JPH02144905A - Static induction instrument - Google Patents

Static induction instrument

Info

Publication number
JPH02144905A
JPH02144905A JP29823488A JP29823488A JPH02144905A JP H02144905 A JPH02144905 A JP H02144905A JP 29823488 A JP29823488 A JP 29823488A JP 29823488 A JP29823488 A JP 29823488A JP H02144905 A JPH02144905 A JP H02144905A
Authority
JP
Japan
Prior art keywords
tank
cooling
cooling device
insulating
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29823488A
Other languages
Japanese (ja)
Inventor
Akifumi Inui
乾 昭文
Tsuneji Teranishi
常治 寺西
Hitoshi Okubo
仁 大久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP29823488A priority Critical patent/JPH02144905A/en
Publication of JPH02144905A publication Critical patent/JPH02144905A/en
Pending legal-status Critical Current

Links

Landscapes

  • Transformer Cooling (AREA)

Abstract

PURPOSE:To increase cooling performance of a winding and restrict pressure rise in a tank for improving insulation reliability by providing a first cooling device for cooling at least one of an iron core and a winding with an insulating condensible refrigerant and a second cooling device for cooling the tank, the latter being disposed on the wall of the tank. CONSTITUTION:Windings 4, 5 housed in a container 11 of a first cooling device 12 are colled by a refrigerant 10 having excellent cooling capability. The refrigerant 10 absorbing heat is cooled by a cooler 14 provide externally, and circulated. Additionally, part of the refrigerant absorbing heat is evaporated in the tank and allowed to float in the tank 1 with an insulating medium 13. Herein, condensible evaporated gas is cooled by a second cooling device 17 by a second cooling device 17 provided on the external wall of the tank 1 into a liquid which is in turn stored in a residence section 18 at the bottom of the tank and fed to the cooler 14 through a supply tube 16 for circulation. Additionally, the windings 4, 5 are insulated by an insulating condensible refrigerant 10, and insulation between the windings 4, 5 and the tank 1 are preformed by noncondensible insulator 13 such as SF6 gas.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、凝縮性冷却媒体を循環させて、巻線部分の絶
縁及び冷却を行う静止誘導機器に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a stationary induction device that circulates a condensable cooling medium to insulate and cool a winding portion.

(従来の技術) 近年、変圧器、リアクトルなどの静止誘導機器において
は、高電圧・大容量化の必要性が高まり、また、据付面
積を縮小するためにも、機器の縮小・小型化が望まれて
いる。
(Prior technology) In recent years, there has been an increasing need for static induction equipment such as transformers and reactors to have higher voltage and larger capacity, and in order to reduce the installation area, it is desirable to downsize and downsize the equipment. It is rare.

ざらに、近年、防災上の観点から、機器を不燃化するた
めに、絶縁媒体及び冷却媒体としてSF6ガスなどの絶
縁性気体を用いたものが採用されている。しかし、SF
6ガスの様な絶縁性気体は、絶縁油に比べて絶縁特性は
同等もしくは優れているが、比熱・比重が低く、冷却特
性は劣っている。
Generally speaking, in recent years, from the viewpoint of disaster prevention, insulating gases such as SF6 gas have been used as insulating media and cooling media in order to make equipment nonflammable. However, SF
Insulating gases such as 6 gases have the same or better insulating properties than insulating oil, but their specific heat and specific gravity are low, and their cooling properties are inferior.

そのため、大容量の機器においては、SF6ガスを強制
的に循環させて、鉄心、巻線などの冷却を行っているが
、ガス流速を増すと流路のヘッドロスも増大するため、
数m/sec程度に抑える必要がある。従って、冷却効
果の向上に限界があり、一般にその冷却性能は絶縁油に
比べて数分の−になる。
Therefore, in large-capacity equipment, SF6 gas is forcibly circulated to cool the core, windings, etc., but as the gas flow rate increases, the head loss in the flow path also increases.
It is necessary to suppress the speed to about several m/sec. Therefore, there is a limit to the improvement of the cooling effect, and the cooling performance is generally several times lower than that of insulating oil.

