JPH02232658A - Electrophotographic sensitive body - Google Patents

Electrophotographic sensitive body

Info

Publication number
JPH02232658A
JPH02232658A JP5399389A JP5399389A JPH02232658A JP H02232658 A JPH02232658 A JP H02232658A JP 5399389 A JP5399389 A JP 5399389A JP 5399389 A JP5399389 A JP 5399389A JP H02232658 A JPH02232658 A JP H02232658A
Authority
JP
Japan
Prior art keywords
group
tempo
charge
weight
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5399389A
Other languages
Japanese (ja)
Inventor
Yasuo Suzuki
康夫 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP5399389A priority Critical patent/JPH02232658A/en
Publication of JPH02232658A publication Critical patent/JPH02232658A/en
Pending legal-status Critical Current

Links

Landscapes

  • Photoreceptors In Electrophotography (AREA)

Abstract

PURPOSE:To inhibit the lowering of potential by electrification at the time of repeated use by incorporating a 2,2,6,6-tetramethyl-1-piperidinyloxy deriv. into a photosensitive layer. CONSTITUTION:A 2,2,6,6-tetramethyl-1-piperidinyloxy deriv. (TEMPO deriv.) is incorporated into a photosensitive layer. Since the TEMPO deriv. is chemically adsorbed on an electric charge generating material and an electric charge transferring material, the trapping of electric charges generated by light absorption in the photosensitive layer is inhibited and the electric charges are rapidly transferred or recombined. The TEMPO deriv. used may be TEMPO, 4-amino- TEMPO, 4-(ethoxyfluorophosphinyloxy)-TEMPO, 4-hydroxy-TEMPO, 4- isothiocyanato-TEMPO, 4-maleimido-TEMPO, 4-(4-nitrobenzoyloxy)-TEMPO or 4-oxo-TEMPO, etc. The lowering of potential by electrification at the time of repeated use is inhibited.

Description

【発明の詳細な説明】 〔産業上の分野〕 本発明は電子写真感光体に係わるものであり,更に詳し
くは良好な感度を示すとともに耐環境性に優れ、しかも
耐久性にも優れた電子写真感光体に関する. 〔従来の技術〕 従来から電子写真感光体の光導電素材として知られてい
るものにセレン,硫化カドミウム,酸化亜鉛などの無機
物質がある.しかしながら,これら無機物質は電子写真
感光体として要求される光感度、熱安定性,耐久性等の
特性及び製造条件において必ずしも満足できるものでは
ない.例えば,セレンは熱,汚れ等により結晶化しやす
く特性が劣化しやすい.又,製造コスト、耐衝撃性、毒
性等取り扱い上の注意を要するなどの欠点がある.硫化
カドミウムを用いた感光体は耐湿性,耐久性に劣り,又
,毒性等の間凰がある.酸化亜鉛も,耐湿性、耐久性に
劣るという欠点をもつ.これら無機光導電素材を用いた
電子写真感光体に対し、有機光導電性物質を用いた感光
体は軽量性,成膜容易性,製造コストあるいは有機化合
物としてのバリエーションの広さから,活発に研究開発
が行なわれるようになっている.例えば,初期には特公
昭50−10496号公帽記載のポリビニル力ルバゾー
ルと2.4.7−トリニトロー9−フルオレノンを含有
した感光体,特公昭48−25658号公報記載のポリ
ビニル力ルバゾールをビリリウム塩系色素で増感した感
光体,又は、共晶錯体を主成分とする感光体が提案され
た.しかしながら、これらの感光体は感度,耐久性の面
で十分なものではない.そこで近年では、電荷発生層と
電荷輸送層を分離した機能分離型の感光体が提案され,
特公昭55−42380号記載のクロルダイアンプルー
とヒドラゾン化合物を組み合わせた感光体,電荷発生物
質としてはビスアゾ化合物として特開昭53−1334
45号公報記載,特開昭54−21728号公報記載,
特開昭54−22834号公報記載,電荷輸送物質とし
ては特開昭58−198043特開昭58−19935
2等記載のものが知られている.しかしながら,これら
機能分離型感光体においても特に耐久性においては満足
できるものではなく,近年,増々耐久性に対する要求が
高まってくる中で,帯電安定性を確保することが無視で
きない問題となっている.すなわち,帯電性が低下した
場合,複写機ではコピーの画像濃度低下をひきおこし,
反転現像方式を用いているレーザープリンターの場合は
地肌汚れを発生する等の画像品質の低下をひきおこす.
これらの問題を解決するために.導電性基板と感光層と
の間に中間層を設ける事が提案されている.しかしなが
ら中間層は,帯電性を安定させるために,バリアー性の
高い高抵抗材料を用いた場合,帯電性は向上するものの
、光感度が低下し,残留電位が上昇するという欠点があ
る.また残留電位が上昇しないような比較的抵抗の低い
材料を用いた場合は、帯電安定性が不十分となる. 一方、感光体を実際に複写機中で使用した場合、帯電器
より発生するオゾンに暴露されることがら、特開昭57
−122444号、特開昭61−156052号,特開
昭62−39863号,特開昭63−73255号にみ
られるように感光層中への酸化防止剤の添加が提案され
ている.しかしながら、酸化防止剤の多くは帯電安定性
に与える効果は小さく、効果がみられるものに対しても
残留電位上昇等の副作用が生じる.〔発明が解決しよう
とする課題〕 本発明は、感光体の高耐久化に対し極めて効果の大きい
物質を感光暦中に含有させることにより複写プロセスの
繰り返しにおいても帯電電位の低下しない電子写真感光
体を提供することを目的とする. 〔課題を解決するための手段〕 本発明によれば,導電性支持体上に少なくとも電荷発生
物質と電荷輸送物質とを含有する感光層を設けた電子写
真感光体において、前記感光層中に2.2,6,6−テ
トラメチル−1−ピペリジニロキシ誘導体(以下, T
EMPO誘導体という)を含有させたことを特徴とする
電子写真感光体が提供される.本発明の電子写真感光体
は感光層中にTEMPO誘導体を含有させたことから、
高感度であるとともに帯電一露光の複写プロセスの繰り
返しにおいても帯電電位が低下しないという作用効果を
奏する.丁EMPO!It導体がこのような作用効果を
有する理由は現時点では,明らかでないが,電荷発生物
質及び電荷輸送物質にTENPO誘導体が化学吸着し,
光吸収により発生した電荷が感光層中にトラップされる
のを抑制し,速やかに移動,又は再結合することにより
,繰り返し使用時における帯電電位の低下が抑制される
ことに帰因するものと考えられる. 本発明で使用されるTEMPO誘導体の具体例としテハ
,タトエば,TEMPO、4−7 ミ/−TEMPO、
4−(エトキシフルオ口ホスフィニロキシ)−TEMP
0, 4−ヒF 口?r シ−TEMP0. 4−イソ
fyt シ7ネーh−TEMP0.4−マレイミドーT
EMP0. 4−(4−ニトロペンゾイロキシ)−TE
MPO、4−,t キ’/−TEMPO等が挙げラレル
が,これらに限定されるものではない. 本発明に適用する電荷発生物質としては、可視光及びレ
ーザー光を吸収してフリー電荷を発生するものであれば
無機顔料及び有機色素のいずれをも用いることができる
.有機色素,顔料の例としては次のものが挙げられる. (1)ベリレン酸無水物およびベリレン醜イミドなどの
ベリレン系顔料. (2)インジゴ系顔料. (3)キナクリドン系顔料. (4)アントラキノン類、ビレンキノン順,アントアン
トロ類およびフラバントロン類などの多環キノン類. (5)ビスベンズイミダゾール系*a.(6)スクエア
リックメチン系顔料. (7)インダスロン系顔料. (8)綱フタロシアニンのごとき金属フタ口シアニンお
よび無金属フタロシアニンなどのフタ口シアニン系顔料
. (9)モノアゾ顔料.ジスアゾ顔料およびトリアゾ顔料
などのアゾ顔料.モノアゾ顔料としては例えばアントラ
キノン、N−フェニルカルバゾールなどを中心骨格とす
るものアゾ顔料等があり,ジスアゾ顔料としては,例え
ばダイアンプルークロルダイアンプルーなどのベンジジ
ン系材料.または、N一エチルカノレバゾーノレ,スチ
ノレベン、ジスチルベンