load tap changer 2 attached to the upper lid 13 is stored.

【0003】密封容器13には冷却器5が接続されてい
て図でで示す変圧器中身20の上部位置からで示す
冷却器5の上部位置に符号を付さない配管を通って絶縁
ガスが流れ、符号を付さない送風機が設けられた冷却器
5の中で冷却されながら下部に流れ冷却ガスとしてで
示す冷却器5の下部位置からガスブロア6によってで
示す密封容器13の下部位置に流れ込む。変圧器中身2
0の下部はガスガイド73で覆われていて、変圧器中身
20に設けられている上下方向に冷却ガスが流れる図示
しない冷却用ダクトを通って上部に出ての位置に戻る
循環する冷却経路が構成されている。この冷却経路を絶
縁ガスが流通する圧力は殆どがガスブロア6によるもの
である。変圧器中身20内でのトンネル効果による圧力
差の発生は僅かである。言い換えれば、変圧器中身20
内でのトンネル効果による圧力差によって絶縁ガスが流
れる自然冷却式に比べてはるかに速い速度で絶縁ガスを
流通させ冷却効果を高めているのである。
The cooler 5 is connected to the hermetically sealed container 13, and the insulating gas flows from the upper position of the transformer contents 20 shown in the figure to the upper position of the cooler 5 through a pipe not labeled. While being cooled in a cooler 5 provided with an unillustrated blower, the cooler gas flows downward and flows as a cooling gas from a lower position of the cooler 5 to a lower position of a sealed container 13 indicated by a gas blower 6. Transformer contents 2
The lower part of 0 is covered with a gas guide 73, and a circulating cooling path that returns to the upper position through a cooling duct (not shown) provided in the transformer contents 20 in which the cooling gas flows vertically is provided. It is configured. The pressure at which the insulating gas flows through this cooling path is mostly due to the gas blower 6. The pressure difference due to the tunnel effect within the transformer contents 20 is small. In other words, the transformer contents 20
The cooling effect is enhanced by circulating the insulating gas at a much faster rate than the natural cooling type in which the insulating gas flows due to the pressure difference due to the tunnel effect inside.

【0004】変圧器中身20の中に冷却用ダクトを設け
その中だけに冷却媒体としての絶縁ガスを流して冷却す
る構成を採用しているのは、絶縁ガスの流速が大きいほ
ど熱伝達係数が大きく冷却効率が向上するからである。
特に、変圧器中身20の中で巻線3が多くの熱を発生す
るので、特に巻線3の中に前述の冷却ダクトが多く設け
られており、この中を有効に絶縁ガスが流通するように
配慮されている。
A cooling duct is provided in the transformer contents 20, and an insulating gas as a cooling medium is flowed only in the cooling duct to cool the transformer. The heat transfer coefficient is higher as the flow velocity of the insulating gas is higher. This is because the cooling efficiency is greatly improved.
In particular, since the winding 3 generates a lot of heat in the transformer contents 20, the above-mentioned cooling duct is especially provided in the winding 3 so that the insulating gas can effectively flow in the cooling duct. Is taken into consideration.

【0005】変圧器中身20の上部から出る絶縁ガスは
変圧器中身20を冷却して熱を奪い加熱されて温度上昇
しており、この位置での絶縁ガスの温度は、周囲温度が
40度で負荷電流が100%の条件の基では約120度
である。負荷時タップ切換器2ので示す上部位置はこ
の温度に近い高温にさらされており、したがって、負荷
時タップ切換器2を構成する絶縁材料はこの高温に耐え
るものが採用されている。負荷時タップ切換器2そのも
のが発生する熱は僅かなので特に冷却ガスを流して冷却
するという構成は採用されていない。前述のように12
0度程度の高温にさらされるのは変圧器中身20を冷却
して高温になった絶縁ガスにさらされるためである。ち
なみに、冷却器5で冷却された後の冷却ガスの温度は負
荷電流100パーセントのときで前述の最高温度から約
50度低い温度である。周囲温度が40度のときには約
70度になる。
The insulating gas from the upper portion of the transformer contents 20 cools the transformer contents 20 to take heat and is heated to raise the temperature. The ambient temperature of the insulating gas at this position is 40 degrees. It is about 120 degrees under the condition that the load current is 100%. The upper position of the tap changer 2 under load is exposed to a high temperature close to this temperature. Therefore, the insulating material forming the tap changer 2 under load is one that can withstand this high temperature. Since the heat generated by the load tap changer 2 itself is small, a structure in which a cooling gas is supplied to cool the tap changer 2 is not adopted. As mentioned above 12
The reason why it is exposed to a high temperature of about 0 degrees is that the transformer contents 20 are cooled and exposed to the insulating gas that has become a high temperature. By the way, the temperature of the cooling gas after being cooled by the cooler 5 is about 50 degrees lower than the above-mentioned maximum temperature when the load current is 100%. When the ambient temperature is 40 degrees, it becomes about 70 degrees.

