JPH1022135A - Cooling system for stationary induction apparatus - Google Patents

Cooling system for stationary induction apparatus

Info

Publication number
JPH1022135A
JPH1022135A JP17631196A JP17631196A JPH1022135A JP H1022135 A JPH1022135 A JP H1022135A JP 17631196 A JP17631196 A JP 17631196A JP 17631196 A JP17631196 A JP 17631196A JP H1022135 A JPH1022135 A JP H1022135A
Authority
JP
Japan
Prior art keywords
refrigerant
heat
cooling
induction device
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17631196A
Other languages
Japanese (ja)
Inventor
Takashi Iga
尚 伊賀
Kaoru Endo
馨 遠藤
Takashi Shirane
隆志 白根
Hiroyuki Fujita
裕幸 藤田
Kiyoto Hiraishi
清登 平石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP17631196A priority Critical patent/JPH1022135A/en
Publication of JPH1022135A publication Critical patent/JPH1022135A/en
Pending legal-status Critical Current

Links

Landscapes

  • Transformer Cooling (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a cooling system for stationary induction apparatus which can suppress heat dissipation into a room even when a stationary induction apparatus is operated in an overloaded state or immediately after the apparatus is stopped and can prolong the operating time of the apparatus in the overloaded state. SOLUTION: A cooling system is constituted of a stationary induction apparatus 3 installed in the equipment chamber of an underground or indoor substation, a first coolant which fills up the main body tank of the apparatus 3 and directly cools the winding and iron core of the apparatus 3, a heat exchanger 6 which cools the first coolant with a second coolant, and a heat dissipation means which dissipates the heat of the second coolant to the outside of the equipment room. To the cooling system, a heat insulating cover 15 which covers at least part of the tank 2 of the apparatus 3, an air blower 12 which makes the cold air in the equipment chamber in which the apparatus 3 is installed to flow through the space between the cover 15 and tank 2, and an air duct 17 which introduces the cold air passed through the space between the cover 15 and tank 2 to the outside of the equipment room without discharging the cold air into the room.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は静止誘導電器の冷却
システムに係わり、特に地下変電所あるいは屋内変電所
に設置される静止誘導電器の冷却システムに関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cooling system for a static induction device, and more particularly to a cooling system for a static induction device installed in an underground substation or an indoor substation.

【0002】[0002]

【従来の技術】従来一般に採用されている超高圧地下変
電所あるいは屋内変電所に設置される静止誘導電器の冷
却システムは、静止誘導電器のタンク内に第1の冷媒,
例えば油あるいはガスなどの冷却媒体が満たされてお
り、この第1の冷媒によって巻線および鉄心が直接冷却
され、またこの第1の冷媒は、熱交換器を備えた冷却系
を介して第2の冷媒により冷却されるように形成されて
いるのが普通である。
2. Description of the Related Art A cooling system for a static induction device installed in an ultra-high voltage underground substation or an indoor substation, which has been generally employed, includes a first refrigerant,
For example, the cooling medium such as oil or gas is filled, the windings and the iron core are directly cooled by the first coolant, and the first coolant is cooled by the second coolant via a cooling system having a heat exchanger. It is usually formed so that it is cooled by the refrigerant.

【0003】このように超高圧地下変電所に設置される
静止誘導電器の損失によって発生する熱の大部分は、熱
交換器を備えた冷却系,すなわち冷却媒体を循環させる
ポンプ、配管および屋上に設置された冷却塔で屋外に廃
棄される。しかし、この発生熱の一部は、静止誘導電器
本体タンクとその周囲の温度に差があることから、主に
放射と対流によって室内に放散され、室内の温度を上昇
させる。この室内温度が過度に上昇すると保守・点検に
支障を来したり機器に悪影響を与える恐れがあるため、
高温化した空気を換気設備で室外(あるいは建屋外)に
排出しなければならない。
As described above, most of the heat generated by the loss of the stationary induction device installed in the ultra-high voltage underground substation is transmitted to a cooling system having a heat exchanger, that is, a pump, piping and a roof for circulating a cooling medium. It is disposed of outdoors by the installed cooling tower. However, a part of the generated heat is radiated into the room mainly by radiation and convection, and the temperature of the room rises, because there is a difference between the temperature of the stationary induction device main body tank and the surrounding temperature. If the room temperature rises excessively, it may hinder maintenance and inspection or adversely affect the equipment.
The hot air must be ventilated to the outside (or outside the building).

【0004】ところで、地下変電所では機器設置室の階
高低減が建屋建設時のコストダウンに大きな効果がある
ことから、最近においては階高低減を考慮した機器の最
適設計が推進されている。この階高低減には変圧器の縮
小化およびその冷却設備を含めた補機類の縮小化ある
が、機器設置室の階高は、天井に敷設される換気設備や
冷却水配管等のダクト類が変圧器の搬入・搬出の邪魔に
ならない高さにしなければならず、機器設置室の大きな
階高低減は難しいのが実情である。
[0004] In underground substations, reduction of the floor height of the equipment installation room has a great effect on cost reduction during building construction. Therefore, recently, optimal design of equipment in consideration of floor height reduction has been promoted. This floor height reduction includes downsizing of transformers and auxiliary equipment including their cooling equipment.However, the floor height of the equipment installation room is limited by ducts such as ventilation equipment and cooling water piping laid on the ceiling. However, the height must be such that it does not hinder the loading and unloading of transformers.

【0005】特に最近になって、主に防災上の理由から
超高圧地下変電所に従来の油入変圧器にかわって大容量
のガス絶縁変圧器が適用され始めたため、変圧器から室
内への熱の放散とこれを室外に排出するための換気設備
の大型化、特に換気ダクトの大型化が従来にも増して大
きな問題となってきた。これは、ガス絶縁変圧器は従来
の油入変圧器と比べて一般に運転温度が高いことと、変
圧器本体タンクが多分割型になるために表面積が増えて
放射によって室内に放散される熱量が増加するためであ
る。
[0005] Particularly recently, large-capacity gas-insulated transformers have begun to be used instead of conventional oil-filled transformers in ultra-high-voltage underground substations, mainly for disaster prevention reasons. Dissipation of heat and enlargement of ventilation equipment for discharging the heat outside the room, especially enlargement of ventilation ducts, have become a bigger problem than ever before. This is because gas-insulated transformers generally have a higher operating temperature than conventional oil-immersed transformers, and because the transformer main tank is a multi-segment type, the surface area increases and the amount of heat dissipated into the room by radiation increases. This is to increase.