そこで、上記の点を解決する手段として、SF6ガスと
100℃程度以下の沸点をもつ不燃性液体とを併用して
、絶縁は主にSF6ガスにより行い、冷却は主に不燃性
液体によって行う方式のものがある。この方式は、不燃
性液体(例えば、フロン)を鉄心・巻線などの損失発生
部分に散布して、これが高温の損失発生部に接した時、
蒸発する気化潜熱を利用して、効率良く熱を外部に搬出
するものである。
Therefore, as a means to solve the above problems, a method is used in which SF6 gas and a nonflammable liquid with a boiling point of about 100°C or less are used together, insulation is performed mainly by SF6 gas, and cooling is mainly performed by the nonflammable liquid. There is something. This method involves spraying a non-flammable liquid (e.g. CFC) onto loss-generating parts such as iron cores and windings, and when it comes into contact with high-temperature loss-generating parts,
It uses the latent heat of vaporization to efficiently transport heat to the outside.

第2図にこの様な静止誘導機器の一例を示した。Figure 2 shows an example of such stationary guidance equipment.

即ち、変圧器タンク1内に鉄心3、外側巻線4及び内側
巻線5が収納され、それらの上方及び外周側方にはノズ
ル6が配設されている。このノズル6に、タンク底部に
蓄えられた不燃性液体9を、パイプ7を介してポンプ8
により供給し、発熱体である鉄心3、巻線4,5などに
散布する。
That is, an iron core 3, an outer winding 4, and an inner winding 5 are housed in a transformer tank 1, and a nozzle 6 is arranged above them and on the side of the outer circumference. A pump 8 pumps the nonflammable liquid 9 stored at the bottom of the tank into the nozzle 6 via a pipe 7.
It is supplied to the iron core 3, windings 4, 5, etc., which are heating elements.

また、前記変圧器タンク1は、その外部に設けられた熱
交換器2に接続されている。そして、変圧器タンク1内
で散布された不燃性液体は、発熱体の高温部に接触して
一部は蒸発し、その際、高温部から熱を奪ってこれを冷
却する。一方、蒸気は熱交換器2に入り、ここで熱をタ
ンク外に伝達して液体に戻る。この液体及び発熱体表面
を伝って蒸発せずに流下した液体は、タンクの底部に戻
る。この様にして、ポンプ8により不燃性液体を連続的
に循環させて冷却するものである。
Further, the transformer tank 1 is connected to a heat exchanger 2 provided outside thereof. Then, the nonflammable liquid sprayed within the transformer tank 1 comes into contact with the high temperature part of the heating element and partially evaporates, at which time it absorbs heat from the high temperature part and cools it. Meanwhile, the steam enters the heat exchanger 2, where it transfers heat to the outside of the tank and returns to liquid. This liquid and the liquid that has flowed down without evaporating along the surface of the heating element returns to the bottom of the tank. In this way, the nonflammable liquid is continuously circulated by the pump 8 for cooling.

(発明が解決しようとする課題) しかしながら、上述した様な構成を有する従来の静止誘
導機器においては、以下に述べる様な解決すべき課題が
あった。
(Problems to be Solved by the Invention) However, in the conventional stationary guidance equipment having the configuration as described above, there were problems to be solved as described below.

即ち、巻線部分に散布される不燃性液体は凝縮性を有し
、機器が課電状態となり温度が上昇すると気化するため
、タンク1内に気化した凝縮性液体が充満し、タンク内
の圧力が上昇し、ひいては、タンクの破損、爆発につな
がる恐れがあった。
In other words, the nonflammable liquid sprayed on the windings has condensability and vaporizes when the device is energized and the temperature rises, so the tank 1 is filled with the vaporized condensable liquid and the pressure inside the tank increases. This could lead to tank damage and explosion.

また、一般に、凝縮性を有する液体は、SF6ガスなど
の非凝縮性の絶縁気体が混在した状態においては、気化
した状態から液体への相変化が起こりにくいという性質
を持つため、冷却性能が大幅に低下する。そこで、従来
、この様な冷却効率の低下を防ぐために、変圧器内部の
温度が上昇して、気化した凝縮性液体がタンク内部に充
満し、十分に絶Rfa能を果せる状態になった時に、前
記非凝縮性の絶縁気体を専用の容器に回収し分離する方
法が用いられているが、構造が非常に複雑になるといっ
た欠点があった。
In addition, in general, condensable liquids have a property that it is difficult for the phase change from a vaporized state to a liquid state to occur when a non-condensable insulating gas such as SF6 gas is mixed, so the cooling performance is significantly reduced. decreases to Conventionally, in order to prevent such a decline in cooling efficiency, when the temperature inside the transformer rises and the tank is filled with vaporized condensable liquid, the transformer reaches a state where it can fully perform its absolute Rfa performance. A method has been used in which the non-condensable insulating gas is collected in a special container and separated, but this method has the disadvantage that the structure becomes very complicated.

本発明は以上の欠点を解決するために提案されたもので
、その目的は、巻線の冷却性能に優れ、タンク内の圧力
上昇を抑えた、絶縁信頼性の高い静止誘導機器を提供す
ることにある。
The present invention was proposed to solve the above-mentioned drawbacks, and its purpose is to provide a stationary induction device with excellent winding cooling performance, suppressed pressure rise in the tank, and high insulation reliability. It is in.

[発明の構成] (課題を解決するための手段) 本発明は、タンク内に鉄心及び巻線を収納して成る静止
誘導機器において、鉄心あるいは巻線の少なくとも一方
を、絶縁性を有する凝縮性冷却媒体と共に容器内に収納
し、前記冷却媒体をタンク外部に設けた冷却器に循環さ
せて冷却する第1の冷却装置を設け、前記容器を非凝縮
性絶縁媒体を充填したタンク内に収納し、また、前記タ
ンクの壁部に、タンクを冷却する第2の冷却装置を設け
たことを特徴とするものである。
[Structure of the Invention] (Means for Solving the Problems) The present invention provides a stationary induction device comprising an iron core and a winding housed in a tank, in which at least one of the iron core or the winding is made of a condensable material having an insulating property. A first cooling device is provided for storing the cooling medium in a container together with a cooling medium and circulating the cooling medium to a cooler provided outside the tank for cooling, and storing the container in a tank filled with a non-condensable insulating medium. Further, the tank is characterized in that a second cooling device for cooling the tank is provided on the wall of the tank.

(作用) 本発明の静止誘導機器によれば、容器内に収納された絶
縁性を有する凝縮性冷却媒体によって、鉄心あるいは巻
線を効率良く冷却することができ、また、気化した凝縮
性ガスはタンク壁部に設けられた第2の冷却装置によっ
て冷却されるので、タンク内の圧力上昇を抑制すること
ができる。
(Function) According to the stationary induction device of the present invention, the core or the winding can be efficiently cooled by the insulating condensable cooling medium housed in the container, and the vaporized condensable gas can be cooled efficiently. Since it is cooled by the second cooling device provided on the tank wall, it is possible to suppress the pressure increase inside the tank.

(実施例) 以下、本発明の一実施例を第1図に基づいて具体的に説
明する。なお、第2図に示した従来型と同一の部材には
同一の符号を付し、説明は省略する。
(Example) Hereinafter, an example of the present invention will be specifically described based on FIG. Note that the same members as those of the conventional type shown in FIG. 2 are given the same reference numerals, and explanations thereof will be omitted.