【0006】図8は各部の温度の分布を示すグラフであ
る。この図において、横軸は図7で○の中に数値で示し
た各部の位置であり、縦軸は絶縁ガスの温度である。前
述のように、の位置は冷却された絶縁ガスが流れる
のでその温度は低く、、の位置は変圧器中身20を
冷却した後の温度上昇した高温の絶縁ガスになってお
り、の位置はこの温度に略一致した高温になっている
ことを示している。
FIG. 8 is a graph showing the temperature distribution of each part. In this figure, the horizontal axis is the position of each part indicated by numerical values in the circles in FIG. 7, and the vertical axis is the temperature of the insulating gas. As described above, since the cooled insulating gas flows at the position, the temperature is low, and the position is the high temperature insulating gas whose temperature has risen after the transformer contents 20 are cooled. It indicates that the temperature is high, which is almost the same as the temperature.

【0007】[0007]

【発明が解決しようとする課題】前述のように、高温に
さらされる負荷時タップ切換器2を構成する絶縁材料は
120度もの高温に耐えるだけの材料を使用する必要が
ある。最も多く使用されている大容量の変圧器の絶縁媒
体である絶縁油の場合でのプレスボードなどの絶縁材料
がさらされる温度は概ね100度以下であり、これに対
して120度に耐える絶縁材料としてはガラス繊維強化
合成樹脂やポリアミド紙などがあるが、これらはいずれ
もプレスボードに比べて約10倍の価格なので、送ガス
冷却式ガス絶縁変圧器に備える負荷時タップ切換器は高
価なものになってしまうという問題がある。
As described above, the insulating material forming the tap changer 2 under load that is exposed to a high temperature must be a material that can withstand a high temperature of 120 degrees. In the case of insulating oil, which is the most widely used insulating medium for large-capacity transformers, the temperature to which an insulating material such as a pressboard is exposed is generally 100 degrees or less, and an insulation material that can withstand 120 degrees against this. There are glass fiber reinforced synthetic resin, polyamide paper, etc., but these are about 10 times more expensive than press board, so the load tap changer equipped in the gas cooling type gas insulation transformer is expensive. There is a problem that it becomes.

【0008】この発明の目的はこのような問題を解決
し、負荷時タップ切換器がさらされる温度を低くして安
価な絶縁材料の使用できる送ガス冷却式ガス絶縁変圧器
を提供することにある。
An object of the present invention is to solve such a problem and to provide a gas-cooled gas-insulated transformer capable of reducing the temperature to which the tap changer under load is exposed and using an inexpensive insulating material. ..

【0009】[0009]

