JPH02232970A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH02232970A
JPH02232970A JP5342289A JP5342289A JPH02232970A JP H02232970 A JPH02232970 A JP H02232970A JP 5342289 A JP5342289 A JP 5342289A JP 5342289 A JP5342289 A JP 5342289A JP H02232970 A JPH02232970 A JP H02232970A
Authority
JP
Japan
Prior art keywords
layer
interface
heat treatment
inp
gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5342289A
Other languages
Japanese (ja)
Inventor
Takemoto Kasahara
健資 笠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP5342289A priority Critical patent/JPH02232970A/en
Publication of JPH02232970A publication Critical patent/JPH02232970A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make an interface excellent and a storage region small in frequency dispersion and hysteresis by a method wherein an AlGaAs layer is formed on an operating layer, which is thermally treated. CONSTITUTION:An N<+>-InP contact layer 3 is formed on a part of a semi- insulating InP substrate 1 where an N-InP operating layer 2 and a source and a gate electrode are to be formed. Then, an Al0.3Ga0.7As layer 4 serving as a gate insulating film is made to grow. Then, an SiO2 film 5 containing P is formed to serve as a surface protective film at a heat treatment. lastly, a gate electrode 6, a source electrode 7, and a drain electrode 8 are provided for the formation of a FET. By the above manufacturing method, an interface level decreases or moves in an energitic manner through a thermal treatment executed after the formation of the films, so that an excellent interface can be obtained and a storage region can be made small in frequency dispersion and hysteresis.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、Inを含む化合物半導体を動作層とする半導
体装置の製造方法、特に良好な界面特性を有する半導体
装置の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of manufacturing a semiconductor device having an active layer made of a compound semiconductor containing In, and particularly to a method of manufacturing a semiconductor device having good interface characteristics.

〔従来の技術〕[Conventional technology]

Inを含む化合物半導体を動作層とする金属一絶縁体一
半導体(Mis)′t1界効果トランジスタ(FET)
の製造方法を、中でもInPを例にとり説明する。
Metal-insulator-semiconductor (Mis)'t1 field effect transistor (FET) whose active layer is a compound semiconductor containing In
The manufacturing method will be explained using InP as an example.

第2図は従来の製造方法によるディプレ7ションモード
のInPMIS電界効果トランジスタの製造方法を示す
図である。インターナショナルエレクトロン デバイス
 ミーティング(Interna−tional Ei
ectron Device Meeting 198
6−P771)に伊東(T. I toh)らが述べて
いるように、従来、半絶Q性1 n P基板1にイオン
注入とアニールにより、あるいはVPEなどにより動作
層2およびコンタクト層3を形成し〔第2図(al, 
(b)) 、これにゲート絶縁膜である/l/!GaA
s層をMBE等により成長した後〔第2図(C)〕、ゲ
ート電極6,ソース電極7.ドレイン電極8を形成して
〔第2図(d)〕電界効果トランジスタを実現してきた
FIG. 2 is a diagram showing a method of manufacturing a depletion mode InPMIS field effect transistor using a conventional manufacturing method. International Electron Device Meeting
ectron Device Meeting 198
6-P771), conventionally, the active layer 2 and the contact layer 3 are formed on a semi-absolute Q 1 n P substrate 1 by ion implantation and annealing, or by VPE, etc. [Fig. 2 (al,
(b)), and this is the gate insulating film /l/! GaA
After growing the s layer by MBE or the like [FIG. 2(C)], a gate electrode 6, a source electrode 7. By forming the drain electrode 8 [FIG. 2(d)], a field effect transistor has been realized.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した従来の製造方法によるディプレッションモード
のI n P M I S電界効果トランジスタのゲー
ト・ソース容量のゲートバイアス依存特性および静特性
を第3図に示す。蓄積領域において周波数分散がみられ
フラット容量を示す電圧は負バイアス側にシフトしてい
る。また、FETにおいては、ソース・ドレイン電流の
上づまりが見られる. このように従来の製造方法で作成したMISFETにお
いて、成長後の界面には低減されてはいるものの未だ界
面準位が存在し、これが容量電圧特性において蓄積領域
での周波数分敗や、ヒステリシスを生じさせ、さらに界
面あるいは絶縁膜中に存在すると思われる固定電荷によ
り容量のフラット電圧がシフトする等の問題が生じる.
また、ディプレッションモードのFET特性においては
、ドレイン電流の上づまりやエンハンスしにくいといっ
た形で悪影響を及ぼし、大振幅動作での高周波特性など
に大きな影響を及ぼす。
FIG. 3 shows the gate bias dependence characteristics and static characteristics of the gate-source capacitance of the depletion mode I n P M I S field effect transistor manufactured by the conventional manufacturing method described above. Frequency dispersion is observed in the storage region, and the voltage indicating flat capacitance is shifted to the negative bias side. In addition, in FETs, an increase in source/drain current is observed. In MISFETs manufactured using conventional manufacturing methods, interface states still exist at the interface after growth, although they have been reduced, and this causes frequency division in the storage region and hysteresis in the capacitance-voltage characteristics. In addition, problems such as a shift in the flat voltage of the capacitance arise due to fixed charges that are thought to exist at the interface or in the insulating film.
Further, depletion mode FET characteristics are adversely affected in the form of an increase in drain current and difficulty in enhancement, and have a large impact on high frequency characteristics during large amplitude operation.

本発明の目的は、上述のような問題点を解決した半導体
装置の製造方法を提供することにある.〔課題を解決す
るための手段〕 本発明は、Inを含む化合物半導体を動作層とし、この
動作層上にA lxG a t−xA s層(但し0≦
X≦1)を設けた半導体装置の製造方法において、 前記A It XQ a ,−XA S層を形成後に熱
処理することを特徴とする. 本発明によれば、熱処理の温度は600〜850℃とす
るのが好適である. 〔作用〕 動作層であるInPと絶縁層であるAIGaASとの界
面は従来の製造方法ではMBEチャンバー内で清浄化が
できるので、他の方法に比べて良好に行える.しかし、
再成長界面であり界面不純物の残留により界面準位が形
成される。仮に連続成長を行うか、完全に界面の清浄化
が行えたとしても、InPとAjlGaAsの間には3
.7%の格子不整が存在し、これが欠陥を作り界面にお
いて特性の劣化を招く. しかしながら、本発明の製造方法である成膜後の熱処理
により、界面準位は減少、もしくはエネルギー的に移動
し、良好な界面が得られ、容量電圧特性において蓄積領
域での周波数分散や、ヒステリシスが小さくなることが
明らかになった。さらに固定電荷によると思われた電圧
シフトもなくなり、良好な容量電圧特性が得られた。ま
たFET特性においてもドレイン電流の上づまりの改善
やエンハンスメント側での特性の向上がみられた.ここ
で熱処理の温度は低すぎるとその効果は小さく、高すぎ
ると界面の劣化が生じるため600〜850℃が最適で
ある。さらにこの熱処理による表面からのV族元素の離
脱による劣化を防ぐために、熱処理においては、S i
 O.あるいはPSG膜等により表面を保護しておく. 〔実施例〕 以下、本発明の一実施例を第1図を用いて説明する. 第1図は、本発明の熱処理を施したディプレッションモ
ードのInPMIS電界効果トランジスタの製造方法を
示す図である. まず第1図(a). (b)に示すように、半絶縁性I
nP基板1上にVPE法によりn−InP動作層2およ
びソース・ゲート電極を形成する部分にn゜−1nPコ
ンタクト層3を形成する. 次に第1図(C)に示すように、゜例゜えばMBE法に
よりゲート絶縁膜であるA ’ o.sG a 11.
TA S層4を1000人成長する。
An object of the present invention is to provide a method for manufacturing a semiconductor device that solves the above-mentioned problems. [Means for Solving the Problems] The present invention uses a compound semiconductor containing In as an active layer, and on this active layer, an AlxGa t-xA s layer (however, 0≦
A method for manufacturing a semiconductor device in which X≦1) is characterized in that heat treatment is performed after forming the A It XQ a , -XAS layer. According to the present invention, the temperature of the heat treatment is preferably 600 to 850°C. [Function] In the conventional manufacturing method, the interface between InP, which is the active layer, and AIGaAS, which is the insulating layer, can be cleaned in the MBE chamber, so it can be cleaned better than other methods. but,
This is a regrown interface, and interface states are formed due to residual interfacial impurities. Even if continuous growth is performed or the interface is completely cleaned, there are 3
.. There is a 7% lattice misalignment, which creates defects and causes deterioration of properties at the interface. However, due to the heat treatment after film formation, which is the manufacturing method of the present invention, the interface states are reduced or moved energetically, a good interface is obtained, and the frequency dispersion in the accumulation region and hysteresis are reduced in the capacitance voltage characteristics. It became clear that it was getting smaller. Furthermore, the voltage shift that was thought to be caused by fixed charges disappeared, and good capacitance-voltage characteristics were obtained. Also, in terms of FET characteristics, improvements in drain current blockage and improvements in enhancement characteristics were observed. If the temperature of the heat treatment is too low, the effect will be small, and if it is too high, the interface will deteriorate, so the optimum temperature is 600 to 850°C. Furthermore, in order to prevent deterioration due to detachment of group V elements from the surface due to this heat treatment, Si
O. Alternatively, protect the surface with a PSG film, etc. [Example] An example of the present invention will be described below with reference to FIG. FIG. 1 is a diagram showing a method for manufacturing a depression mode InPMIS field effect transistor subjected to heat treatment according to the present invention. First, Figure 1(a). As shown in (b), semi-insulating I
An n°-1nP contact layer 3 is formed on the nP substrate 1 by the VPE method at the portion where the n-InP active layer 2 and source/gate electrodes are to be formed. Next, as shown in FIG. 1(C), the gate insulating film A'o. sG a 11.
Grow TA S layer 4 by 1000 people.