本実施例においては、第1図に示した様に、外側巻線4
及び内側巻線5から成る巻線を、絶縁性を有する凝縮性
冷却媒体10と共に容器11内に収納して第1の冷却装
置12が形成され、この第1の冷却装置12と鉄心3と
が、SF6ガスなどの非凝縮性絶縁媒体13と共にタン
ク1内に収納されている。また、前記第1の冷却装置1
2を構成する容器11内に収納された冷却媒体10は、
タンク1の外部に設けられた冷却器14に送液ボンプ1
5により送液管16を通して循環するように構成されて
いる。ざらに、前記タンク1の外壁には、タンクを直接
冷却するための第2の冷却装置17が取付けられ、タン
ク内において気化した凝縮性液体の気化ガス及び非凝縮
性絶縁媒体を冷却するように構成されている。また、タ
ンク1の底部には、液化してタンク内を落下した冷却媒
体10を蓄えるための滞留部18が設けられ、上部送液
管16に連通されている。なお、凝縮性を有する冷却媒
体としては、パーフルオロカーボンなどの不燃性の冷却
媒体が用いられる。
In this embodiment, as shown in FIG.
A first cooling device 12 is formed by storing the windings consisting of the inner winding 5 and the inner winding 5 in a container 11 together with an insulating condensable cooling medium 10, and the first cooling device 12 and the iron core 3 are , SF6 gas, or other non-condensable insulating medium 13. Further, the first cooling device 1
The cooling medium 10 housed in the container 11 constituting the
A liquid pump 1 is connected to a cooler 14 provided outside the tank 1.
5 so that the liquid is circulated through a liquid sending pipe 16. Generally speaking, a second cooling device 17 for directly cooling the tank is attached to the outer wall of the tank 1, and is configured to cool the vaporized gas of the condensable liquid and the non-condensable insulating medium vaporized in the tank. It is configured. Furthermore, a retention section 18 is provided at the bottom of the tank 1 to store the cooling medium 10 that has liquefied and fallen within the tank, and is communicated with the upper liquid feeding pipe 16 . Note that as the condensable cooling medium, a nonflammable cooling medium such as perfluorocarbon is used.

この様な構成を有する本実施例の静止誘導機器において
は、第1の冷却装置12の容器11内に収納された巻線
4,5は、優れた冷却機能を有する冷却媒体10によっ
て冷却され、また、熱を得た冷却媒体10は外部に設け
られた冷却器14により冷却されて循環される。また、
熱を得た冷却媒体の一部はタンク内で気化し、絶縁媒体
13と共にタンク1内に浮遊する。このとき、凝縮性を
有する気化ガスはタンク1の外壁に設けられた第2の冷
却装置17によって冷却され、液体となってタンク底部
の滞留部18に蓄えられ、送液管16によって冷却器1
4に送られ循環される。
In the stationary induction device of this embodiment having such a configuration, the windings 4 and 5 housed in the container 11 of the first cooling device 12 are cooled by the cooling medium 10 having an excellent cooling function. Moreover, the cooling medium 10 that has obtained heat is cooled by a cooler 14 provided outside and circulated. Also,
A portion of the cooling medium that has gained heat is vaporized within the tank and floats within the tank 1 together with the insulating medium 13. At this time, the condensable vaporized gas is cooled by the second cooling device 17 provided on the outer wall of the tank 1, becomes a liquid, is stored in the retention section 18 at the bottom of the tank, and is passed through the liquid supply pipe 16 to the cooler 1.
4 and circulated.

また、巻線4,5は絶縁性能を有する″11縮性冷却媒
体10により絶縁され、一方、巻線4,5とタンク1間
の絶縁は、SF6ガスなどの非凝縮性絶縁媒体13によ
って行われる。
Further, the windings 4 and 5 are insulated by a condensable cooling medium 10 having insulation performance, while the insulation between the windings 4 and 5 and the tank 1 is performed by a non-condensable insulating medium 13 such as SF6 gas. be exposed.

この様に本実施例によれば、冷却媒体10を循環させて
いるので冷却効率も高く、また、蒸発した冷却媒体も送
液管16を通して回収されるので、冷却媒体の量も少な
くてすみ、また、運転中に冷却媒体を補充する必要もな
く、保守作業が簡略化される。ざらに、冷却媒体10の
世が少なくてすむので、変圧器の重量を軽減でき、小型
化が可能となり、また、変圧器のコストの削減も可能と
なる。
As described above, according to this embodiment, since the cooling medium 10 is circulated, the cooling efficiency is high, and since the evaporated cooling medium is also recovered through the liquid sending pipe 16, the amount of cooling medium can be reduced. Furthermore, there is no need to replenish the cooling medium during operation, which simplifies maintenance work. In general, since less cooling medium 10 is needed, the weight and size of the transformer can be reduced, and the cost of the transformer can also be reduced.