【課題を解決するための手段】上記課題を解決するため
に、この発明によれば、変圧器中身、負荷時タップ切換
器、これらが収納され絶縁ガスが封入された密封容器、
前記変圧器中身によって加熱されて温度上昇した絶縁ガ
スを冷却して冷却ガスを生成する冷却器、この冷却ガス
を前記密封容器に送り込むガスブロア及び送り込まれた
冷却ガスを変圧器中身の下部に送り込む案内板としての
ガスガイドからなる送ガス式ガス絶縁変圧器において、
前記変圧器中身と前記負荷時タップ切換器とのそれぞれ
が設けられた空間を仕切る仕切り板を設け、冷却ガスの
流入口を負荷時タップ切換器が設けられた空間に設け、
この空間と変圧器中身下部の空間とを連絡して冷却ガス
が通過する流通路を設けてなるものとし、また、変圧器
中身と、これに並べて直立して設けた負荷時タップ切換
器との間にガスガイドと連結する仕切り板を設け、冷却
ガスの流入口を前記負荷時タップ切換器が設けられた空
間の上部に設け、変圧器中身下部の空間と前記負荷時タ
ップ切換器が設けられた空間とを連絡する貫通孔を前記
ガスガイドに設けてなるものとし、また、変圧器中身
と、これの上部に水平に設けた負荷時タップ切換器との
間に仕切り板を設け、冷却ガスの流入口を前記負荷時タ
ップ切換器が設けられた空間の一方の端に設け、他方の
端からこの空間と変圧器中身下部の空間とを連通する配
管を設けてなるものとし、また、配管が、密封容器の外
に設けた外部配管からなるものとし、また、配管が、密
封容器の中に設けた内部配管からなるものとする。
In order to solve the above-mentioned problems, according to the present invention, the contents of a transformer, a tap changer at the time of load, a sealed container in which these are housed and an insulating gas is sealed,
A cooler that cools the insulating gas heated by the contents of the transformer to raise its temperature to generate a cooling gas, a gas blower that sends the cooling gas to the sealed container, and a guide that sends the supplied cooling gas to the lower part of the contents of the transformer. In the gas transmission type gas insulation transformer consisting of the gas guide as a plate,
A partition plate is provided for partitioning the space in which each of the transformer contents and the load tap changer is provided, and a cooling gas inlet is provided in the space where the load tap changer is provided,
This space and the space below the transformer contents are connected to each other by providing a flow passage through which the cooling gas passes, and the transformer contents and the load tap changer arranged side by side upright. A partition plate connected to the gas guide is provided therebetween, an inlet for cooling gas is provided in an upper portion of the space where the load tap changer is provided, and a space under the transformer and the load tap changer are provided. The gas guide is provided with a through-hole that connects the space with the space, and a partition plate is provided between the contents of the transformer and a load tap changer horizontally provided above the transformer to provide cooling gas. Is provided at one end of the space where the load tap changer is provided, and a pipe is provided from the other end to connect this space with the space below the transformer contents. Is the external pipe provided outside the sealed container? That Is a, and also, the pipe is assumed to consist of internal pipe which is provided in a sealed container.

【0010】[0010]

【作用】この発明の構成において、負荷時タップ切換器
と変圧器中身とを仕切る仕切り板を設けてそれぞれの空
間を絶縁ガスの流通の点で独立させ、冷却ガスの流入口
を負荷時タップ切換器が設けられた空間に設けて負荷時
タップ切換器を冷却ガスにさらされる状態にし、この空
間とガスガイドで形成された変圧器中身下部の空間とを
連絡して絶縁ガスが通過する流通路を設けることによっ
て、負荷時タップ切換器が設けられた空間から殆ど温度
上昇しない冷却ガスが変圧器中身下部の空間に入り、そ
の後は従来のものと同様に変圧器中身を冷却しながら上
部に上昇して高温の絶縁ガスとなる。
In the structure of the present invention, a partition plate for partitioning the tap changer under load and the contents of the transformer is provided so that the respective spaces are made independent in terms of the flow of the insulating gas, and the inlet of the cooling gas is switched over under load. Is installed in the space where the transformer is installed so that the tap changer is exposed to the cooling gas at the time of loading, and this space is connected to the space below the transformer contents formed by the gas guide, and the flow path through which the insulating gas passes. By providing the cooling gas, the cooling gas whose temperature hardly rises from the space where the tap changer at load is installed enters the space below the transformer contents, and thereafter rises to the upper part while cooling the transformer contents as in the conventional case. And becomes high-temperature insulating gas.

【0011】また、変圧器中身と、これに並べて直立し
て設けた負荷時タップ切換器との間にガスガイドと連結
する仕切り板を設けてそれぞれが設けられた空間を独立
させ、冷却ガスの流入口を負荷時タップ切換器が設けら
れた空間の上部に設け、ガスガイドに変圧器中身下部と
前記負荷時タップ切換器が設けられた空間とを連絡する
貫通孔を設けることによって、負荷時タップ切換器が設
けられた空間に流入した冷却ガスは殆ど温度上昇するこ
となく変圧器中身の下部の空間に流入する。
In addition, a partition plate connected to the gas guide is provided between the contents of the transformer and the load tap changer arranged upright next to the transformer so that the space provided for each of them is independent and the cooling gas By providing the inlet at the upper part of the space where the load tap changer is provided, and by providing the gas guide with a through hole that connects the lower part of the transformer and the space where the load tap changer is provided, The cooling gas flowing into the space provided with the tap changer flows into the space below the contents of the transformer with almost no increase in temperature.