次に第1図(d)に示すように、熱処理の表面保護膜と
してCVD法によりPに含むS i Ot膜(PSG膜
) 5を形成する.これをH2雰囲気中で700℃で1
5分の熱処理を行う。
Next, as shown in FIG. 1(d), a SiOt film (PSG film) 5 containing P is formed by CVD as a surface protection film for heat treatment. This was heated at 700℃ in H2 atmosphere for 1
Heat treatment for 5 minutes.

最後に第1図(e)に示すように、通常の方法によりゲ
ート電極6.ソース電極7,ドレイン電極8を設けFE
Tを作製する. 以上のようにして作製されたFETのゲート・ソース容
量のゲートバイアス依存特性および静特性を第4図に示
す。容量電圧特性から蓄積領域における周波数分散がな
くなり負バイアス側のシフトもなくなり良好な界面を形
成している.。このように、蓄積領域に置ける周波数分
散はなくなりフラット容量を示す電圧も理想的なものに
近《なっている.さらにFET特性においてもドレイン
電流の上づまりがなくなり、エンハンスモードでの延び
も生じ、良好に動作する. 以上本発明の一実施例を説明したが、本発明はこの実施
例に限られるものではなく、本発明゜の範囲内で種々の
実施例が可能である。
Finally, as shown in FIG. 1(e), the gate electrode 6. FE with source electrode 7 and drain electrode 8
Make T. FIG. 4 shows the gate bias dependence characteristics and static characteristics of the gate-source capacitance of the FET manufactured as described above. Due to the capacitance-voltage characteristics, there is no frequency dispersion in the storage region, and there is no shift on the negative bias side, forming a good interface. . In this way, the frequency dispersion in the storage region disappears, and the voltage that indicates flat capacitance also approaches the ideal one. Furthermore, in terms of FET characteristics, there is no drain current increase, and extension in enhancement mode occurs, resulting in good operation. Although one embodiment of the present invention has been described above, the present invention is not limited to this embodiment, and various embodiments are possible within the scope of the present invention.

例えば、上記実施例においては、熱処理を別に行ってい
るが、絶縁膜のAjl!GaAsを形成した後、MBE
チャンバー中で行うことも可能である。
For example, in the above embodiment, heat treatment is performed separately, but the Ajl! After forming GaAs, MBE
It is also possible to carry out in a chamber.

また、熱処理温度についても熱処理時間との兼ね合いで
変化させうるちのである。また上記実施例において熱処
理保護膜としてPSG膜を用いたが、この限りではない
。雰囲気ガスについても実施例においては、水素ガスを
用いたが窒素ガスあるいはアルゴンガス等を用いること
も可能である。また、動作層およびコンタクト層の形成
にあたり本実施例においてはVPE法により形成したエ
ビ層を用いたが、イオン注入層を用いても構わないし、
InPに限らずInGaAs層などを動作層としても良
い。絶縁膜Al zG a l−xA Sについても、
その組成比を本実施例においてはX=0.3としたがこ
れも変えることができる。
Furthermore, the heat treatment temperature can also be varied depending on the heat treatment time. Furthermore, although the PSG film was used as the heat treatment protective film in the above embodiments, the present invention is not limited to this. Regarding the atmospheric gas, hydrogen gas is used in the embodiment, but nitrogen gas, argon gas, or the like may also be used. Furthermore, in this example, a shrimp layer formed by the VPE method was used to form the active layer and the contact layer, but an ion-implanted layer may also be used.
The active layer is not limited to InP, but may be an InGaAs layer or the like. Regarding the insulating film Al zG a l-xA S,
In this example, the composition ratio is set to X=0.3, but this can also be changed.

なお、上記実施例のように良好なAfGaAs/ I 
n P界面が形成できる方法は、FET以外にも、例え
ばCharge Coupled Devices (
 C C D )作製にも応用が可能である。
In addition, as in the above example, good AfGaAs/I
In addition to FETs, methods for forming nP interfaces include, for example, Charge Coupled Devices (
It can also be applied to the production of C C D ).

〔発明の効果〕〔Effect of the invention〕

本発明によれば、成膜後の熱処理により、界面準位は減
少もしくはエネルギー的に移動し、良好な界面が得られ
蓄積領域での周波数分敗や、ヒステリシスが小さくなる
ことが明らかになった。さらに固定電荷によると思われ
た電圧シフトもなくなり良好な容量電圧特性やFET特
性を示すことが判明した。
According to the present invention, it has been revealed that by heat treatment after film formation, the interface states are reduced or moved energetically, a good interface is obtained, and frequency division in the accumulation region and hysteresis are reduced. . Furthermore, it was found that there was no voltage shift that was thought to be caused by fixed charges, and that good capacitance-voltage characteristics and FET characteristics were exhibited.

本発明の製造方法により良好な絶縁膜を有したInPを
動作層とする半導体装置が得られ、高周波の高速な集積
回路や、高周波高速の高出力デバイスとして通信や論理
回路等への寄与は大きい。
By the manufacturing method of the present invention, a semiconductor device having an InP active layer with a good insulating film can be obtained, and it will greatly contribute to communications, logic circuits, etc. as a high-frequency, high-speed integrated circuit and a high-frequency, high-speed, high-output device. .