【0006】この問題を解決するために、地下または屋
内に設置される静止誘導電器本体タンク外側の全面また
は一部分に断熱材を設け、静止誘導電器から室内への放
熱を低減するとともに、静止誘導電器の発生損失による
熱は、巻線および鉄心を直接冷却する冷媒を間接的に冷
却するための熱交換器を経由して建屋外へ排出するよう
にしたものがある。なお、これに関連するものとして
は、例えば特開平5−6827号公報が挙げられる。
In order to solve this problem, a heat insulating material is provided on the entire surface or a part of the outside of the tank of the stationary induction device installed underground or indoors to reduce the heat radiation from the stationary induction device to the room, The heat generated by the heat loss is discharged to the outside of the building via a heat exchanger for indirectly cooling the refrigerant that directly cools the windings and the iron core. Incidentally, as related to this, for example, Japanese Patent Application Laid-Open No. 5-6827 is mentioned.

【0007】[0007]

【発明が解決しようとする課題】このように形成されて
いる静止誘導電器の冷却システムであると、建屋内への
放熱を低減するとともに、機器の発生損失による熱は熱
交換器を経由して建屋外へ放出されるので、建屋の換気
ダクトを小さくでき、階高を機器が必要な高さまで低減
することが可能となり、通常運転に際しては特に問題に
なることはないのであるが、しかしながら、変電所では
一つの変圧器が故障あるいは運転不可能になった場合に
は、他の変圧器を一時的に過負荷運転せざるを得ない場
合が生ずる。このときには次のような問題を生ずる恐れ
がある。
With the cooling system for a stationary induction device formed as described above, the heat radiation to the building is reduced, and the heat generated by the loss of the equipment is passed through the heat exchanger. Since it is released outside the building, the ventilation duct of the building can be made smaller and the floor height can be reduced to the required height of the equipment, and there is no particular problem during normal operation, however, In some cases, if one transformer fails or becomes inoperable, another transformer may be temporarily overloaded. At this time, the following problem may occur.

【0008】すなわち、変圧器を過負荷運転すると巻線
に流れる電流が増大し、当然のことながら損失による発
熱量も増加する。特に、最近の超高圧地下変電所に適用
され始めた容量300MVA級の大容量ガス絶縁変圧器
では、もともとガスの熱容量が小さいために過負荷運転
時のガスの温度上昇、巻線等の構造物の温度上昇が著し
い。そのため、大容量ガス絶縁変圧器では信頼性を損な
わずに過負荷運転時間を延長することが課題となってく
る。
That is, when the transformer is overloaded, the current flowing through the windings increases, and naturally the amount of heat generated by the loss also increases. In particular, large-capacity gas-insulated transformers with a capacity of 300 MVA, which have recently begun to be applied to ultra-high-voltage underground substations, have inherently low heat capacity of the gas, so the temperature rise of the gas during overload operation, structures such as windings Temperature rise is remarkable. Therefore, in a large-capacity gas insulated transformer, it is a problem to extend the overload operation time without losing reliability.

【0009】ここで、前述したようにタンクの大部分を
断熱材で覆った場合、内部の温度上昇はさらに厳しくな
り、絶縁物の寿命が短くなって信頼性が低下することに
なり、その結果、過負荷運転時間がさらに短くなるとい
う問題が生じる。勿論冷却系統に故障が生じた場合にも
同様なことが起きる。すなわち、従来のこの種の冷却シ
ステムでは大容量ガス絶縁変圧器を過負荷運転せざるを
得ない場合、あるいはガス冷却器やブロワが故障したと
きの信頼性の低下の点については考慮されていなかっ
た。
Here, as described above, when most of the tank is covered with a heat insulating material, the temperature rise inside the tank becomes more severe, the life of the insulator is shortened, and the reliability is reduced. This causes a problem that the overload operation time is further reduced. Of course, the same occurs when a failure occurs in the cooling system. That is, the conventional cooling system of this type does not consider the case where the large-capacity gas insulated transformer must be overloaded or the reliability of the gas cooler or the blower deteriorates when it fails. Was.

【0010】本発明はこれに鑑みなされたもので、その
目的とするところは、たとえ過負荷運転時であっても、
あるいは停止直後時であっても、室内への熱放散を抑制
することができ、過負荷運転時間を延長することができ
る静止誘導電器の冷却システムを提供するにある。
[0010] The present invention has been made in view of the above, and its object is to solve the problem even during overload operation.
Another object of the present invention is to provide a cooling system for a stationary induction machine that can suppress heat dissipation into a room even immediately after a stop and extend the overload operation time.

【0011】[0011]

【課題を解決するための手段】すなわち本発明は、地下
または屋内変電所の機器室内に設置される静止誘導電器
と、この静止誘導電器の本体タンク内に充填され、静止
誘導電器の巻線及び鉄心を直接冷却する第1の冷媒と、
この第1の冷媒を第2の冷媒で冷却する熱交換器と、前
記第2の冷媒の熱を屋外に廃棄する熱廃棄手段を備えた
静止誘導電器の冷却システムにおいて、前記冷却システ
ムに、前記静止誘導電器の本体タンクの少なくとも一部
を覆う防熱カバーと、この防熱カバーと本体タンクとの
間の間隙に前記静止誘導電器が設置される機器室内の冷
気を流通させる送風機と、前記間隙を通過した冷気を機
器室内に放出することなく機器室外に導く導風路とを設
け所期の目的を達成するようにしたものである。
That is, the present invention provides a stationary induction device installed in an equipment room of an underground or indoor substation, and a winding of the stationary induction device which is filled in a main body tank of the static induction device. A first refrigerant for directly cooling the iron core;
In a cooling system for a stationary induction electric machine including a heat exchanger that cools the first refrigerant with a second refrigerant, and a heat disposing unit that disposes of the heat of the second refrigerant outdoors, the cooling system includes: A heat-insulating cover that covers at least a part of the main body tank of the stationary induction device, a blower that circulates cool air in an equipment room in which the static induction device is installed in a gap between the heat-insulating cover and the main body tank, and passes through the gap. An air guide path for guiding the cooled air to the outside of the equipment room without discharging it into the equipment room is provided to achieve the intended purpose.

【0012】また、地下または屋内変電所の機器室内に
設置される静止誘導電器と、この静止誘導電器の本体タ
ンク内に充填され、静止誘導電器の巻線及び鉄心を直接
冷却する第1の冷媒と、この第1の冷媒を第2の冷媒で
冷却する熱交換器と、前記第2の冷媒の熱を屋外に廃棄
する熱廃棄手段と、前記機器室に設けられ、機器室内の
空気を機器室外に排気する排気風洞とを備えた静止誘導
電器の冷却システムにおいて、前記冷却システムに、前
記静止誘導電器の本体タンクの少なくとも一部を覆う防
熱カバーと、この防熱カバーと本体タンクとの間の間隙
に前記静止誘導電器が設置される機器室内の冷気を流通
させる送風機と、前記間隙を通過した冷気を機器室内に
放出することなく前記排気風洞に導く導風路とを設ける
ようにしたものである。
Further, a stationary induction device installed in an equipment room of an underground or indoor substation, and a first refrigerant filled in a main tank of the stationary induction device and directly cooling a winding and an iron core of the stationary induction device A heat exchanger that cools the first refrigerant with a second refrigerant; a heat disposal unit that disposes of the heat of the second refrigerant outdoors; In a cooling system for a stationary induction electric machine having an exhaust wind tunnel for exhausting outdoors, a heat insulating cover covering at least a part of a main body tank of the stationary induction electric appliance, wherein the cooling system is provided between the heat insulating cover and the main body tank. A blower that circulates cool air in the equipment room in which the stationary induction device is installed in the gap, and a wind guide path that guides the cool air that has passed through the gap to the exhaust wind tunnel without discharging the cool air into the equipment room. That.

【0013】また、地下または屋内変電所に設置される
静止誘導電器と、この静止誘導電器の巻線及び鉄心を直
接冷却する第1の冷媒とこの第1の冷媒を第2の冷媒で
冷却する熱交換器と、この第2の冷媒の熱を屋外に廃棄
する熱廃棄手段を備えた静止誘導電器の冷却システムに
おいて、前記冷却システムに、前記静止誘導電器の本体
タンク表面を冷却するタンク表面水冷手段と、前記第2
の冷媒を供給する系路から前記タンク表面水冷手段に冷
媒を供給するバイパス路とを設けるようにしたものであ
る。また、この場合、前記タンク表面水冷手段を水冷ジ
ャケットまたは水冷パイプで形成するようにしたもので
ある。
Also, a stationary induction device installed in an underground or indoor substation, a first refrigerant for directly cooling the windings and the iron core of the stationary induction device, and a second refrigerant for cooling the first refrigerant. In a cooling system for a stationary induction electric device including a heat exchanger and heat disposing means for disposing of the heat of the second refrigerant to the outside, a tank surface water cooling for cooling a main tank surface of the stationary induction electric device is provided in the cooling system. Means, said second
And a bypass for supplying a refrigerant from the system for supplying the refrigerant to the tank surface water cooling means. In this case, the tank surface water cooling means is formed by a water cooling jacket or a water cooling pipe.

【0014】すなわちこのように形成された静止誘導電
器の冷却システムであると、本体タンクにその少なくと
も一部を覆う防熱カバーが設けられ、かつこの本体タン
クと防熱カバーとの間の間隙に、送風機により機器室内
の冷気を流通させ、かつこの間隙を通過した冷気を機器
室外に導く導風路を備え、そしてこの導風路が排気風洞
に連結されていることから、本体タンクは機器室内の冷
気で冷却され、その熱は機器室内に放散されることなく
排気風洞から屋外に排出される。すなわち、局所的な発
熱源の熱を一旦室内に放散することなく室外に排出する
ことができるので、給排気設備、特に風洞が大幅に小型
化され、さらに、機器室内への熱の放散を減らすために
本体タンクからの放熱を抑制するのではなく、タンク表
面を強制的に冷却しているので、過負荷運転時や補器停
止時にもガスや、巻線等の構造物の温度上昇を促進する
ことがなく、過負荷運転時間を延長し信頼性を向上させ
ることができるのである。
That is, according to the cooling system for a stationary induction device formed as described above, a heat-insulating cover that covers at least a part of the main body tank is provided, and a blower is provided in a gap between the main body tank and the heat-insulating cover. The cooler circulates cool air in the equipment room, and has an air guide path for guiding the cool air passing through the gap to the outside of the equipment room. And the heat is discharged outside from the exhaust wind tunnel without being dissipated into the equipment room. In other words, since the heat of the local heat source can be discharged outside without temporarily dissipating it indoors, the air supply / exhaust equipment, especially the wind tunnel, is significantly reduced in size, and the heat dissipation into the equipment room is reduced. Instead of suppressing the heat radiation from the main tank, the tank surface is forcibly cooled, so the temperature of the gas and the structure of windings and other structures are increased even during overload operation or when auxiliary equipment is stopped. Therefore, overload operation time can be extended and reliability can be improved.

【0015】[0015]

【発明の実施の形態】以下、図示した実施例に基づいて
本発明を詳細に説明する。図1にはその冷却システムを
備えた静止誘導電器およびその周辺が示されている。な
お、この図は静止誘導電器の冷却システムを超高圧地下
変電所に適用した場合の例を示すものである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail based on illustrated embodiments. FIG. 1 shows a stationary induction device provided with the cooling system and its surroundings. This figure shows an example in which the cooling system for a stationary induction device is applied to an ultra-high voltage underground substation.