【0012】また、変圧器中身と、これの上部に水平に
設けた負荷時タップ切換器との間に仕切り板を設けてそ
れぞれが設けられた空間を独立させ、冷却ガスの流入口
を負荷時タップ切換器が設けられた空間の一方の端に設
け、この空間の他方の端から変圧器中身下部の空間とを
連通する配管を設けることによって、負荷時タップ切換
器は冷却ガスにさらされ変圧器中身には冷却ガスが流入
する。この場合、配管として密封容器の外に配される外
部配管であっても中に配される内部配管であってもよ
い。
A partition plate is provided between the contents of the transformer and a load tap changer which is horizontally provided above the transformer so that the space in which each partition is provided is independent and the inlet of the cooling gas is loaded. By installing pipes at one end of the space where the tap changer is installed and connecting the other end of this space to the space below the transformer contents, the tap changer under load is exposed to cooling gas Cooling gas flows into the contents of the vessel. In this case, the pipe may be an external pipe arranged outside the sealed container or an internal pipe arranged inside.

【0013】[0013]

【実施例】以下この発明を実施例に基づいて説明する。
図1はこの発明の第1の実施例を示すガス絶縁変圧器中
身及び負荷時タップ切換器と冷却構造を示す模式図であ
り、図7と同じ構成要素に対しては共通の符号を付けて
詳しい説明を省略する。また、図2は各位置での温度分
布を示すグラフであり、図8と同じ事項については説明
を省略する。これらの図において、冷却器5で冷却され
て生成した冷却ガスはの位置でガスブロア6に入り、
このガスブロア6から出た冷却ガスは配管9の中を流れ
て負荷時タップ切換器4の上部位置に設けたで示す流
入口から密封容器1の中に流入する。負荷時タップ切換
器4と変圧器中身20とがそれぞれが設けられた空間を
仕切り板8で仕切ってある。更に、ガスガイド7の負荷
時タップ切換器4が設けられている空間に接する部分に
貫通孔74を設けて負荷時タップ切換器4が設けられて
いる空間に流入した冷却ガスがこの貫通孔74を通って
ガスガイド7で形成された変圧器中身10下部の空間に
流入するようにする。ガスガイド7の中に流入した冷却
ガスは従来の変圧器と同様に変圧器中身20を冷却しな
がら加熱されて温度上昇し高温ガスとなっての位置か
ら冷却器5に流入する。
EXAMPLES The present invention will be described below based on examples.
FIG. 1 is a schematic diagram showing the contents of a gas-insulated transformer, a tap changer at the time of load, and a cooling structure according to a first embodiment of the present invention. The same components as those in FIG. Detailed explanation is omitted. Further, FIG. 2 is a graph showing the temperature distribution at each position, and description of the same items as in FIG. 8 will be omitted. In these figures, the cooling gas produced by being cooled in the cooler 5 enters the gas blower 6 at the position of
The cooling gas discharged from the gas blower 6 flows through the pipe 9 and flows into the sealed container 1 from the inlet port indicated by the symbol provided at the upper position of the tap changer 4 under load. A space in which the load tap changer 4 and the transformer contents 20 are provided is partitioned by a partition plate 8. Further, a through hole 74 is provided in a portion of the gas guide 7 that is in contact with the space where the load tap changer 4 is provided, and the cooling gas that has flowed into the space where the load tap changer 4 is provided is the through hole 74. Through the gas guide 7 into the space below the transformer contents 10. Like the conventional transformer, the cooling gas flowing into the gas guide 7 is heated while cooling the transformer contents 20, and its temperature rises to become a high temperature gas, and then flows into the cooler 5.