また、タンク1の外部に設けられた冷却器14は、通常
、気体が混入すると熱交換率が悪くなるが、本実施例に
おいては絶縁媒体13が混入することはないので、冷却
特性は低下しない。ざらに、タンク1内で気化した凝縮
性ガスはタンクの外壁に配設された第2の冷却装置17
により冷却されるため、気化ガスによるタンク内の圧力
上昇も抑えることができる。
Further, in the cooler 14 provided outside the tank 1, the heat exchange rate usually deteriorates when gas gets mixed in, but in this embodiment, the insulating medium 13 does not get mixed in, so the cooling characteristics do not deteriorate. . Roughly, the condensable gas vaporized in the tank 1 is transferred to a second cooling device 17 installed on the outer wall of the tank.
Since the tank is cooled by gas, pressure rise inside the tank due to vaporized gas can also be suppressed.

さらに、巻線4,5は冷却媒体101.:浸漬されてい
るため、タンク1内のガス圧力が高くなることもなく、
コンサベータなどの保全保護装置が簡略化できる。
Furthermore, the windings 4, 5 are connected to the cooling medium 101. : Because it is immersed, the gas pressure inside tank 1 does not increase.
Maintenance protection devices such as conservators can be simplified.

なお、本発明は上述した実施例に限定されるものではな
く、第1の冷却装置を構成する容器内に冷却媒体と共に
収納するのは、巻線4,5及び鉄心3のいずれか一方で
も、両方でも良く、また、それぞれ別容器に収納しても
良い。なお、前記容器は、強化プラスチックなどによる
一体成形品でも良く、あるいは、内筒、外筒及び底板を
液密に組合せたものでも良い。
It should be noted that the present invention is not limited to the embodiments described above, and it is possible to store either the windings 4, 5 or the iron core 3 together with the cooling medium in the container constituting the first cooling device. Both may be used, or each may be stored in separate containers. The container may be an integrally molded product made of reinforced plastic or the like, or may be a liquid-tight combination of an inner cylinder, an outer cylinder, and a bottom plate.

また、タンクの外壁に配設される第2の冷却装置17は
、タンク外壁の補強用リブを中空状に構成し、その内部
に冷媒を流す方式などを用いることができ、その冷却方
法は、空冷、液冷、送風式など適宜選定できる。ざらに
、凝縮性を有する冷却媒体を不燃性媒体とし、タンク1
内に封入する絶縁媒体も不燃性絶縁媒体とすれば、変圧
器全体が不燃化される。
Further, the second cooling device 17 disposed on the outer wall of the tank can use a method such as forming a reinforcing rib on the tank outer wall into a hollow shape and flowing a refrigerant inside the rib, and the cooling method thereof is as follows. Air cooling, liquid cooling, blower type, etc. can be selected as appropriate. Roughly speaking, the condensable cooling medium is used as a non-flammable medium, and tank 1 is
If the insulating medium sealed inside is also a nonflammable insulating medium, the entire transformer becomes nonflammable.