【0016】図中1は地下変電所内で変圧器等が設置さ
れる機器室であり、2はこの機器室1に設置されたガス
絶縁変圧器の本体タンクである。なお、ここでは1相分
のガス絶縁変圧器の本体タンクが示されているが、実際
には3台で容量300MVAの3相ガス絶縁変圧器3を
構成している。本体タンク2は縦型の円筒状に形成さ
れ、その側部にはリードダクト4が設けられている。こ
のリードダクトは一次巻線に接続されている一次リード
線を引き出すためのリードダクトである。この本体タン
ク2内には、図示はしていないが巻線と鉄心、それに絶
縁と冷却の媒体をなすSF6ガスが収納されている。
In the figure, reference numeral 1 denotes an equipment room in which a transformer and the like are installed in an underground substation. Reference numeral 2 denotes a main tank of a gas-insulated transformer installed in the equipment room 1. Although the main tank of the gas-insulated transformer for one phase is shown here, actually three units constitute a three-phase gas-insulated transformer 3 having a capacity of 300 MVA. The main body tank 2 is formed in a vertical cylindrical shape, and a lead duct 4 is provided on a side portion thereof. This lead duct is a lead duct for drawing out a primary lead wire connected to the primary winding. Although not shown, the main body tank 2 contains a winding and an iron core, and SF6 gas serving as an insulating and cooling medium.

【0017】運転時には鉄心と巻線には損失による熱が
発生している。また、本体タンク2にはブロワ5、ガス
−水熱交換器6が配管7で接続されており、ブロワ5で
SF6ガスを循環させることにより、巻線と鉄心を冷却
している。ここで、巻線と鉄心から熱を奪って高温とな
ったSF6ガスはガス−水熱交換器6で冷却水と熱交換
して低温となり、再びブロワ5で本体タンク2内に送ら
れる。ガス−水熱交換器6で熱交換して高温となった冷
却水は冷却水配管8とポンプ9で屋上に設置された冷却
塔10によって外気と熱交換して低温になり、再びガス
−水熱交換器6に送られる。
During operation, heat due to loss is generated in the iron core and the winding. Further, a blower 5 and a gas-water heat exchanger 6 are connected to the main body tank 2 via a pipe 7, and the blower 5 circulates SF6 gas to cool the windings and the iron core. Here, the SF6 gas, which has been heated to a high temperature by removing heat from the windings and the iron core, exchanges heat with the cooling water in the gas-water heat exchanger 6 to have a low temperature, and is sent again into the main body tank 2 by the blower 5. The cooling water, which has been heated to a high temperature by the heat exchange in the gas-water heat exchanger 6, is cooled by the cooling water pipe 8 and the pump 9 to the outside air by the cooling tower 10 installed on the roof. The heat is sent to the heat exchanger 6.

【0018】地下変電所に設置された変圧器等の静止誘
導電器の損失熱の大部分はこのような水冷却システムに
よって屋外に廃棄されている。しかし、通常、静止誘導
電器本体タンクの表面温度は機器設置室内の雰囲気温度
に比べて高いので、放射と対流によって本体タンク表面
から機器室内に熱を放散している。また、変電所では静
止誘導電器以外の機器にも損失があるので、これらの熱
を室外に廃棄して室内の温度や湿度を定められた範囲に
維持するための給排気設備が備えられている。
Most of the heat loss of stationary induction devices such as transformers installed in underground substations is disposed of outdoors by such a water cooling system. However, since the surface temperature of the stationary induction device main body tank is generally higher than the ambient temperature in the equipment installation room, heat is radiated from the main body tank surface into the equipment room by radiation and convection. In addition, since substations have losses in equipment other than static induction equipment, air supply and exhaust equipment are provided to discard these heats outside the room and maintain the temperature and humidity in the room within specified ranges. .

【0019】本実施例でもこのような給排気設備を備え
ている。すなわち、11は外気を機器室1内に導入する
給気風洞であり、12は送風機である。また、13、1
4はそれぞれ機器室1内の空気を屋外に排出する排気風
洞と送風機である。ここで、本実施例の大容量ガス絶縁
変圧器3は従来から一般に用いられてきた油入変圧器に
比べて運転温度が高いために、本体タンク2表面の温度
と機器室1内の雰囲気温度との差が大きくなる。さら
に、前述もしたが、大容量のガス絶縁変圧器では1タン
ク当たり100MVA程度の容量になるよう分割するの
で本体タンクの表面積が大きくなる。その結果、室内に
放散される熱量は膨大になり、これを屋外に廃棄するた
めに排気風洞は大型化する。排気風洞が大型化すると機
器室の階高が増加するので、変電所建屋の建設コストが
著しく増加するという問題が生じることになる。
This embodiment is also provided with such a supply / exhaust facility. That is, 11 is an air supply wind tunnel for introducing outside air into the equipment room 1, and 12 is a blower. Also, 13, 1
Reference numeral 4 denotes an exhaust wind tunnel and a blower for discharging the air in the equipment room 1 to the outside. Here, since the large-capacity gas-insulated transformer 3 of the present embodiment has a higher operating temperature than the oil-filled transformer conventionally used in general, the temperature of the surface of the main body tank 2 and the ambient temperature in the equipment room 1 are high. And the difference becomes large. Further, as described above, since a large-capacity gas-insulated transformer is divided so as to have a capacity of about 100 MVA per tank, the surface area of the main tank increases. As a result, the amount of heat dissipated indoors becomes enormous, and the exhaust wind tunnel becomes large in order to dispose the heat outdoors. As the size of the exhaust wind tunnel increases, the floor height of the equipment room increases, which causes a problem that the construction cost of the substation building increases significantly.

【0020】この問題を解決するために、本実施例で
は、本体タンク2の少なくとも一部を覆う防熱カバー1
5と、本体タンク2と防熱カバー15との間の間隙に機
器室1内の冷気を流通させる送風機16と、この間隙を
通過した冷気を機器室1内に放出することなく機器室1
外に導く導風路17を備え、この導風路17を排気風洞
13に連結するようにしたのである。
In order to solve this problem, in this embodiment, a heat insulating cover 1 covering at least a part of the main body tank 2 is provided.
5, a blower 16 for circulating cool air in the equipment room 1 in a gap between the main body tank 2 and the heat insulating cover 15, and a cool air passing through this gap without discharging the cool air into the equipment room 1.
An air guide path 17 is provided to guide the air to the outside, and this air guide path 17 is connected to the exhaust air tunnel 13.

【0021】なお、防熱カバー15はステンレス等の薄
板材で構成される。これにより、本体タンク2は機器室
1内の冷気で冷却され、その熱は機器室1内に放散され
ることなく排気風洞13から屋外に排出される。すなわ
ち、本実施例では、局所的な発熱源の熱を一旦室内に放
散することなく室外に排出することができるので、給排
気設備、特に風洞が大幅に小型化される。
The heat-insulating cover 15 is made of a thin plate such as stainless steel. Thereby, the main body tank 2 is cooled by the cool air in the equipment room 1, and the heat is discharged outside from the exhaust air tunnel 13 without being diffused into the equipment room 1. That is, in this embodiment, since the heat of the local heat source can be discharged outside without temporarily dissipating it indoors, the size of the air supply / exhaust equipment, especially the wind tunnel, is greatly reduced.

【0022】さらに、本実施例では、機器室1内への熱
の放散を減らすために本体タンク2からの放熱を抑制す
るのではなく、タンク表面を強制的に冷却している。そ
のため、過負荷運転時や補器停止時にもガスや、巻線等
の構造物の温度上昇を促進することがなく、過負荷運転
時間を延長し、信頼性を向上させることができる。すな
わち、本実施例によれば、過負荷運転時や補器停止時の
信頼性を犠牲にすることなく、室内への熱放散を低減す
る事が可能となる。
Further, in the present embodiment, the surface of the tank is forcibly cooled instead of suppressing the heat radiation from the main tank 2 in order to reduce the heat dissipation into the equipment room 1. Therefore, even when the overload operation is performed or the auxiliary device is stopped, the temperature of the gas or the structure such as the winding is not increased, so that the overload operation time can be extended and the reliability can be improved. That is, according to the present embodiment, it is possible to reduce the heat dissipation into the room without sacrificing the reliability during the overload operation or the stop of the auxiliary device.

【0023】なお、本実施例ではガス絶縁変圧器3の一
つの本体タンク2ごとに防熱カバーを備えた例を示した
が、常にこのようにしなければならないわけではなく、
例えば複数の本体タンク2を一括して覆う防熱カバーを
用いるようにしても良いことは勿論である。
In the present embodiment, an example is shown in which a heat insulating cover is provided for each of the main body tanks 2 of the gas insulated transformer 3, but this is not always the case.
For example, it goes without saying that a heat insulating cover that covers a plurality of main tanks 2 at a time may be used.

【0024】次に、本発明の他の実施例を図2を参照し
ながら説明する。同図において前述の実施例と同一の構
成要素には同じ参照番号を付したのでその詳細説明は省
略する。本実施例が前述の実施例と異なる点は、本体タ
ンク2の冷却を水冷にしたことである。すなわち、18
は本体タンク2に巻回された冷却パイプであり、空冷式
冷水製造装置19に接続されている。ここで、冷却パイ
プ18として銅パイプを使用し、本体タンク2と銀ロウ
付けすれば熱的な接触が良好となる。
Next, another embodiment of the present invention will be described with reference to FIG. In the figure, the same reference numerals are given to the same components as those in the above-described embodiment, and the detailed description will be omitted. This embodiment is different from the above-described embodiment in that the main body tank 2 is cooled with water. That is, 18
Is a cooling pipe wound around the main body tank 2 and is connected to an air-cooled cold water producing apparatus 19. Here, if a copper pipe is used as the cooling pipe 18 and the main tank 2 is soldered to silver, the thermal contact is improved.

【0025】このように構成することにより、本体タン
ク表面2の熱は冷却パイプ18内の冷却水によって空冷
式冷水製造装置19に移動し、さらにこの空冷式冷水製
造装置19で機器室1内の冷気と熱交換することによ
り、熱は吹出し空気に移動する。この吹き出し空気は機
器室1内に放出されることなく導風路17を経由して排
気風洞13から機器室1外に排出される。
With this configuration, the heat of the main body tank surface 2 is transferred by the cooling water in the cooling pipe 18 to the air-cooled chilled water producing device 19, and further, the air-cooled chilled water producing device 19 causes By exchanging heat with cold air, heat is transferred to the blown air. The blown air is discharged from the exhaust air tunnel 13 to the outside of the equipment room 1 via the air guide path 17 without being discharged into the equipment room 1.

【0026】このように、本実施例によっても第1の実
施例と同様に、局所的な発熱源の熱を一旦室内に放散す
ることなく室外に排出するので、給・排気設備、特に風
洞が大幅に小型化する事が可能となる。さらに、本実施
例でもタンク表面を強制的に冷却しているので、過負荷
運転時や補器停止時にもガスや巻線等の構造物の温度上
昇を促進することがない。従って、本実施例によっても
第1の実施例と同様の効果がある。
As described above, according to the present embodiment, similarly to the first embodiment, the heat of the local heat source is discharged to the outside without temporarily dissipating the heat into the room. It is possible to greatly reduce the size. Further, since the tank surface is also forcibly cooled in this embodiment, the temperature of the gas or the structure such as the winding does not increase even during the overload operation or when the auxiliary device is stopped. Therefore, the present embodiment has the same effect as the first embodiment.

【0027】また、本実施例では冷却パイプ18に空冷
式冷水製造装置19を接続したが、ガス−水熱交換器6
と熱廃棄手段10を接続する冷却水配管8を分岐させ
て、ガス−水熱交換器6と本体タンク2の冷却パイプ1
8とを並列に接続しても良い。このように構成すると、
空冷式冷水製造装置19を使用する場合に比べて本体タ
ンク2の表面の温度はやや高くなるが、システムが簡素
化されるという利点もある。
In this embodiment, the cooling pipe 18 is connected to the air-cooled cold water producing apparatus 19, but the gas-water heat exchanger 6
Of the cooling water pipe 8 connecting the gas and water heat exchanger 6 and the cooling pipe 1 of the main tank 2
8 may be connected in parallel. With this configuration,
Although the temperature of the surface of the main body tank 2 is slightly higher than when the air-cooled chilled water production device 19 is used, there is an advantage that the system is simplified.

【0028】また、この実施例では、本体タンクの表面
を水冷却するに際し、冷却パイプを用いるようにした
が、例えば図3に示されているように、本体タンクを二
重に,すなわち水例ジャケット20a,20bを形成し
ジャケットに冷却水を流通させるようにしてもよい。な
お、21はジャケット接続配管である。
Further, in this embodiment, the cooling pipe is used for cooling the surface of the main body tank with water. However, as shown in FIG. The jackets 20a and 20b may be formed so that the cooling water flows through the jackets. In addition, 21 is a jacket connection pipe.

【0029】以上説明したようにこのように形成された
静止誘導電器の冷却システムであると、熱は機器室内に
放散されることなく屋外に排出される。すなわち、局所
的な発熱源の熱を一旦室内に放散することなく室外に排
出することができるので、従来のように機器室内への熱
の放散を減らすために本体タンクからの放熱を抑制する
のではなく、本体タンク表面が強制的に冷却されるの
で、過負荷運転時や補器停止時にもガスや、巻線等の構
造物の温度上昇を促進することがなく、過負荷運転時間
を延長し信頼性を向上させることができる。
As described above, in the cooling system for the stationary induction device formed as described above, heat is discharged outside without being radiated into the equipment room. That is, since the heat of the local heat source can be discharged outside without temporarily dissipating it indoors, the heat radiation from the main body tank should be suppressed to reduce the heat dissipation to the equipment room as in the conventional case. Rather, the main tank surface is forcibly cooled, so even during overload operation or when auxiliary equipment is stopped, the temperature of gas, windings and other structures are not increased, and the overload operation time is extended. Reliability can be improved.

【0030】[0030]

【発明の効果】以上説明してきたように本発明によれ
ば、たとえ過負荷運転時であっても、あるいは補器停止
時であっても、室内への熱放散を抑制することができ、
過負荷運転時間を延長することができるこの種の静止誘
導電器の冷却システムを得ることができる。
As described above, according to the present invention, heat dissipation to the room can be suppressed even during overload operation or when auxiliary equipment is stopped.
It is possible to obtain a cooling system for a static induction device of this type that can extend the overload operation time.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の静止誘導電器の冷却システムの一実施
例を示す縦断側面図である。
FIG. 1 is a vertical sectional side view showing an embodiment of a cooling system for a stationary induction device according to the present invention.

【図2】本発明の静止誘導電器の冷却システムの他の実
施例を示す縦断側面図である。
FIG. 2 is a longitudinal sectional side view showing another embodiment of the cooling system for the stationary induction device of the present invention.

【図3】本発明の静止誘導電器の冷却システムの他の実
施例を示す縦断側面図である。
FIG. 3 is a longitudinal sectional side view showing another embodiment of the cooling system for the stationary induction device of the present invention.

【符号の説明】[Explanation of symbols]

1…機器室、2…本体タンク、3…ガス絶縁変圧器、4
…リードダクト、5…ブロワ、6…ガス−水熱交換器、
7…配管、8…冷却水配管、9…ポンプ、10…冷却
塔、11…吸気風洞、12…送風機、13…排気風洞、
14…送風機、15…防熱カバー、16…送風機、17
…導風路、18…水冷パイプ、19…空冷式冷水製造装
置。
1 ... equipment room, 2 ... body tank, 3 ... gas-insulated transformer, 4
... lead duct, 5 ... blower, 6 ... gas-water heat exchanger,
7 ... piping, 8 ... cooling water piping, 9 ... pump, 10 ... cooling tower, 11 ... intake wind tunnel, 12 ... blower, 13 ... exhaust wind tunnel,
14: blower, 15: heat-insulating cover, 16: blower, 17
... air duct, 18 ... water-cooled pipe, 19 ... air-cooled cold water production equipment

───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤田 裕幸 茨城県日立市国分町一丁目1番1号 株式 会社日立製作所国分工場内 (72)発明者 平石 清登 茨城県日立市国分町一丁目1番1号 株式 会社日立製作所国分工場内 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Hiroyuki Fujita 1-1-1, Kokubuncho, Hitachi City, Ibaraki Prefecture Inside the Kokubu Plant, Hitachi, Ltd. (72) Inventor Kiyoto Hiraishi 1-1-1, Kokubuncho, Hitachi City, Ibaraki Prefecture No. 1 Inside the Kokubu Plant of Hitachi, Ltd.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 地下または屋内変電所の機器室内に設置
される静止誘導電器と、この静止誘導電器の本体タンク
内に充填され、静止誘導電器の巻線及び鉄心を直接冷却
する第1の冷媒と、この第1の冷媒を第2の冷媒で冷却
する熱交換器と、前記第2の冷媒の熱を屋外に廃棄する
熱廃棄手段とを備えた静止誘導電器の冷却システムにお
いて、 前記冷却システムに、静止誘導電器の本体タンクの表面
を冷却するタンク表面冷却手段と、本体タンク表面の熱
を静止誘導電器が設置されている室内に放散することな
く機器室外に移送する熱移送手段とを設けたことを特徴
とする静止誘導電器の冷却システム。
1. A static induction device installed in an equipment room of an underground or indoor substation, and a first refrigerant filled in a main tank of the static induction device and directly cooling a winding and a core of the static induction device. A heat exchanger for cooling the first refrigerant with a second refrigerant; and a heat disposing means for disposing of the heat of the second refrigerant outdoors. A tank surface cooling means for cooling the surface of the main body tank of the stationary induction device, and a heat transfer means for transferring heat of the surface of the main body tank to the outside of the equipment room without dissipating heat into the room where the stationary induction device is installed. A cooling system for a stationary induction device.
【請求項2】 地下または屋内変電所の機器室内に設置
される静止誘導電器と、この静止誘導電器の本体タンク
内に充填され、静止誘導電器の巻線及び鉄心を直接冷却
する第1の冷媒と、この第1の冷媒を第2の冷媒で冷却
する熱交換器と、前記第2の冷媒の熱を屋外に廃棄する
熱廃棄手段とを備えた静止誘導電器の冷却システムにお
いて、 前記冷却システムに、前記静止誘導電器の本体タンクの
少なくとも一部を覆う防熱カバーと、この防熱カバーと
本体タンクとの間の間隙に静止誘導電器が設置されてい
る機器室内の冷気を流通させる送風機と、前記間隙を通
過した冷気を機器室内に放出することなく機器室外に導
く導風路とを設けたことを特徴とする静止誘導電器の冷
却システム。
2. A static induction device installed in an equipment room of an underground or indoor substation, and a first refrigerant filled in a main tank of the static induction device and directly cooling a winding and a core of the static induction device. A heat exchanger for cooling the first refrigerant with a second refrigerant; and a heat disposing means for disposing of the heat of the second refrigerant outdoors. A heat-insulating cover that covers at least a part of the main body tank of the stationary induction device, a blower that circulates cool air in an equipment room in which the static induction device is installed in a gap between the heat-insulating cover and the main body tank, A cooling system for a stationary induction appliance, comprising: a cooling air passage that guides cold air that has passed through the gap to the outside of the equipment room without discharging the cool air into the equipment room.
【請求項3】 地下または屋内変電所の機器室内に設置
される静止誘導電器と、この静止誘導電器の本体タンク
内に充填され、静止誘導電器の巻線及び鉄心を直接冷却
する第1の冷媒と、この第1の冷媒を第2の冷媒で冷却
する熱交換器と、前記第2の冷媒の熱を屋外に廃棄する
熱廃棄手段と、前記機器室に設けられ、機器室内の空気
を機器室外に排気する排気風洞とを備えた静止誘導電器
の冷却システムにおいて、 前記冷却システムに、前記静止誘導電器の本体タンクの
少なくとも一部を覆う防熱カバーと、この防熱カバーと
本体タンクとの間の間隙に静止誘導電器が設置されてい
る機器室内の冷気を流通させる送風機と、前記間隙を通
過した冷気を機器室内に放出することなく前記排気風洞
に導く導風路とを設けたことを特徴とする静止誘導電器
の冷却システム。
3. A static induction device installed in an equipment room of an underground or indoor substation, and a first refrigerant filled in a main tank of the static induction device and directly cooling a winding and an iron core of the static induction device. A heat exchanger that cools the first refrigerant with a second refrigerant; a heat disposal unit that disposes of the heat of the second refrigerant outdoors; In a cooling system for a stationary induction electric device having an exhaust wind tunnel for exhausting outdoors, a heat insulating cover that covers at least a part of a main body tank of the stationary induction electric appliance, A blower that circulates cool air in the equipment room in which the static induction device is installed in the gap, and a wind guide path that guides the cool air that has passed through the gap to the exhaust wind tunnel without discharging the cool air into the equipment room. To rest Conductive collector cooling system.
【請求項4】 地下または屋内変電所の機器室内に設置
される静止誘導電器と、この静止誘導電器の本体タンク
内に充填され、静止誘導電器の巻線及び鉄心を直接冷却
する第1の冷媒と、この第1の冷媒を第2の冷媒で冷却
する熱交換器と、前記第2の冷媒の熱を屋外に廃棄する
熱廃棄手段を備えた静止誘導電器の冷却システムにおい
て、 前記冷却システムに、前記静止誘導電器の本体タンクの
表面を冷却するタンク表面水冷手段と、このタンク表面
水冷手段に冷水を供給する冷水供給手段とを設けたこと
を特徴とする静止誘導電器の冷却システム。
4. A stationary induction device installed in an equipment room of an underground or indoor substation, and a first refrigerant filled in a main tank of the stationary induction device and directly cooling a winding and an iron core of the static induction device And a heat exchanger for cooling the first refrigerant with a second refrigerant, and a cooling system for a stationary induction electric machine including a heat disposal means for disposing of the heat of the second refrigerant outdoors. And a tank surface water cooling means for cooling the surface of the main body tank of the stationary induction electric device, and a chilled water supply means for supplying cold water to the tank surface water cooling means.
【請求項5】 地下または屋内変電所に設置される静止
誘導電器と、この静止誘導電器の巻線及び鉄心を直接冷
却する第1の冷媒と、この第1の冷媒を第2の冷媒で冷
却する熱交換器と、この第2の冷媒の熱を屋外に廃棄す
る熱廃棄手段を備えた静止誘導電器の冷却システムにお
いて、 前記冷却システムに、静止誘導電器の本体タンク表面を
冷却するタンク表面水冷手段と、このタンク表面水冷手
段に冷水を供給する空冷式冷水製造手段と、この空冷式
冷水製造手段の吹出し空気を前記静止誘導電器が設置さ
れる機器室内に放出することなく室外に排出する導風路
とを設けたことを特徴とする静止誘導電器の冷却システ
ム。
5. A static induction device installed in an underground or indoor substation, a first refrigerant that directly cools a winding and an iron core of the static induction device, and the first refrigerant is cooled by a second refrigerant. A cooling system for a stationary induction device, comprising: a heat exchanger to be cooled; and a heat disposal means for disposing of the heat of the second refrigerant to the outside. Means, an air-cooled chilled water producing means for supplying chilled water to the tank surface water-cooling means, and a guide for discharging the air blown out from the air-cooled chilled water producing means to the outside without discharging the air into the equipment room in which the stationary induction device is installed. A cooling system for a stationary induction device, comprising a wind path.
【請求項6】 地下または屋内変電所に設置される静止
誘導電器と、この静止誘導電器の巻線及び鉄心を直接冷
却する第1の冷媒とこの第1の冷媒を第2の冷媒で冷却
する熱交換器と、この第2の冷媒の熱を屋外に廃棄する
熱廃棄手段を備えた静止誘導電器の冷却システムにおい
て、 前記冷却システムに、前記静止誘導電器の本体タンク表
面を冷却するタンク表面水冷手段と、前記第2の冷媒を
供給する系路から前記タンク表面水冷手段に冷媒を供給
する冷媒供給バイパス路とを設けたことを特徴とする静
止誘導電器の冷却システム。
6. A stationary induction device installed in an underground or indoor substation, a first refrigerant that directly cools a winding and an iron core of the stationary induction device, and a second refrigerant that cools the first refrigerant. In a cooling system for a stationary induction electric device including a heat exchanger and heat disposing means for disposing of the heat of the second refrigerant to the outside, a tank surface water cooling for cooling a main tank surface of the stationary induction electric device to the cooling system. Means and a refrigerant supply bypass path for supplying a refrigerant from a system path for supplying the second refrigerant to the tank surface water cooling means.
【請求項7】 前記タンク表面水冷手段が水冷ジャケッ
トまたは水冷パイプである請求項4,5または6記載の
静止誘導電器の冷却システム。
7. The cooling system according to claim 4, wherein said tank surface water cooling means is a water cooling jacket or a water cooling pipe.
JP17631196A 1996-07-05 1996-07-05 Cooling system for stationary induction apparatus Pending JPH1022135A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17631196A JPH1022135A (en) 1996-07-05 1996-07-05 Cooling system for stationary induction apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17631196A JPH1022135A (en) 1996-07-05 1996-07-05 Cooling system for stationary induction apparatus