【0014】負荷時タップ切換器4が発生する熱は巻線
2が発生する熱に比べてはるかに小さいのでの位置か
らの位置に至る間の冷却ガスの温度変化は僅かであ
り、変圧器中身20の冷却効果に影響を与えるほどでは
ない。負荷時タップ切換器4は冷却ガスにさらされてい
るから低温の状態が維持されている。したがって、これ
に用いられる絶縁材料も高温に耐える高価な材料を使用
する必要がなく、油入変圧器と同じ材料を使用すること
ができる。その結果、負荷時タップ切換器も安価にな
る。また、油入変圧器の負荷時タップ切換器と共通にな
ることから、標準化が可能になって量産効果によるコス
トダウンも期待できる。
Since the heat generated by the tap changer 4 under load is much smaller than the heat generated by the winding 2, the temperature change of the cooling gas from position to position is small, and the transformer contents are small. It does not affect the cooling effect of 20. Since the tap changer 4 under load is exposed to the cooling gas, the low temperature state is maintained. Therefore, it is not necessary to use an expensive material that can withstand high temperatures as the insulating material used therefor, and the same material as the oil-filled transformer can be used. As a result, the load tap changer is also inexpensive. Also, since it is shared with the load tap changer of the oil-filled transformer, standardization is possible and cost reduction due to mass production can be expected.

【0015】図3はこの発明の第2の実施例を示すガス
絶縁変圧器中身及び負荷時タップ切換器と冷却構造を示
す模式図であり、図1と同じ構成要素に対しては共通の
符号を付けて詳しい説明を省略する。また、図4は各位
置での温度分布を示すグラフであり、図2と同じ事項に
ついては説明を省略する。これらの図において、負荷時
タップ切換器4は変圧器中身20の上部に設けられてあ
りその間を仕切り板81で仕切ってある。
FIG. 3 is a schematic view showing the contents of a gas-insulated transformer, a tap changer at the time of load and a cooling structure according to a second embodiment of the present invention. The same components as those in FIG. To omit detailed explanation. Further, FIG. 4 is a graph showing the temperature distribution at each position, and the description of the same items as in FIG. 2 is omitted. In these figures, the load tap changer 4 is provided on the upper portion of the transformer contents 20 and is divided by a partition plate 81 between them.

【0016】負荷時タップ切換器4を水平にして変圧器
中身20の上部に設けるのは変圧器の床面積を小さくす
る必要のある場合であり、その代わり変圧器の高さ寸法
は大きくなるのでこれが許容される場合にこのような構
成が採用される。冷却ガスはの位置でガスブロア6に
入り配管91の中を流れて負荷時タップ切換器4が設け
られている空間の図の右端ので示す位置から流入す
る。その反対側の左端ので示す位置から外部配管92
に流出し、で示す位置からガスガイド71に流入す
る。後は図1と同様である。の負荷時タップ切換器4
位置は冷却ガスにさらされているから低温の状態が維持
される点も図1、図2と同様である。
It is necessary to reduce the floor area of the transformer by placing the load tap changer 4 horizontally on the upper portion of the transformer contents 20. Instead, the height of the transformer becomes large. If this is allowed, such a configuration is adopted. The cooling gas enters the gas blower 6 at the position of, flows through the pipe 91, and flows in from the position indicated by at the right end of the figure in the space where the load tap changer 4 is provided. The external pipe 92
To the gas guide 71 from the position indicated by. The rest is the same as in FIG. Load tap changer 4
Similar to FIGS. 1 and 2, the position is maintained at a low temperature because the position is exposed to the cooling gas.

【0017】図5はこの発明の第3の実施例を示すガス
絶縁変圧器中身及び負荷時タップ切換器と冷却構造を示
す模式図であり、図3と異なる点は外部配管92の代わ
りに密封容器12内を通過する内部配管93を採用して
ある点であり、その他については図3と同じある。ま
た、図6は図5の各部の絶縁ガスの温度分布を示すグラ
フであり図4と全く同じである。内部配管93は図5で
は密封容器12の左壁を共用した配管として図示してあ
るが、勿論これにこだわるものではなく、配管93を密
封容器12の壁面に関係なしに設ける構成を採用するこ
ともできる。
FIG. 5 is a schematic view showing the contents of a gas-insulated transformer, a tap changer at the time of loading and a cooling structure according to a third embodiment of the present invention. The difference from FIG. 3 is that the external pipe 92 is sealed. The internal pipe 93 that passes through the inside of the container 12 is adopted, and the other points are the same as in FIG. 6 is a graph showing the temperature distribution of the insulating gas in each part of FIG. 5, which is exactly the same as FIG. The internal pipe 93 is shown as a pipe sharing the left wall of the hermetically sealed container 12 in FIG. 5, but of course, it is not limited to this, and the structure in which the pipe 93 is provided regardless of the wall surface of the hermetically sealed container 12 is adopted. You can also

【0018】[0018]

【発明の効果】この発明は前述のように、仕切り板を設
けて負荷時タップ切換器と変圧器中身とのそれぞれが設
けられた空間を仕切り絶縁ガスの流通の点で独立させ、
冷却ガスの流入口を負荷時タップ切換器が設けられた空
間に設けて負荷時タップ切換器を冷却ガスにさらされる
状態にし、この空間とガスガイドで形成された変圧器中
身下部の空間とを連絡して絶縁ガスが通過する流通路を
設けることによって、従来のものと同様に変圧器中身を
冷却する作用は変わらずに負荷時タップ切換器は冷却ガ
スにさらされて低温が維持される。したがって、これに
用いられる絶縁材料も高温に耐える高価な材料を使用す
る必要がなく、油入変圧器と同じ安価な材料を使用する
ことができることから、負荷時タップ切換器が安価にな
るという効果が得られる。更に、油入変圧器の負荷時タ
ップ切換器と共通になることから、負荷時タップ切換器
の標準化が可能になって量産効果によるコストダウンが
期待できるという効果も得られる。
As described above, according to the present invention, the space provided with the partition plate and each of the load tap changer and the transformer contents is made independent in terms of the distribution of the partition insulating gas.
A cooling gas inlet is provided in the space where the load tap changer is provided so that the load tap changer is exposed to the cooling gas, and this space and the space under the transformer formed by the gas guide are separated from each other. By providing the communication passages through which the insulating gas passes, the tap changer under load is exposed to the cooling gas and the low temperature is maintained without changing the function of cooling the transformer contents as in the conventional one. Therefore, the insulating material used for this does not need to use an expensive material that can withstand high temperatures, and the same inexpensive material as the oil-filled transformer can be used. Is obtained. Further, since it becomes common with the load tap changer of the oil-filled transformer, the load tap changer can be standardized, and the cost reduction due to the mass production effect can be expected.

【0019】また、負荷時タップ切換器を変圧器中身に
並べて直立して設け、これと変圧器中身との間にガスガ
イドと連結する仕切り板を設けてそれぞれが設けられた
空間を独立させ、冷却ガスの流入口を負荷時タップ切換
器が設けられた空間の上部に設け、ガスガイドに変圧器
中身下部と前記負荷時タップ切換器が設けられた空間と
を連絡する貫通孔を設けることによって、負荷時タップ
切換器が設けられた空間に流入した冷却ガスは殆ど温度
上昇することなく変圧器中身の下部の空間に流入するの
で、負荷時タップ切換器は常に冷却ガスと同等の低温に
維持されることから前述の構成と同様の効果が得られ
る。
Further, the load tap changer is arranged upright in the transformer contents, and a partition plate connected to the gas guide is provided between the load tap changers and the transformer contents so that the space provided for each of them is independent. By providing a cooling gas inlet at the upper part of the space where the load tap changer is provided, and by providing a through hole that connects the lower part of the transformer contents and the space where the load tap changer is provided in the gas guide. Since the cooling gas that has flowed into the space where the load tap changer is installed flows into the space below the contents of the transformer with almost no temperature rise, the load tap changer is always maintained at the same low temperature as the cooling gas. As a result, the same effect as the above-mentioned configuration can be obtained.

【0020】また、変圧器中身と、これの上部に水平に
設けた負荷時タップ切換器との間に仕切り板を設けてそ
れぞれが設けられた空間を独立させ、冷却ガスの流入口
を負荷時タップ切換器が設けられた空間の一方の端に設
け、この空間の他方の端から変圧器中身下部の空間とを
連通する配管を設けることによって、負荷時タップ切換
器は冷却ガスにさらされ変圧器中身には冷却ガスが流入
する。この場合、配管として密封容器の外に配される外
部配管であっても中に配される内部配管であってもよ
い。このように、負荷時タップ切換器が常に冷却ガスに
さらされていることから、前述の構成と同様の効果が得
られる。
A partition plate is provided between the contents of the transformer and a load tap changer which is horizontally provided above the transformer so that the space in which each partition is provided is independent, and the cooling gas inlet is under load. By installing pipes at one end of the space where the tap changer is installed and connecting the other end of this space to the space below the transformer contents, the tap changer under load is exposed to cooling gas Cooling gas flows into the contents of the vessel. In this case, the pipe may be an external pipe arranged outside the sealed container or an internal pipe arranged inside. In this way, since the tap changer under load is always exposed to the cooling gas, the same effect as the above-described configuration can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の第1の実施例を示すガス絶縁変圧器
の模式図
FIG. 1 is a schematic diagram of a gas-insulated transformer showing a first embodiment of the present invention.