さらに、高速な転送装置等への応用も可能である。Furthermore, application to high-speed transfer devices and the like is also possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の熱処理を施したディプレッションモ
ードのrnPMIs電界効果トランジスタの製造方法を
示す図、 第2図は従来の製造方法によるディプレッションモード
のInPMIS電界効果トランジスタの製造方法を示す
図、 第3図は、従来の製造方法によるディブレッションモー
ドのInPMIS電界効果トランジスタのゲート・ソー
ス容量のゲートバイアス依存特性及び静特性を示す図、 第4図は、本発明によるディブレッションモードのIn
PMIS電界効果トランジスタのゲート・ソース容量の
ゲートバイアス依存特性及び静特性を示す図である。 1・・・半絶縁性InP基板 2・・・動作層 3・・・コンタクト層 4・・・ゲート絶縁膜 5・・・アニール保護膜 6・・・ゲート電極 7・・・ソース電極 8・・・ドレイン電極 代理人弁理士   岩  佐  義  幸第 1 区 第 図 第3区 第 図
FIG. 1 is a diagram showing a method for manufacturing a depletion mode rnPMIS field effect transistor subjected to heat treatment according to the present invention. FIG. 2 is a diagram showing a method for manufacturing a depletion mode InPMIS field effect transistor by a conventional manufacturing method. Figure 3 is a diagram showing the gate bias dependence characteristics and static characteristics of the gate-source capacitance of a depletion mode InPMIS field effect transistor manufactured by a conventional manufacturing method.
FIG. 3 is a diagram showing the gate bias dependence characteristics and static characteristics of the gate-source capacitance of a PMIS field effect transistor. 1... Semi-insulating InP substrate 2... Active layer 3... Contact layer 4... Gate insulating film 5... Annealing protective film 6... Gate electrode 7... Source electrode 8...・Drain electrode representative patent attorney Yoshiyuki Iwasa 1st ward 3rd ward fig.

Claims (1)

【特許請求の範囲】[Claims] (1)Inを含む化合物半導体を動作層とし、この動作
層上にAl_xGa_1_−_xAs層(但し0≦X≦
1)を設けた半導体装置の製造方法において、前記Al
_xGa_1_−_xAs層を形成後に熱処理すること
を特徴とする半導体装置の製造方法。
(1) A compound semiconductor containing In is used as an active layer, and an Al_xGa_1_-_xAs layer is formed on this active layer (0≦X≦
1), in which the Al
A method for manufacturing a semiconductor device, characterized in that heat treatment is performed after forming a _xGa_1_-_xAs layer.
JP5342289A 1989-03-06 1989-03-06 Manufacture of semiconductor device Pending JPH02232970A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5342289A JPH02232970A (en) 1989-03-06 1989-03-06 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5342289A JPH02232970A (en) 1989-03-06 1989-03-06 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH02232970A true JPH02232970A (en) 1990-09-14

Family

ID=12942404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5342289A Pending JPH02232970A (en) 1989-03-06 1989-03-06 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH02232970A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0212875A (en) * 1988-06-29 1990-01-17 Nec Corp Manufacture of semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0212875A (en) * 1988-06-29 1990-01-17 Nec Corp Manufacture of semiconductor device

Similar Documents

Publication Publication Date Title
US5937285A (en) Method of fabricating submicron FETs with low temperature group III-V material
US5550388A (en) Heterojunction FET having barrier layer consisting of two layers between channel and buffer layers
JPH0521468A (en) Manufacture of field-effect transistor
KR20010067474A (en) Field effect transistor
JP2616287B2 (en) Semiconductor device
JPH10223655A (en) Field effect transistor and its manufacture
JPH02232970A (en) Manufacture of semiconductor device
US6653667B2 (en) GaAs-based semiconductor field-effect transistor
JP2804041B2 (en) Field-effect transistor
JP3169066B2 (en) Field effect transistor and method of manufacturing the same
JPS61501805A (en) GaAsFET manufacturing process with ion implanted channel layer
Fink et al. AlInAs/GalnAs/AlInAs MODFETs fabricated on InP and on GaAs with metamorphic buffer-a comparison
JP4050128B2 (en) Heterojunction field effect transistor and manufacturing method thereof
US4948752A (en) Method of making sagfets on buffer layers
US4918493A (en) Sagfet with buffer layers
JPH0888238A (en) Compound semiconductor field effect transistor and compound semiconductor integrated circuit using thereof
JP2000349278A (en) Iii-v compound semiconductor crystal
JPH0513462A (en) Compound semiconductor structure
JP3205575B2 (en) Transistor and crystal growth method
JPH0684958A (en) Inp field effect semiconductor device
JP2633009B2 (en) Compound semiconductor field effect transistor and method of manufacturing the same
JP2910831B2 (en) Field effect transistor
JPH02234470A (en) Manufacture of semiconductor device
JP3246067B2 (en) Field effect transistor wafer and transistor
JPS62298179A (en) Semiconductor device