Publications (1)

Publication Number Publication Date
JPH1022135A true JPH1022135A (en) 1998-01-23

Family

ID=16011373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17631196A Pending JPH1022135A (en) 1996-07-05 1996-07-05 Cooling system for stationary induction apparatus

Country Status (1)

Country Link
JP (1) JPH1022135A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150040773A (en) * 2013-10-07 2015-04-15 강은진 Transformer for being laid underground with waterproof function and cooling function
CN105428030A (en) * 2016-01-04 2016-03-23 西安天虹电气有限公司 Marine water-cooling dry-type rectifier transformer
CN111478216A (en) * 2019-12-31 2020-07-31 南通宁海机械电器有限公司 Prepackage type transformer substation with structure is striden to self-loopa heat dissipation is erect
WO2021107628A1 (en) * 2019-11-26 2021-06-03 주식회사 에스와이피앤디 Underground equipment
CN114005647A (en) * 2021-11-01 2022-02-01 重庆晟宇电子有限公司 Inductor
US11421921B2 (en) * 2012-09-07 2022-08-23 David Lane Smith Cooling electronic devices installed in a subsurface environment
US12025378B2 (en) 2019-11-26 2024-07-02 Korea Safety Industry Co., Ltd. Underground equipment eletric power system without an external power source

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11421921B2 (en) * 2012-09-07 2022-08-23 David Lane Smith Cooling electronic devices installed in a subsurface environment
KR20150040773A (en) * 2013-10-07 2015-04-15 강은진 Transformer for being laid underground with waterproof function and cooling function
WO2015053543A1 (en) * 2013-10-07 2015-04-16 강은진 Buried underground type container system having waterproof function and cooling function
CN105428030A (en) * 2016-01-04 2016-03-23 西安天虹电气有限公司 Marine water-cooling dry-type rectifier transformer
WO2021107628A1 (en) * 2019-11-26 2021-06-03 주식회사 에스와이피앤디 Underground equipment
CN114731036A (en) * 2019-11-26 2022-07-08 韩国安全产业株式会社 Underground equipment
CN114731036B (en) * 2019-11-26 2023-12-26 韩国安全产业株式会社 Buried equipment
US12025378B2 (en) 2019-11-26 2024-07-02 Korea Safety Industry Co., Ltd. Underground equipment eletric power system without an external power source
CN111478216A (en) * 2019-12-31 2020-07-31 南通宁海机械电器有限公司 Prepackage type transformer substation with structure is striden to self-loopa heat dissipation is erect
CN111478216B (en) * 2019-12-31 2021-10-01 南通宁海机械电器有限公司 Prepackage type transformer substation with structure is striden to self-loopa heat dissipation is erect
CN114005647A (en) * 2021-11-01 2022-02-01 重庆晟宇电子有限公司 Inductor

Similar Documents

Publication Publication Date Title
BRPI1100186A2 (en) dry distribution transformer
JP2006353014A (en) Power distribution equipment
JPH1022135A (en) Cooling system for stationary induction apparatus
JP3119995B2 (en) Cooling structure for static induction equipment windings
KR102411347B1 (en) Transformer inciuding cooling apparatus installed in distributing panel
JP3619522B2 (en) Substation cooling system
KR102323608B1 (en) Oil immersed transformer
JP5292919B2 (en) Static superconducting equipment
JP3148044B2 (en) Gas cooled stationary electrical equipment
JP2001245410A (en) Switchgear for gas insulation
JPH0869921A (en) Cooling device for gas insulated stationary induction electric equipment
KR200279682Y1 (en) Cooling system of transformer active-part
JP3321588B2 (en) Gas insulated transformer
JPH04354312A (en) Gas insulation transformer
JPH10116737A (en) Gas insulated transformer
JP2001143936A (en) Gas insulating electric equipment
JPH1116742A (en) Static induction equipment
JPH08111321A (en) Forced convection cooling transformer
JPS5940508A (en) Electromagnetic induction apparatus
JP2671500B2 (en) Electric equipment with cooler
JPH08330149A (en) Gas cooled stationary electric induction machine
JPH02288312A (en) Gas insulation transformer
JPH08250336A (en) Gas-insulated stationary electric equipment
JPH0318004A (en) Gas insulated transformer
JP3936623B2 (en) Oil-filled electrical equipment cooling system