JPH11345720A - Gas insulating transformer - Google Patents

Gas insulating transformer

Info

Publication number
JPH11345720A
JPH11345720A JP14960998A JP14960998A JPH11345720A JP H11345720 A JPH11345720 A JP H11345720A JP 14960998 A JP14960998 A JP 14960998A JP 14960998 A JP14960998 A JP 14960998A JP H11345720 A JPH11345720 A JP H11345720A
Authority
JP
Japan
Prior art keywords
gas
iron core
winding
mixed
insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14960998A
Other languages
Japanese (ja)
Inventor
Takamasa Tsuji
孝誠 辻
Taketoshi Hasegawa
武敏 長谷川
Takashi Hoshino
貴司 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP14960998A priority Critical patent/JPH11345720A/en
Publication of JPH11345720A publication Critical patent/JPH11345720A/en
Pending legal-status Critical Current

Links

Landscapes

  • Transformer Cooling (AREA)

Abstract

PROBLEM TO BE SOLVED: To realize an economical gas insulating transformer capable of reducing the using quantity of SF6 gas by using mixed gas of SF6 gas and other gas, reducing influence upon the rise of temperature on the earth and having high cooling performance and insulating performance. SOLUTION: Mixed gas of SF6 gas and other gas is sealed in a tank, heat generated from an iron core, a high voltage winding 2a and a low voltage winding 2b is cooled by the circulation of insulating gas and insulation in the winding 2a held at a high electric field is simultaneously held by the insulating gas. For holding the strength of insulation, it is effective to fill the tank with 10 to 30% SF6 gas and nitrogen gas of the remaining percentage. In order to maintain cooling performance, mixed gas in the tank is constituted of 30 to 50% SF6 gas and nitrogen gas of the remaining percentage. When the gas in the tank is constituted of mixed gas of SF6 gas and nitrogen gas, a mixing ratio satisfying the cooling and insulating performance is 30 to 50% SF6 gas and nitrogen gas of the remaining percentage.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は電力系統の受変電
分野で使用されるガス絶縁変圧器に関し、特に鉄心と鉄
心脚に巻き付けた巻線をタンク内に格納し、このタンク
を絶縁ガスで充填した変圧器に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas insulated transformer used in the field of power receiving and transforming of a power system, and in particular, stores a core and windings wound around iron legs in a tank, and fills the tank with an insulating gas. This is related to a transformer that has been used.

【0002】[0002]

【従来の技術】図13は典型的なガス絶縁変圧器の内部
構造を示した断面図である。図において、1はタンク容
器、2は巻線、2aは高圧巻線、2bは低圧巻線、3は
鉄心、4は絶縁ガス、5は冷却器である。このようなタ
ンク容器1内において絶縁ガス4は0.2MPaから
0.3MPaの純度97%以上のSF6ガスが充填され
ている。このSF6ガスによって高圧巻線2aと低圧巻
線2bでの絶縁、巻線2内での絶縁、巻線2と鉄心3間
および巻線2とタンク容器1間での絶縁を保持してい
る。また、絶縁ガス4は鉄心3および巻線2にて発生し
た熱を冷却するために、変圧器タンク内部でポンプを用
いて循環させるか、ガスの温度差による浮力を利用して
循環させている。従って、ガス絶縁変圧器はSF6ガス
の優れた絶縁性能と冷却性能により、機器の高性能化に
貢献している。しかし、ガス絶縁変圧器全体として定格
により異なるものの数百kgから数千kgのSF6ガス
が必要であり、高価なSF6ガスによる経済性、および
SF6ガスが万一外部に洩れた時の地球温暖化への影響
等の問題点を有している。
FIG. 13 is a sectional view showing the internal structure of a typical gas-insulated transformer. In the figure, 1 is a tank container, 2 is a winding, 2a is a high-voltage winding, 2b is a low-voltage winding, 3 is an iron core, 4 is an insulating gas, and 5 is a cooler. In such a tank container 1, the insulating gas 4 is filled with 0.2 MPa to 0.3 MPa SF 6 gas having a purity of 97% or more. The SF 6 gas maintains insulation between the high-voltage winding 2 a and the low-voltage winding 2 b, insulation within the winding 2, insulation between the winding 2 and the iron core 3, and insulation between the winding 2 and the tank container 1. . The insulating gas 4 is circulated by using a pump inside the transformer tank or by utilizing buoyancy due to a temperature difference of the gas in order to cool the heat generated in the iron core 3 and the winding 2. . Therefore, the gas-insulated transformer contributes to the high performance of the equipment due to the excellent insulation performance and cooling performance of SF 6 gas. However, several hundred kg to several thousand kg of SF 6 gas is required for the entire gas insulated transformer depending on the rating, but the economics of expensive SF 6 gas and the possibility of SF 6 gas leaking outside It has problems such as impact on global warming.

【0003】図14は例えば特開平2−110910号
公報に開示された従来の他のガス絶縁変圧器を示す断面
図であり、熱発生源となる巻線、あるいは巻線と鉄心を
冷媒液(パーフルオロカーボン)で浸したセミプール方
式ガス絶縁変圧器において密封空間に絶縁媒体として絶
縁ガス(SF6ガスと窒素ガスを混合した)方式が示さ
れている。図において、2は巻線、3は鉄心、6はパー
フルオロカーボン液、7は熱交換器、8は循環ポンプ、
9は導出管、10は導入管、11は導封タンク、12は
絶縁容器、13は混合ガスである。このような構成の変
圧器では巻線2や鉄心3を格納した冷媒液の入った絶縁
容器12と導封タンク11間での絶縁ガスとして混合ガ
ス13を用い、鉄心3や巻線2の冷却剤としてパーフル
オロカーボン液6を用いている。また、上記のセミプー
ル方式変圧器ではパーフルオロカーボン液6にSF6
スが溶解しやすく、パーフルオロカーボン液6の温度が
上昇すると液中より気泡が発生し、この気泡が絶縁性能
の低下を招くという問題があった。この問題を解決する
ために、特開平2−110910号公報では、パーフル
オロカーボン液への溶解度の低い窒素ガスをSF6と混
合し、絶縁強度を低下させないためにSF6ガスを20
%、窒素ガスを80%の割合で混合し、また、液面での
気泡を小さくするため導封タンク内でのガス封入圧力を
増加した例が示されている。
FIG. 14 is a cross-sectional view showing another conventional gas-insulated transformer disclosed in, for example, Japanese Patent Application Laid-Open No. 2-110910, in which a winding serving as a heat generating source, or a winding and an iron core are connected to a refrigerant liquid ( In a semi-pool gas insulating transformer immersed in perfluorocarbon), an insulating gas (a mixture of SF 6 gas and nitrogen gas) is used as an insulating medium in a sealed space. In the figure, 2 is a winding, 3 is an iron core, 6 is a perfluorocarbon liquid, 7 is a heat exchanger, 8 is a circulation pump,
9 is an outlet pipe, 10 is an inlet pipe, 11 is a sealing tank, 12 is an insulating container, and 13 is a mixed gas. In the transformer having such a configuration, the mixed gas 13 is used as an insulating gas between the insulating container 12 containing the refrigerant liquid containing the windings 2 and the iron core 3 and the sealing tank 11 to cool the iron core 3 and the windings 2. A perfluorocarbon liquid 6 is used as an agent. Further, in the above-mentioned semi-pool type transformer, SF 6 gas is easily dissolved in the perfluorocarbon liquid 6, and when the temperature of the perfluorocarbon liquid 6 rises, bubbles are generated from the liquid, and these bubbles cause a decrease in insulation performance. was there. To solve this problem, in Japanese Laid-2-110910 discloses a low nitrogen gas solubility in perfluorocarbon liquid is mixed with SF 6, SF 6, gas in order not to lower the dielectric strength 20
% And nitrogen gas are mixed at a ratio of 80%, and the gas filling pressure in the sealing tank is increased in order to reduce bubbles on the liquid surface.