【図2】図1の各位置での温度分布を示すグラフFIG. 2 is a graph showing the temperature distribution at each position in FIG.

【図3】この発明の第2の実施例を示すガス絶縁変圧器
の模式図
FIG. 3 is a schematic diagram of a gas insulation transformer showing a second embodiment of the present invention.

【図4】図3の各位置での温度分布を示すグラフFIG. 4 is a graph showing the temperature distribution at each position in FIG.

【図5】この発明の第3の実施例を示すガス絶縁変圧器
の模式図
FIG. 5 is a schematic diagram of a gas insulation transformer showing a third embodiment of the present invention.

【図6】図5の各位置での温度分布を示すグラフFIG. 6 is a graph showing the temperature distribution at each position in FIG.

【図7】従来のガス絶縁変圧器の模式図FIG. 7 is a schematic diagram of a conventional gas-insulated transformer.

【図8】図7の各部の温度の分布を示すグラフFIG. 8 is a graph showing a temperature distribution of each part of FIG.

【符号の説明】[Explanation of symbols]

1 密封容器 11 密封容器 12 密封容器 13 密封容器 2 鉄心 3 巻線 20 変圧器中身 4 負荷時タップ切換器 5 冷却器 6 ガスブロア 7 ガスガイド 71 ガスガイド 72 ガスガイド 73 ガスガイド 8 仕切り板 81 仕切り板 82 仕切り板 9 配管 91 配管 92 外部配管 93 内部配管 1 hermetically sealed container 11 hermetically sealed container 12 hermetically sealed container 13 hermetically sealed container 2 iron core 3 winding 20 transformer contents 4 tap changer under load 5 cooler 6 gas blower 7 gas guide 71 gas guide 72 gas guide 73 gas guide 8 partition plate 81 partition plate 82 Partition plate 9 Piping 91 Piping 92 External piping 93 Internal piping

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】変圧器中身、負荷時タップ切換器、これら
が収納され絶縁ガスが封入された密封容器、前記変圧器
中身によって加熱されて温度上昇した絶縁ガスを冷却し
て冷却ガスを生成する冷却器、この冷却ガスを前記密封
容器に送り込むガスブロア及び送り込まれた冷却ガスを
変圧器中身の下部に送り込む案内板としてのガスガイド
からなる送ガス式ガス絶縁変圧器において、前記変圧器
中身と前記負荷時タップ切換器とのそれぞれが設けられ
た空間を仕切る仕切り板を設け、冷却ガスの流入口を負
荷時タップ切換器が設けられた空間に設け、この空間と
変圧器中身下部の空間とを連絡して冷却ガスが通過する
流通路を設けてなることを特徴とする送ガス式ガス絶縁
変圧器。
1. A transformer contents, a load tap changer, a sealed container in which these are housed and filled with an insulating gas, and an insulating gas which is heated by the contents of the transformer and whose temperature has risen is cooled to generate a cooling gas. A gas-sending gas-insulated transformer comprising a cooler, a gas blower for sending the cooling gas to the sealed container, and a gas guide as a guide plate for sending the sent cooling gas to the lower part of the transformer contents, wherein the transformer contents and the A partition plate for partitioning the space in which each of the load tap changers is provided is provided, and an inlet for cooling gas is provided in the space in which the load tap changer is provided, and this space and the space below the transformer contents are provided. A gas transmission type gas-insulated transformer, characterized in that it is provided with a flow passage that is in communication with and through which cooling gas passes.
【請求項2】変圧器中身と、これに並べて直立して設け
た負荷時タップ切換器との間にガスガイドと連結する仕
切り板を設け、冷却ガスの流入口を前記負荷時タップ切
換器が設けられた空間の上部に設け、変圧器中身下部の
空間と前記負荷時タップ切換器が設けられた空間とを連
絡する貫通孔を前記ガスガイドに設けてなることを特徴
とする請求項1記載の送ガス式ガス絶縁変圧器。
2. A partition plate connected to the gas guide is provided between the contents of the transformer and the load tap changer arranged side by side upright, and the cooling gas inlet is provided with the load tap changer. 2. The gas guide is provided with a through hole which is provided in an upper portion of the provided space and which connects a space below the transformer contents and a space in which the load tap changer is provided. Gas transmission type gas insulation transformer.
【請求項3】変圧器中身と、これの上部に水平に設けた
負荷時タップ切換器との間に仕切り板を設け、冷却ガス
の流入口を前記負荷時タップ切換器が設けられた空間の
一方の端に設け、他方の端からこの空間と変圧器中身下
部の空間とを連通する配管を設けてなることを特徴とす
る請求項1記載の送ガス式ガス絶縁変圧器。
3. A partition plate is provided between the contents of the transformer and a load tap changer horizontally provided above the transformer, and a cooling gas inlet is provided in the space where the load tap changer is provided. 2. The gas-sending gas-insulated transformer according to claim 1, further comprising a pipe provided at one end and connecting the space to the space below the transformer from the other end.
【請求項4】配管が、密封容器の外に設けた外部配管か
らなることを特徴とする請求項3記載の送ガス式ガス絶
縁変圧器。
4. The gas transmission type gas insulated transformer according to claim 3, wherein the pipe is an external pipe provided outside the sealed container.
【請求項5】配管が、密封容器の中に設けた内部配管か
らなることを特徴とする請求項3記載の送ガス式ガス絶
縁変圧器。
5. The gas transmission type gas insulated transformer according to claim 3, wherein the pipe comprises an internal pipe provided in a sealed container.
JP03272957A 1991-10-22 1991-10-22 Gas transmission type gas insulated transformer Expired - Lifetime JP3077310B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03272957A JP3077310B2 (en) 1991-10-22 1991-10-22 Gas transmission type gas insulated transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03272957A JP3077310B2 (en) 1991-10-22 1991-10-22 Gas transmission type gas insulated transformer

Publications (2)

Publication Number Publication Date
JPH05114519A true JPH05114519A (en) 1993-05-07
JP3077310B2 JP3077310B2 (en) 2000-08-14

Family

ID=17521146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03272957A Expired - Lifetime JP3077310B2 (en) 1991-10-22 1991-10-22 Gas transmission type gas insulated transformer

Country Status (1)

Country Link
JP (1) JP3077310B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013171850A (en) * 2012-02-17 2013-09-02 Chugoku Electric Power Co Inc:The Transformer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013171850A (en) * 2012-02-17 2013-09-02 Chugoku Electric Power Co Inc:The Transformer

Also Published As

Publication number Publication date
JP3077310B2 (en) 2000-08-14

Similar Documents

Publication Publication Date Title
US2341058A (en) Electric apparatus with fluid system therefor
JPH05114519A (en) Gas sending type gas insulated transformer
US4852367A (en) Magnet system
US5319154A (en) Method of cooling a current feed for very low temperature electrical equipment and device for implementing it
JPS6356683B2 (en)
US4675637A (en) Superconducting static machine having a magnetic circuit
JPH03112109A (en) Gas-filled transformer
JPH08250336A (en) Gas-insulated stationary electric equipment
JP3321588B2 (en) Gas insulated transformer
JP2553157B2 (en) Stationary induction equipment
JP3148044B2 (en) Gas cooled stationary electrical equipment
JPS63289911A (en) Separate type foil-wound transformer
JPS61228605A (en) Oil-filled induction electric apparatus
JPH09115738A (en) Gas insulated transformer
JPH0218907A (en) Gas-insulated transformer
EP0671051B1 (en) Division of current between different strands of a superconducting winding
JPS5843842B2 (en) butsushinnoreiyakusouchi
JP2671500B2 (en) Electric equipment with cooler
JPS59217348A (en) Electric apparatus
JPH11150024A (en) Oil filled electric equipment
JP2005236208A (en) Stationary induction electrical apparatus
JPH05299260A (en) Gas insulating transformer
JPH06112052A (en) Transformer
JPH11345720A (en) Gas insulating transformer
JP2002083715A (en) Induction machine