[発明の効果コ 以上述べた様に、本発明によれば、鉄心あるいは巻線の
少なくとも一方を、絶縁性を有する凝縮性冷却媒体で冷
却する第1の冷却装置と、タンク壁部にタンクを冷却す
る第2の冷却装置を設けるというa雫な手段によって、
巻線の冷却性能に優れ、タンク内の圧力上昇を抑えた、
絶縁信頼性の高い静止誘導別器を提供することができる
[Effects of the Invention] As described above, according to the present invention, the first cooling device cools at least one of the iron core or the winding with an insulating condensable cooling medium, and the tank is mounted on the tank wall. By the trivial measure of providing a second cooling device for cooling,
Excellent winding cooling performance, suppressing pressure rise inside the tank,
A static induction separate device with high insulation reliability can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の静止誘導機器の断面図、第2図は従来
の静止誘導機器の構成図である。 1・・・変圧器タンク、2・・・熱交換器、3・・・鉄
心、4・・・外側巻線、5・・・内側巻線、6・・・ノ
ズル、7・・・パイプ、8・・・ポンプ、9・・・不燃
性液体、10・・・凝縮性冷却媒体、11・・・容器、
12・・・第1の冷却装置、13・・・非凝縮性絶縁媒
体、14・・・冷却器、15・・・送液ポンプ、 16・・・送液管、 17・・・第2の冷 却装置、 18・・・滞留部。
FIG. 1 is a sectional view of a stationary guidance device of the present invention, and FIG. 2 is a configuration diagram of a conventional stationary guidance device. DESCRIPTION OF SYMBOLS 1... Transformer tank, 2... Heat exchanger, 3... Iron core, 4... Outer winding, 5... Inner winding, 6... Nozzle, 7... Pipe, 8... Pump, 9... Nonflammable liquid, 10... Condensable cooling medium, 11... Container,
12... First cooling device, 13... Non-condensable insulating medium, 14... Cooler, 15... Liquid feeding pump, 16... Liquid feeding pipe, 17... Second Cooling device, 18... Retention part.

Claims (1)

【特許請求の範囲】 タンク内に鉄心及び巻線を収納して成る静止誘導機器に
おいて、 鉄心あるいは巻線の少なくとも一方を、絶縁性を有する
凝縮性冷却媒体と共に容器内に収納し、前記冷却媒体を
タンク外部に設けた冷却器に循環させて冷却する第1の
冷却装置を設け、前記容器を非凝縮性絶縁媒体を充填し
た前記タンク内に収納し、また、前記タンクの壁部に、
タンクを冷却する第2の冷却装置を設けたことを特徴と
する静止誘導機器。
[Claims] A stationary induction device comprising an iron core and a winding housed in a tank, wherein at least one of the iron core or the winding is housed in a container together with an insulating condensable cooling medium, and the cooling medium A first cooling device is provided for cooling the container by circulating it through a cooler provided outside the tank, the container is housed in the tank filled with a non-condensable insulating medium, and a wall of the tank is provided with:
A stationary induction device characterized by being provided with a second cooling device that cools a tank.
JP29823488A 1988-11-28 1988-11-28 Static induction instrument Pending JPH02144905A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29823488A JPH02144905A (en) 1988-11-28 1988-11-28 Static induction instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29823488A JPH02144905A (en) 1988-11-28 1988-11-28 Static induction instrument

Publications (1)

Publication Number Publication Date
JPH02144905A true JPH02144905A (en) 1990-06-04

Family

ID=17856973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29823488A Pending JPH02144905A (en) 1988-11-28 1988-11-28 Static induction instrument

Country Status (1)

Country Link
JP (1) JPH02144905A (en)

Similar Documents

Publication Publication Date Title
US3024298A (en) Evaporative-gravity cooling systems
CN107430925A (en) Gas-insulating type electrical equipment, particularly gas-insulating type transformer or reactor
US1471096A (en) Electrical apparatus
US4173746A (en) Vaporization cooled electrical apparatus
US4048603A (en) Vaporization cooled transformer
JPH02144905A (en) Static induction instrument
GB1595094A (en) Method and system for cooling electrical apparatus
JP2553157B2 (en) Stationary induction equipment
JPH01147816A (en) Stationary induction apparatus
US2759987A (en) Cooling electrical apparatus
JPH01111310A (en) Static induction device
JPS5860512A (en) Evaporation cooling induction electric appliance
US3023263A (en) Electrical apparatus
JPS596506A (en) Stationary induction apparatus
JPS62259411A (en) Stational induction machine
JPS5823724B2 (en) Evaporative cooling electric induction device
JPS5980916A (en) Recycle of heat loss of electric machine
JPS63208209A (en) Foil winding transformer
JPS58122710A (en) Evaporative cooling type induction electrical apparatus
JP3077958B2 (en) Stationary induction device
JPS61179511A (en) Foil-wound transformer
JPS5984509A (en) Stationary induction electric apparatus
JPH0316770B2 (en)
JPS6072205A (en) Foil-wound transformer
WO1996028833A1 (en) Stationary induction electric appliance