【0004】[0004]

【発明が解決しようとする課題】一方で、鉄心と鉄心脚
に巻き付けた巻線をタンク内に格納し、このタンク内を
絶縁ガスのみで充填したガス入自冷式、導ガス風冷式、
導ガス水冷式、導ガス自冷式変圧器では、絶縁媒体とし
てのSF6ガスをタンク内で循環させ熱発生源である巻
線あるいは鉄心での発熱を冷却する冷却媒体として使用
している。従って、このようなガス絶縁変圧器の設計で
は、絶縁性能は勿論、冷却性能も保持することを考慮し
て行なう必要がある。また、従来のガス絶縁変圧器では
定格により異なるものの全体として数百kg乃至数千k
gのSF6ガスが必要であり、高価なSF6ガスによって
経済性が低く、SF6ガスが万一外部に洩れた時の地球
温暖化への影響等の問題点があった。
On the other hand, the core and the winding wound around the iron core leg are stored in a tank, and the tank is filled with only an insulating gas.
In a gas-conducting water-cooled type or gas-conducting gas-cooled transformer, SF 6 gas as an insulating medium is circulated in a tank and used as a cooling medium for cooling heat generated by a winding or an iron core as a heat generating source. Therefore, in designing such a gas-insulated transformer, it is necessary to consider not only the insulation performance but also the cooling performance. In addition, conventional gas-insulated transformers vary depending on the rating, but as a whole several hundred kg to several thousand k.
g SF 6 gas is required, and the cost is low due to the expensive SF 6 gas, and if SF 6 gas leaks to the outside, there is a problem such as an influence on global warming.

【0005】本発明は上記のような問題点を解決するた
めになされたもので、SF6ガスと他のガスを特定の割
合で混合することによってSF6ガス使用量を少なくし
て、地球温暖化への影響を少なく、冷却性能、絶縁性能
の優れた経済的なガス入自冷式、導ガス風冷式、導ガス
水冷式、導ガス自冷式変圧器を提供することを目的とす
る。
[0005] The present invention has been made to solve the above problems, by reducing the SF 6 gas consumption by mixing SF 6 gas and other gases in specific proportions, global warming The purpose of the present invention is to provide an economical gas-input self-cooling type, gas-conduction air-cooling type, gas-conduction water-cooling type, and gas-conduction self-cooling type transformer with less influence on gasification and excellent cooling performance and insulation performance. .

【0006】[0006]

【課題を解決するための手段】この発明の第1の構成に
係るガス絶縁変圧器は、鉄心と鉄心脚に巻き付けた巻線
を格納したタンク容器内に30%乃至50%のSF6
スと残りを窒素ガスもしくは乾燥空気とした構成の混合
ガスを封入して、冷却性能、絶縁性能の優れた経済的な
ガス絶縁変圧器を構成するものである。
SUMMARY OF THE INVENTION The first gas insulated transformer according to the configuration of the present invention, 30% to 50% of the SF 6 gas in a tank container which stores the winding wound around the core and the core leg The remaining gas is filled with a mixed gas composed of nitrogen gas or dry air to constitute an economical gas insulation transformer having excellent cooling performance and insulation performance.

【0007】この発明の第2の構成に係るガス絶縁変圧
器は、鉄心と鉄心脚に巻き付けた巻線を格納したタンク
容器内に10%乃至30%のSF6ガスと残りを飽和フ
ッ素化合物(CnF2n+2:n=1〜10)とした構
成の混合ガスを封入して、冷却性能、絶縁性能の優れた
経済的なガス絶縁変圧器を構成するものである。
[0007] A gas-insulated transformer according to a second configuration of the present invention comprises a tank vessel containing an iron core and a winding wound around an iron core leg in which 10% to 30% of SF 6 gas and the remainder are saturated fluorine compounds ( CnF2n + 2: n = 1 to 10) is filled with a mixed gas to constitute an economical gas insulation transformer having excellent cooling performance and insulation performance.

【0008】この発明の第3の構成に係るガス絶縁変圧
器は、鉄心と鉄心脚に巻き付けた巻線を格納したタンク
容器内に50%乃至70%のSF6ガスと残りを炭酸ガ
スとした構成の混合ガスを封入して、冷却性能、絶縁性
能の優れた経済的なガス絶縁変圧器を構成するものであ
る。
In a gas insulated transformer according to a third configuration of the present invention, 50% to 70% of SF 6 gas and the rest are carbon dioxide gas in a tank container storing an iron core and a winding wound around an iron core leg. An economical gas-insulated transformer having excellent cooling performance and insulation performance is provided by enclosing the mixed gas having the above-described structure.

【0009】この発明の第4の構成に係るガス絶縁変圧
器は、鉄心と鉄心脚に巻き付けた巻線を格納したタンク
容器内にSF6ガスと窒素ガスもしくは乾燥空気とした
構成の混合ガスを封入し、封入ガス圧力をSF6ガス1
00%の定格圧力より増加して鉄心と鉄心脚に巻き付け
た巻線をこの中に収納して、冷却性能、絶縁性能の優れ
た経済的なガス絶縁変圧器を構成するものである。
A gas-insulated transformer according to a fourth aspect of the present invention is a gas-insulated transformer, in which a SF 6 gas and a mixed gas composed of nitrogen gas or dry air are placed in a tank container containing an iron core and a winding wound around an iron core leg. Enclose and set the gas pressure to SF 6 gas 1
The winding wound around the iron core and the iron core legs with the pressure increased from the rated pressure of 00% is housed in this, thereby constituting an economical gas insulating transformer having excellent cooling performance and insulation performance.

【0010】この発明の第5の構成に係るガス絶縁変圧
器は、鉄心と鉄心脚に巻き付けた巻線を格納したタンク
容器内にSF6ガスと飽和フッ素化合物(CnF2n+
2:n=1〜10)とした構成の混合ガスを封入し、封
入ガス圧力をSF6ガス100%の定格圧力より増加し
て、冷却性能、絶縁性能の優れた経済的なガス絶縁変圧
器を構成するものである。
[0010] A gas-insulated transformer according to a fifth configuration of the present invention comprises a tank container containing an iron core and a winding wound around an iron core leg, wherein SF 6 gas and a saturated fluorine compound (CnF2n +
2: a gas mixture having a configuration of n = 1 to 10) is filled, and the pressure of the filled gas is increased from the rated pressure of 100% of SF 6 gas to provide an economical gas insulating transformer having excellent cooling performance and insulation performance. It constitutes.

【0011】この発明の第6の構成に係るガス絶縁変圧
器は、鉄心と鉄心脚に巻き付けた巻線を格納したタンク
容器内にSF6 ガスと炭酸ガスとした構成の混合ガスを
封入し、封入ガス圧力をSF6ガス100%の定格圧力
より増加して、冷却性能、絶縁性能の優れた経済的なガ
ス絶縁変圧器を構成するものである。
A gas-insulated transformer according to a sixth aspect of the present invention is characterized in that a mixed gas composed of SF 6 gas and carbon dioxide gas is sealed in a tank container storing an iron core and a winding wound around an iron core leg, The sealed gas pressure is increased from the rated pressure of 100% SF 6 gas to constitute an economical gas insulation transformer having excellent cooling performance and insulation performance.

【0012】[0012]

【発明の実施の形態】この発明の実施の形態であるガス
絶縁変圧器においては、SF6ガスと他のガスの混合ガ
スを使用しているので、SF6ガス使用量が少なく、地
球温暖化への影響の少なく、冷却性能、絶縁性能の優れ
た経済的な装置とすることができる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In a gas insulated transformer according to an embodiment of the present invention, a mixed gas of SF 6 gas and another gas is used, so that the amount of SF 6 gas used is small and global warming is reduced. It is possible to provide an economical device having a small cooling effect and an excellent cooling performance and insulation performance.

【0013】以下、この発明をその実施の形態を示す図
面に基づいて具体的に説明する。 実施の形態1.図1はこの発明の実施の形態1であるガ
ス絶縁変圧器の断面図である。図において、1はタンク
容器、2は巻線、2aは高圧巻線、2bは低圧巻線、3
は鉄心、44は特定絶縁混合ガス、5は冷却器である。
このガス絶縁変圧器は、運転時に鉄心3および高圧巻線
2a、低圧巻線2bから発生する熱を特定絶縁混合ガス
44の循環によって冷却し、同時に高電界となっている
巻線2内の絶縁もこの特定絶縁混合ガス44によって保
持しようとするものである。従って、タンク内のガスを
SF6ガスと窒素ガスの混合ガスにした場合、冷却性能
と絶縁性能を両立して維持しなければならない。
Hereinafter, the present invention will be described in detail with reference to the drawings showing an embodiment thereof. Embodiment 1 FIG. FIG. 1 is a sectional view of a gas-insulated transformer according to Embodiment 1 of the present invention. In the figure, 1 is a tank container, 2 is a winding, 2a is a high voltage winding, 2b is a low voltage winding, 3
Is an iron core, 44 is a specific insulating mixed gas, and 5 is a cooler.
This gas-insulated transformer cools the heat generated from the iron core 3 and the high-voltage windings 2a and the low-voltage windings 2b during operation by circulating the specific insulating mixed gas 44, and at the same time insulates the windings 2 in the high electric field. Is also to be held by this specific insulating mixed gas 44. Therefore, when the gas in the tank is a mixed gas of SF 6 gas and nitrogen gas, it is necessary to maintain both cooling performance and insulating performance.

【0014】図2はこの発明の実施の形態1におけるS
6/窒素混合ガスの絶縁特性を示す図であり、ガス絶
縁変圧器の高圧巻線と低圧巻線間を模擬した電極系でガ
ス圧力を一定としてSF6ガスと窒素ガスの混合率に対
する絶縁強度を実測した実験例である。SF6ガスを2
0%程度まで減少させると絶縁強度が急激に低下する。
従って、これよりもSF6ガスを減少させると巻線部の
絶縁強度を保持できなくなる。従って、絶縁強度の面か
ら見ればタンク内に10%乃至30%のSF6ガスと残
りを窒素ガスとすることが絶縁強度を保持するために効
果的である。
FIG. 2 is a block diagram of the first embodiment of the present invention.
FIG. 4 is a graph showing the insulation characteristics of an F 6 / nitrogen mixed gas, in which the electrode system simulating between the high-voltage winding and the low-voltage winding of the gas-insulated transformer keeps the gas pressure constant to insulate against the mixing ratio of SF 6 gas and nitrogen gas. It is an experimental example in which the strength was measured. SF 6 gas 2
If it is reduced to about 0%, the insulation strength will rapidly decrease.
Therefore, if the SF 6 gas is further reduced, the insulation strength of the winding portion cannot be maintained. Therefore, from the standpoint of insulation strength, it is effective to maintain 10% to 30% SF 6 gas and the remaining nitrogen gas in the tank in order to maintain insulation strength.

【0015】図3はこの発明の実施の形態1におけるS
6/窒素混合ガスの巻線部での冷却特性を示す図であ
り、ガス絶縁変圧器の巻線部での温度上昇をガス圧力を
一定としてSF6ガスの混合率に対する変化を示してい
る。つまりガスを混合した場合での冷却特性を示した結
果である。SF6の混合率を減少させ、窒素ガスの混合
率を増加すると巻線部での温度上昇は大きくなる。SF
6ガス100%に対して温度上昇はSF6ガスの混合率が
30%乃至50%で約1割程度上昇する。また、E種絶
縁材料を採用したガス絶縁変圧器の温度上昇限度70
(deg)を越えないためにもSF6ガスの混合率が3
0%乃至50%にする必要がある。従って、冷却性能を
維持するためには、タンク内にSF6ガスの混合率が3
0%乃至50%で残りを窒素ガスで構成した場合であ
る。従って、タンク内のガスをSF6ガスと窒素ガスの
混合ガスで構成した場合、冷却性能、絶縁性能を満たす
混合率はSF6ガスの混合率が30%乃至50%で残り
を窒素ガスで構成した場合である。
FIG. 3 is a block diagram of the first embodiment of the present invention.
Is a diagram showing the cooling characteristic in the winding unit of F 6 / nitrogen mixed gas, and the temperature rise in the winding portion of the gas insulated transformer indicates a change with respect to mixing ratio of SF 6 gas of the gas pressure as a constant . That is, this is a result showing the cooling characteristics when the gas is mixed. When the mixing ratio of SF 6 is reduced and the mixing ratio of nitrogen gas is increased, the temperature rise in the winding part is increased. SF
As for the temperature rise, the mixing ratio of SF 6 gas is about 30% to 50% and the temperature rise is about 10% higher than 100% of 6 gas. In addition, the temperature rise limit of a gas-insulated transformer employing a class E insulating material is 70%.
(Deg) so that the mixing ratio of SF 6 gas is 3
It needs to be 0% to 50%. Therefore, in order to maintain the cooling performance, the mixing ratio of SF 6 gas in the tank must be 3%.
This is a case where the balance is made up of nitrogen gas at 0% to 50%. Therefore, when the gas in the tank is composed of a mixed gas of SF 6 gas and nitrogen gas, the mixing ratio satisfying the cooling performance and the insulating performance is such that the mixing ratio of SF 6 gas is 30% to 50% and the rest is composed of nitrogen gas. This is the case.

【0016】実施の形態1においてタンク内に封入する
混合ガスの構成をSF6ガスと乾燥空気としても、SF6
ガスの混合率が30%乃至50%で残りを乾燥空気とし
てもほぼ同様の性能を得ることができる。
[0016] Also the structure of the mixed gas to be filled in the tank as a SF 6 gas and dry air in the first embodiment, SF 6
Approximately the same performance can be obtained even when the mixing ratio of the gas is 30% to 50% and the remainder is dry air.

【0017】実施の形態2.本実施の形態2は、混合ガ
スとしてSF6ガスとCF4ガスで構成した場合を示す。
図1のガス絶縁変圧器は、運転時に鉄心および高圧巻線
2a、低圧巻線2bから発生する熱を特定絶縁混合ガス
44の循環によって冷却し、同時に高電界となっている
巻線内の絶縁もこの絶縁ガスによって保持しようとする
ものである。従って、タンク内のガスをSF6ガスとC
4ガスの混合ガスにした場合、冷却性能と絶縁性能を
両立して維持しなければならない。
Embodiment 2 FIG. The second embodiment shows a case where the mixed gas is composed of SF 6 gas and CF 4 gas.
The gas-insulated transformer shown in FIG. 1 cools the heat generated from the iron core and the high-voltage winding 2a and the low-voltage winding 2b during operation by circulating the specific insulating mixed gas 44, and at the same time, insulates the winding in the high electric field. Are also to be held by this insulating gas. Therefore, the gas in the tank is SF 6 gas and C
When using a mixed gas of F 4 gas, it is necessary to maintain both cooling performance and insulating performance.

【0018】図4はこの発明の実施の形態2におけるS
6/CF4混合ガスの絶縁特性を示す図であり、ガス絶
縁変圧器の高圧巻線と低圧巻線間を模擬した電極系でガ
ス圧力を一定としてSF6ガスとCF4ガスの混合率に対
する絶縁強度を実測した実験例である。SF6ガスを2
0%程度まで減少させると絶縁強度が急激に低下する。
したがって、これよりもSF6ガスを減少させると巻線
部の絶縁強度を保持できなくなる。したがって、絶縁強
度の面から見ればタンク内に5%乃至20%のSF6
スと残りをCF4ガスとすることが絶縁強度を保持する
ために効果的である。
FIG. 4 is a block diagram of a second embodiment of the present invention.
FIG. 4 is a diagram showing the insulation characteristics of a mixed gas of F 6 / CF 4 , wherein the mixing ratio of SF 6 gas and CF 4 gas is constant with an electrode system simulating between the high-voltage winding and the low-voltage winding of the gas-insulated transformer; 5 is an experimental example in which insulation strength was measured with respect to FIG. SF 6 gas 2
If it is reduced to about 0%, the insulation strength will rapidly decrease.
Therefore, if the SF 6 gas is further reduced, the insulation strength of the winding portion cannot be maintained. Therefore, from the standpoint of insulation strength, it is effective to maintain 5% to 20% of SF 6 gas and the remainder of CF 4 gas in the tank in order to maintain insulation strength.

【0019】図5はこの発明の実施の形態2におけるS
6/CF4混合ガスの巻線部での冷却特性を示す図であ
り、ガス絶縁変圧器の巻線部での常温からの温度上昇を
ガス圧力を一定としてSF6ガスとCF4ガスの混合率に
対する変化を示している。つまりガスを混合した場合で
の冷却特性を示した結果である。SF6ガスの混合率を
減少させ、CF4ガスの混合率を増加させると巻線部で
の温度上昇は大きくなる。SF6ガス100%に対して
温度上昇はSF6ガスの混合率が10%乃至30%で約
1割程度上昇する。また、E種絶縁材料を採用したガス
絶縁変圧器の温度上昇限度70(deg)を越えないた
めにもSF6ガスの混合率が10%乃至30%にする必
要がある。従って、冷却性能を維持するためには、タン
ク内にSF6ガスの混合率が10%乃至30%で残りを
CF4ガスで構成した場合である。従って、タンク内の
ガスをSF6ガスとCF4ガスの混合ガスで構成した場
合、冷却性能、絶縁性能を満たす混合率はSF6ガスの
混合率が10%乃至30%で残りCF4ガスで構成した
場合である。
FIG. 5 shows S in Embodiment 2 of the present invention.
Is a diagram showing the cooling characteristic in the winding unit of F 6 / CF 4 mixed gas, the temperature increase from ambient temperature at the winding portion of the gas-insulated transformer as constant gas pressure SF 6 gas and CF 4 gas The change with respect to the mixing ratio is shown. That is, this is a result showing the cooling characteristics when the gas is mixed. When the mixing ratio of the SF 6 gas is reduced and the mixing ratio of the CF 4 gas is increased, the temperature rise in the winding part increases. With respect to 100% of SF 6 gas, the temperature rise increases by about 10% when the mixing ratio of SF 6 gas is 10% to 30%. Further, the mixing ratio of SF 6 gas needs to be 10% to 30% so as not to exceed the temperature rise limit 70 (deg) of the gas insulating transformer employing the class E insulating material. Therefore, in order to maintain the cooling performance, the case where the mixing ratio of SF 6 gas in the tank is 10% to 30% and the rest is composed of CF 4 gas. Therefore, when the gas in the tank is composed of a mixed gas of SF 6 gas and CF 4 gas, the mixing ratio satisfying the cooling performance and insulating performance is such that the mixing ratio of SF 6 gas is 10% to 30% and the remaining CF 4 gas is This is the case when the configuration is made.

【0020】実施の形態2においてタンク内に封入する
混合ガスの構成をSF6ガスと残りを飽和フッ素化合物
(CnF2n+2:n=2〜10)として、SF6ガス
の混合率が10%乃至30%で残りを飽和フッ素化合物
(CnF2n+2:n=2〜10)としてもほぼ同様の
性能を得ることができる。
In the second embodiment, the composition of the mixed gas filled in the tank is SF 6 gas and the remainder is a saturated fluorine compound (CnF2n + 2: n = 2 to 10), and the mixing ratio of SF 6 gas is 10% to 30%. The same performance can be obtained when the remaining is a saturated fluorine compound (CnF2n + 2: n = 2 to 10).

【0021】実施の形態3.本実施の形態3は、タンク
内の混合ガスとしてSF6ガスとCO2ガスで構成した場
合を示す。図1のガス絶縁変圧器は、運転時に鉄心およ
び高圧巻線2a、低圧巻線2bから発生する熱を特定絶
縁混合ガス44の循環によって冷却し、同時に高電界と
なっている巻線内の絶縁もこの絶縁ガスによって保持し
ようとするものである。従って、タンク内のガスをSF
6ガスとCO2ガスの混合ガスにした場合、冷却性能と絶
縁性能を両立して維持しなければならない。
Embodiment 3 Embodiment 3 shows a case where the mixed gas in the tank is composed of SF 6 gas and CO 2 gas. The gas-insulated transformer shown in FIG. 1 cools the heat generated from the iron core and the high-voltage winding 2a and the low-voltage winding 2b during operation by circulating the specific insulating mixed gas 44, and at the same time, insulates the winding in the high electric field. Are also to be held by this insulating gas. Therefore, the gas in the tank is
When a mixed gas of 6 gases and CO 2 gas is used, it is necessary to maintain both cooling performance and insulating performance.

【0022】図6はこの発明の実施の形態3におけるS
6/CO2混合ガスの絶縁特性を示す図であり、ガス絶
縁変圧器の高圧巻線と低圧巻線間を模擬した電極系でガ
ス圧力を一定としてSF6ガスと炭酸ガス(CO2)の混合
率に対する絶縁強度を実測した実験例である。SF6
スが40%程度まで減少させると絶縁強度が急激に低下
する。従って、これよりもSF6ガスを減少させると巻
線部の絶縁強度を保持できなくなる。従って、絶縁強度
の面から見ればタンク内に30%乃至50%のSF6
スと残りを炭酸ガスとすることが絶縁強度を保持するた
めに効果的である。
FIG. 6 is a block diagram of a third embodiment of the present invention.
FIG. 3 is a diagram showing the insulation characteristics of a mixed gas of F 6 / CO 2 , wherein SF 6 gas and carbon dioxide (CO 2 ) gas are kept constant by an electrode system simulating between a high voltage winding and a low voltage winding of a gas insulating transformer. 5 is an experimental example in which insulation strength was actually measured with respect to the mixing ratio. When the SF 6 gas is reduced to about 40%, the insulation strength sharply decreases. Therefore, if the SF 6 gas is further reduced, the insulation strength of the winding portion cannot be maintained. Therefore, from the standpoint of insulation strength, it is effective to keep the tank with 30% to 50% SF 6 gas and carbon dioxide gas as the remainder to maintain insulation strength.

【0023】図7はこの発明の実施の形態3におけるS
6/CO2混合ガスの巻線部での冷却特性を示す図であ
り、ガス絶縁変圧器の巻線部での常温からの温度上昇を
ガス圧力を一定としてSF6ガスの混合率に対する変化
を示している。つまりガスを混合した場合の冷却特性を
示した結果である。SF6の混合率を減少させ、炭酸ガ
スの混合率を増加すると巻線部での温度上昇は大きくな
る。SF6ガス100%に対して温度上昇はSF6の混合
率が50%乃至70%で約1割程度上昇する。また、E
種絶縁材料を採用したガス絶縁変圧器の温度上昇限度7
0(deg)を越えないためにもSF6 ガスの混合率が
50%乃至70%にする必要がある。従って、タンク内
のガスをSF6 ガスと炭酸ガスの混合ガスで構成した場
合、冷却性能、絶縁性能を満たす混合率はSF6の混合
率が50%乃至70%で残りを炭酸ガス(CO2 )で構
成した場合である。
FIG. 7 is a block diagram of the third embodiment of the present invention.
FIG. 5 is a diagram showing the cooling characteristics of the F 6 / CO 2 mixed gas in the winding portion of the gas mixture, where the temperature rise from room temperature in the winding portion of the gas-insulated transformer is changed with respect to the mixing ratio of SF 6 gas while keeping the gas pressure constant. Is shown. That is, this is a result showing the cooling characteristics when gas is mixed. When the mixing ratio of SF 6 is reduced and the mixing ratio of carbon dioxide gas is increased, the temperature rise in the winding part increases. Temperature rise against SF 6 100% gas mixing ratio of SF 6 is increased about 10% at 50% to 70%. Also, E
Temperature rise limit of gas-insulated transformers using various insulating materials 7
In order not to exceed 0 (deg), the mixing ratio of SF 6 gas needs to be 50% to 70%. Therefore, when the gas in the tank is composed of a mixed gas of SF 6 gas and carbon dioxide gas, the mixing ratio satisfying the cooling performance and the insulation performance is 50 to 70% of the mixing ratio of SF 6 , and the remainder is carbon dioxide gas (CO 2 gas). ).

【0024】実施の形態4.図1はガス絶縁変圧器の断
面図である。図において、1はタンク容器、2は巻線、
2aは高圧巻線、2bは低圧巻線、3は鉄心、44は特
定絶縁混合ガス、5は冷却器である。このガス絶縁変圧
器は、運転時に鉄心および高圧巻線2a、低圧巻線2b
から発生する熱を特定絶縁混合ガス44の循環によって
冷却し、同時に高電界となっている巻線内の絶縁もこの
絶縁ガスによって保持しようとするものである。従っ
て、タンク内のガスを混合ガスにした場合、冷却性能と
絶縁性能を維持しなければならない。
Embodiment 4 FIG. 1 is a sectional view of a gas-insulated transformer. In the figure, 1 is a tank container, 2 is a winding,
2a is a high voltage winding, 2b is a low voltage winding, 3 is an iron core, 44 is a specific insulating mixed gas, and 5 is a cooler. During operation, the gas-insulated transformer includes an iron core, a high-voltage winding 2a, and a low-voltage winding 2b.
Is cooled by the circulation of the specific insulating mixed gas 44, and at the same time, the insulating gas in the winding, which has a high electric field, is to be maintained by the insulating gas. Therefore, when the gas in the tank is a mixed gas, the cooling performance and the insulation performance must be maintained.

【0025】図8はこの発明の実施の形態4におけるS
6/窒素混合ガスの絶縁特性を示す図であり、ガス絶
縁変圧器の高圧巻線と低圧巻線間を模擬した電極系で電
極間の距離を一定としてある混合率の混合ガス封入圧力
を変化した場合の圧力に対する絶縁強度を実測した実験
例である。圧力が高くなると絶縁耐力も上昇することが
分かる。
FIG. 8 is a block diagram of a fourth embodiment of the present invention.
FIG. 4 is a diagram showing the insulation characteristics of a mixed gas of F 6 / nitrogen, in which an electrode system simulating a high-voltage winding and a low-voltage winding of a gas-insulated transformer has a constant mixing gas filling pressure at a certain mixing ratio with a constant distance between the electrodes. It is an experimental example in which the insulation strength with respect to the pressure when it changes is measured. It can be seen that the higher the pressure, the higher the dielectric strength.

【0026】図9はこの発明の実施の形態4におけるS
6/窒素混合ガスの巻線部での冷却特性を示す図であ
り、ガス絶縁変圧器の巻線部での常温からの温度上昇を
SF6ガスと窒素ガスの混合比をパラメータとして圧力
を変化させた場合の冷却特性の結果を示している。SF
6ガスの使用量を削減するために例えばSF6ガスと窒素
ガスの混合比を50:50%の場合を考える。この場
合、定格圧力である0.24MPaの場合と同じ温度上
昇にするためには、圧力を0.3MPaにする必要があ
る。また、SF6ガスと窒素ガスの混合比を30:70
%とすると圧力を0.36MPaにすると定格圧力での
温度上昇と同じ温度上昇になる。
FIG. 9 is a block diagram of a fourth embodiment of the present invention.
Is a diagram showing the cooling characteristic in the winding unit of F 6 / nitrogen mixed gas, the pressure increase in the temperature of the mixture ratio of SF 6 gas and nitrogen gas as a parameter from the normal temperature in the winding portion of the gas insulated transformer The results of the cooling characteristics when changed are shown. SF
In order to reduce the usage of the six gases, for example, consider a case where the mixing ratio of SF 6 gas and nitrogen gas is 50: 50%. In this case, the pressure needs to be 0.3 MPa in order to increase the temperature as in the case of the rated pressure of 0.24 MPa. Also, the mixing ratio of SF 6 gas and nitrogen gas is 30:70
%, When the pressure is 0.36 MPa, the temperature rise is the same as the temperature rise at the rated pressure.

【0027】ガスによって巻線部、冷却器内の冷却を行
う場合、封入圧力を増加すると、それぞれの部分でガス
の流れの状態を示すレイノルズ数が増加し、巻線や冷却
器とガスとの間での熱伝達率が増加する。温度上昇は熱
伝達率の逆数であるため、熱伝達率が増加すると温度上
昇は減少する。図10はこの発明の実施の形態4におけ
るガスのレイノルズ数に対する冷却特性を示す図であ
り、レイノルズ数をパラメータにガスと固体壁での熱伝
達率を示している。レイノルズ数が2000を越えて乱
流域となった方が熱伝達率が大きくなる。つまり、巻線
部や冷却器での冷却特性がよくなる。圧力を増加させた
場合、SF6ガス100%の状態について考えると、気
体の状態方程式より気体の密度が大きくなる。いま、レ
イノルズ数は(流路の相当直径*流速)/動粘度で表さ
れる。動粘度は気体の粘度/密度で表せるので圧力を増
すと気体の密度が大きくなり、その結果動粘度が小さく
なり、流速、相当直径が一定ならばレイノルズ数が増加
する。従って、封入圧力を増加すると温度上昇は小さく
なり冷却性能が良くなる。SF6と窒素の混合ガスでも
封入ガスの圧力を増加させると冷却性能が良くなる。従
って、タンク内のガスをSF6ガスと窒素ガスを混合し
た場合、絶縁性能を満たすためSF6ガスを30%で残
りを窒素ガスで構成した場合、冷却性能を満たすために
圧力を上昇させ定格圧力0.24MPaに対して0.36
MPa以上に増加させた場合である。
In the case where the inside of the winding portion and the cooler is cooled by the gas, when the sealing pressure is increased, the Reynolds number indicating the state of the gas flow in each portion increases, and the winding and the cooler and the gas are cooled. The heat transfer coefficient between them increases. Since the temperature rise is the reciprocal of the heat transfer coefficient, as the heat transfer coefficient increases, the temperature rise decreases. FIG. 10 is a diagram showing a cooling characteristic with respect to a Reynolds number of a gas according to Embodiment 4 of the present invention, and shows a heat transfer coefficient between a gas and a solid wall using the Reynolds number as a parameter. When the Reynolds number exceeds 2000 and becomes a turbulent flow region, the heat transfer coefficient increases. That is, the cooling characteristics in the winding portion and the cooler are improved. When the pressure is increased, considering the state of SF 6 gas 100%, the gas density becomes larger from the gas state equation. Now, the Reynolds number is represented by (equivalent diameter of flow path * flow velocity) / kinematic viscosity. Since the kinematic viscosity can be expressed by the viscosity / density of the gas, increasing the pressure increases the density of the gas. As a result, the kinematic viscosity decreases, and if the flow velocity and the equivalent diameter are constant, the Reynolds number increases. Therefore, when the sealing pressure is increased, the temperature rise is reduced, and the cooling performance is improved. Even with a mixed gas of SF 6 and nitrogen, increasing the pressure of the filling gas improves the cooling performance. Therefore, if the gas in the tank is a mixture of SF 6 gas and nitrogen gas, and if the remaining gas is composed of 30% of SF 6 gas to satisfy the insulation performance and the remainder is composed of nitrogen gas, the pressure is increased to satisfy the cooling performance and the rated pressure is increased. 0.36 for 0.24MPa pressure
This is the case where the pressure is increased to more than MPa.

【0028】実施の形態5.ガス絶縁変圧器は、運転時
に鉄心および高圧巻線、低圧巻線から発生する熱を絶縁
ガスの循環によって冷却し、同時に高電界となっている
巻線内の絶縁もこの絶縁ガスによって保持しようとする
ものである。従って、タンク内のガスを混合ガスにした
場合、冷却性能と絶縁性能を維持しなければならない。
Embodiment 5 The gas-insulated transformer cools the heat generated from the iron core, high-voltage windings, and low-voltage windings during operation by circulating the insulating gas, and at the same time, uses the insulating gas to maintain the insulation in the windings, which are in a high electric field. Is what you do. Therefore, when the gas in the tank is a mixed gas, the cooling performance and the insulation performance must be maintained.

【0029】図11はこの発明の実施の形態5における
SF6/CF4混合ガスの巻線部での冷却特性を示す図で
あり、ガス絶縁変圧器の巻線部での常温からの温度上昇
をSF6ガスとCF4ガスの混合比をパラメータとして圧
力を変化させた場合の冷却特性の結果を示している。S
6ガスの使用量を削減するために例えばSF6ガスとC
4ガスの混合比を50:50%の場合を考える。この
場合、定格圧力である0.24MPaの場合と同じ温度
上昇にするためには、圧力を0.27MPaにする必要
がある。また、SF6ガスとCF4ガスの混合比を20:
80%とすると圧力を0.30MPa以上にすると定格
圧力と同じ温度上昇になる。従って、タンク内のガスを
SF6ガスとCF4ガスを混合した場合、絶縁性能を満た
すためSF6ガスを20%で残りをCF4ガスで構成した
場合、冷却性能を満たすために圧力を上昇させ定格圧力
0.24MPaに対して0.30MPa以上に増加させ
た場合である。
FIG. 11 is a diagram showing the cooling characteristics of the SF 6 / CF 4 mixed gas at the winding portion in the fifth embodiment of the present invention, and shows the temperature rise from room temperature in the winding portion of the gas insulated transformer. 5 shows the results of the cooling characteristics when the pressure is changed using the mixture ratio of SF 6 gas and CF 4 gas as a parameter. S
In order to reduce the usage of F 6 gas, for example, SF 6 gas and C
Consider the case where the mixing ratio of F 4 gas is 50: 50%. In this case, the pressure needs to be 0.27 MPa in order to increase the temperature as in the case of the rated pressure of 0.24 MPa. Further, the mixing ratio of SF 6 gas and CF 4 gas is 20:
When the pressure is set to 80% or more and the pressure is set to 0.30 MPa or more, the temperature rise becomes the same as the rated pressure. Therefore, when the gas in the tank is a mixture of SF 6 gas and CF 4 gas, the pressure is increased to satisfy the cooling performance when the SF 6 gas is composed of 20% and the rest is composed of CF 4 gas to satisfy the insulation performance. In this case, the rated pressure was increased to 0.30 MPa or more with respect to the rated pressure of 0.24 MPa.

【0030】実施の形態5において、タンク内に封入す
る混合ガスの構成をSF6ガスと飽和フッ素化合物(C
nF2n+2:n=2〜10)しても、SF6ガスの混
合率が10%乃至30%で残りを飽和フッ素化合物(C
nF2n+2:n=2〜10)として0.30MPa以
上に圧力を上昇させてもほぼ同様の性能を得ることがで
きる。
In the fifth embodiment, the composition of the mixed gas filled in the tank is SF 6 gas and saturated fluorine compound (C
nF2n + 2: n = 2 to 10), the mixing ratio of SF 6 gas is 10% to 30% and the remainder is a saturated fluorine compound (C
Even if the pressure is increased to 0.30 MPa or more as nF2n + 2: n = 2 to 10), almost the same performance can be obtained.

【0031】実施の形態6.ガス絶縁変圧器は、運転時
に鉄心および高圧巻線、低圧巻線から発生する熱を絶縁
ガスの循環によって冷却し、同時に高電界となっている
巻線内の絶縁もこの絶縁ガスによって保持しようとする
ものである。従って、タンク内のガスを混合ガスにした
場合、冷却性能と絶縁性能を維持しなければならない。
Embodiment 6 FIG. The gas-insulated transformer cools the heat generated from the iron core, high-voltage windings, and low-voltage windings during operation by circulating the insulating gas, and at the same time, uses the insulating gas to maintain the insulation in the windings, which are in a high electric field. Is what you do. Therefore, when the gas in the tank is a mixed gas, the cooling performance and the insulation performance must be maintained.

【0032】図12はこの発明の実施の形態6における
SF6/CO2混合ガスの巻線部での冷却特性を示す図で
あり、ガス絶縁変圧器の巻線部での常温からの温度上昇
をSF6ガスとCO2ガスの混合比をパラメータとして圧
力を変化させた場合の冷却特性の結果を示している。S
6ガスの使用量を削減するために例えばSF6ガスとC
2 ガスの混合比を50:50%の場合を考える。この
場合、定格圧力である0.24MPaの場合と同じ温度
上昇にするためには、圧力を0.33MPa以上にする
必要がある。従って、タンク内のガスをSF6ガスとC
2ガスを混合した場合、絶縁性能を満たすためSF6
スを50%で残りをCO2ガスで構成した場合、冷却性
能を満たすために圧力を上昇させ定格圧力0.24MP
aに対して0.33MPa以上に増加させた場合であ
る。
FIG. 12 is a diagram showing the cooling characteristics of the SF 6 / CO 2 mixed gas at the winding portion in the sixth embodiment of the present invention, and shows the temperature rise from room temperature in the winding portion of the gas insulated transformer. 5 shows the results of the cooling characteristics when the pressure is changed using the mixture ratio of SF 6 gas and CO 2 gas as a parameter. S
In order to reduce the usage of F 6 gas, for example, SF 6 gas and C
Consider a case where the mixing ratio of O 2 gas is 50: 50%. In this case, in order to increase the temperature to the same level as in the case of the rated pressure of 0.24 MPa, the pressure needs to be 0.33 MPa or more. Therefore, the gas in the tank is SF 6 gas and C
When O 2 gas is mixed, SF 6 gas is 50% in order to satisfy the insulation performance, and when the remainder is composed of CO 2 gas, the pressure is increased to satisfy the cooling performance and the rated pressure is 0.24MP.
This is the case where it is increased to 0.33 MPa or more with respect to a.

【0033】[0033]

【発明の効果】この発明に係るガス絶縁変圧器によれ
ば、SF6ガスと他のガスからなる特定絶縁混合ガスを
使用しているので、SF6 ガス使用量が少なくなり、地
球温暖化への影響が極めて軽減される。また、冷却性
能、および絶縁性能の優れた経済的な装置とすることが
てきる。
According to the gas insulated transformer according to the present invention, since a specific insulating mixed gas composed of SF 6 gas and another gas is used, the amount of SF 6 gas used is reduced, and global warming is reduced. Is greatly reduced. Further, an economical device having excellent cooling performance and insulation performance can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 この発明の実施の形態1によるガス絶縁変圧
器の断面図である。
FIG. 1 is a sectional view of a gas-insulated transformer according to Embodiment 1 of the present invention.

【図2】 この発明の実施の形態1におけるSF6/窒
素混合ガスの絶縁特性を示す図である。
FIG. 2 is a diagram showing insulating properties of a mixed gas of SF 6 and nitrogen according to the first embodiment of the present invention.

【図3】 この発明の実施の形態1におけるSF6/窒
素混合ガスの巻線部での冷却特性を示す図である。
FIG. 3 is a diagram showing a cooling characteristic of a winding of an SF 6 / nitrogen mixed gas in the first embodiment of the present invention.

【図4】 この発明の実施の形態2におけるSF6/C
4混合ガスの絶縁特性を示す図である。
FIG. 4 shows SF 6 / C according to Embodiment 2 of the present invention.
FIG. 4 is a diagram illustrating insulating properties of an F 4 mixed gas.

【図5】 この発明の実施の形態2におけるSF6/C
4混合ガスの巻線部での冷却特性を示す図である。
FIG. 5 shows SF 6 / C according to Embodiment 2 of the present invention.
FIG. 4 is a diagram illustrating cooling characteristics of a F 4 mixed gas at a winding portion.

【図6】 この発明の実施の形態3におけるSF6/C
2混合ガスの絶縁特性を示す図である。
FIG. 6 shows SF 6 / C according to Embodiment 3 of the present invention.
FIG. 3 is a diagram illustrating the insulating characteristics of an O 2 mixed gas.

【図7】 この発明の実施の形態3におけるSF6/C
2混合ガスの巻線部での冷却特性を示す図である。
FIG. 7 shows SF 6 / C according to Embodiment 3 of the present invention.
FIG. 4 is a diagram illustrating cooling characteristics of an O 2 mixed gas in a winding part.

【図8】 この発明の実施の形態4におけるSF6/窒
素混合ガスの絶縁特性を示す図である。
FIG. 8 is a diagram showing insulation characteristics of SF 6 / nitrogen mixed gas according to Embodiment 4 of the present invention.

【図9】 この発明の実施の形態4におけるSF6/窒
素混合ガスの巻線部での冷却特性を示す図である。
FIG. 9 is a diagram showing a cooling characteristic of an SF 6 / nitrogen mixed gas in a winding part according to a fourth embodiment of the present invention.

【図10】 この発明の実施の形態4におけるガスのレ
イノルズ数に対する冷却特性を示す図である。
FIG. 10 is a diagram showing a cooling characteristic with respect to a Reynolds number of a gas according to a fourth embodiment of the present invention.

【図11】 この発明の実施の形態5におけるSF6
CF4混合ガスの巻線部での冷却特性を示す図である。
FIG. 11 shows SF 6 / F in Embodiment 5 of the present invention.
FIG. 3 is a diagram showing cooling characteristics of a CF 4 mixed gas at a winding portion.

【図12】 この発明の実施の形態6におけるSF6
CO2混合ガスの巻線部での冷却特性を示す図である。
FIG. 12 shows SF 6 / F in Embodiment 6 of the present invention.
It is a diagram showing the cooling characteristic at the winding portion of the CO 2 gas mixture.

【図13】 従来のガス絶縁変圧器の断面図である。FIG. 13 is a sectional view of a conventional gas-insulated transformer.

【図14】 従来の他のガス絶縁変圧器の断面図であ
る。
FIG. 14 is a sectional view of another conventional gas-insulated transformer.

【符号の説明】[Explanation of symbols]

1 タンク容器、2 巻線、2a 高圧巻線、2b 低
圧巻線、3 鉄心、4絶縁ガス、5 冷却器、6 パー
フルオロカーボン液、7 熱交換器、8 循環ポンプ、
9 導出管、10 導入管、、11 導封タンク、12
絶縁容器、13 混合ガス、44 特定絶縁混合ガ
ス。
1 tank vessel, 2 windings, 2a high pressure winding, 2b low pressure winding, 3 iron core, 4 insulating gas, 5 cooler, 6 perfluorocarbon liquid, 7 heat exchanger, 8 circulation pump,
9 Outlet pipe, 10 Inlet pipe, 11 Sealing tank, 12
Insulated container, 13 mixed gas, 44 specific insulating mixed gas.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 タンク容器内に30%乃至50%のSF
6ガスと残りを窒素ガスもしくは乾燥空気とした構成の
混合ガスを封入し、鉄心と鉄心脚に巻き付けた巻線をこ
の中に収納したことを特徴とするガス絶縁変圧器。
1. 30% to 50% SF in a tank container
A gas insulated transformer characterized by containing a mixed gas composed of 6 gases and the remaining nitrogen gas or dry air, and containing an iron core and windings wound around iron legs.
【請求項2】 タンク容器内に10%乃至30%のSF
6ガスと残りを飽和フッ素化合物(CnF2n+2:n
=1〜10)とした構成の混合ガスを封入し、鉄心と鉄
心脚に巻き付けた巻線をこの中に収納したことを特徴と
するガス絶縁変圧器。
2. 10% to 30% SF in a tank container
Six gases and the rest are saturated fluorine compounds (CnF2n + 2: n
= 1 to 10). A gas-insulated transformer, wherein a mixed gas having a configuration of 1 to 10) is enclosed therein, and a coil wound around an iron core and iron core legs is accommodated therein.
【請求項3】 タンク容器内に50%乃至70%のSF
6ガスと残りを炭酸ガス(CO2)とした構成の混合ガス
を封入し、鉄心と鉄心脚に巻き付けた巻線をこの中に収
納したことを特徴とするガス絶縁変圧器。
3. 50% to 70% SF in a tank container
A gas-insulated transformer comprising a mixture of 6 gases and a gas mixture of carbon dioxide (CO 2 ) as a balance, and a coil wound around an iron core and iron core legs accommodated therein.
【請求項4】 タンク容器内にSF6ガスと窒素ガスも
しくは乾燥空気とした構成の混合ガスを封入し、混合ガ
ス封入圧力をSF6ガス100%の定格圧力より増加し
て鉄心と鉄心脚に巻き付けた巻線をこの中に収納したこ
とを特徴とするガス絶縁変圧器。
4. A mixed gas composed of SF 6 gas and nitrogen gas or dry air is sealed in a tank container, and the mixed gas sealing pressure is increased from the rated pressure of SF 6 gas 100% to increase the iron core and the iron leg. A gas-insulated transformer, wherein the wound winding is housed therein.
【請求項5】 タンク容器内にSF6ガスと飽和フッ素
化合物(CnF2n+2:n=1〜10)とした構成の
混合ガスを封入し、混合ガス封入圧力をSF6ガス10
0%の定格圧力より増加して鉄心と鉄心脚に巻き付けた
巻線をこの中に収納したことを特徴とするガス絶縁変圧
器。
5. A mixed gas having a composition of SF 6 gas and a saturated fluorine compound (CnF2n + 2: n = 1 to 10) is sealed in a tank container, and the mixed gas sealing pressure is set to 10 SF 6 gas.
A gas-insulated transformer characterized in that a winding wound around an iron core and an iron core leg, which is increased from a rated pressure of 0%, is housed therein.
【請求項6】 タンク容器内にSF6ガスと炭酸ガスと
した構成の混合ガスを封入し、混合ガス封入圧力をSF
6ガス100%の定格圧力より増加して鉄心と鉄心脚に
巻き付けた巻線をこの中に収納したことを特徴とするガ
ス絶縁変圧器。
6. A mixed gas having a composition of SF 6 gas and carbon dioxide gas is sealed in a tank container, and the mixed gas sealing pressure is set to SF.
(6) A gas-insulated transformer, wherein a winding wound around an iron core and iron legs is increased in a rated pressure of 100% of gas and housed therein.
JP14960998A 1998-05-29 1998-05-29 Gas insulating transformer Pending JPH11345720A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14960998A JPH11345720A (en) 1998-05-29 1998-05-29 Gas insulating transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14960998A JPH11345720A (en) 1998-05-29 1998-05-29 Gas insulating transformer

Publications (1)

Publication Number Publication Date
JPH11345720A true JPH11345720A (en) 1999-12-14

Family

ID=15478957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14960998A Pending JPH11345720A (en) 1998-05-29 1998-05-29 Gas insulating transformer

Country Status (1)

Country Link
JP (1) JPH11345720A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2824179A1 (en) * 2001-04-27 2002-10-31 Nissin Electric Co Ltd GAS INSULATED COILING WINDING EQUIPMENT
SG103335A1 (en) * 2001-11-01 2004-04-29 Hitachi Ltd Gas insulation transformer
CN105719798A (en) * 2016-02-02 2016-06-29 邓福亮 SF6 gas-charged testing transformer with coil cooling device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2824179A1 (en) * 2001-04-27 2002-10-31 Nissin Electric Co Ltd GAS INSULATED COILING WINDING EQUIPMENT
SG103335A1 (en) * 2001-11-01 2004-04-29 Hitachi Ltd Gas insulation transformer
CN105719798A (en) * 2016-02-02 2016-06-29 邓福亮 SF6 gas-charged testing transformer with coil cooling device

Similar Documents

Publication Publication Date Title
US10910138B2 (en) Gas-insulated electrical apparatus, in particular gas-insulated transformer or reactor
US10714256B2 (en) Electrical device comprising a gas-insulated apparatus, in particular a gas-insulated transformer or reactor
JPH03129710A (en) Electric apparatus
JP2003142318A (en) Gas-insulated transformer
JPH11345720A (en) Gas insulating transformer
JP2007273740A (en) Superconducting apparatus
KR101635662B1 (en) Transformer
JP2002005552A (en) Cold-generating equipment and cooling apparatus in which superconductivity is applied for cooling through use of the equipment
JP2023542127A (en) Composition
JP2547433B2 (en) Stationary induction
JPH06111991A (en) X-ray generator
JP2553157B2 (en) Stationary induction equipment
JPH02110910A (en) Stationary induction electric apparatus
CN107919187B (en) Self-cooled conductor and using reactor or transformer of the conductor as winding
JPS596506A (en) Stationary induction apparatus
JPH01205407A (en) Gas insulated transformer
JPH076922A (en) Stationary induction electric apparatus
JP3077958B2 (en) Stationary induction device
JPS59217348A (en) Electric apparatus
JPH01147816A (en) Stationary induction apparatus
JPH02184006A (en) Electromagnetic induction apparatus
JPS6072205A (en) Foil-wound transformer
KR19980702794A (en) Stop Induction Electrical Equipment
JPH02144905A (en) Static induction instrument
JP2001155930A (en) Transformer

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Effective date: 20040628

Free format text: JAPANESE INTERMEDIATE CODE: A7421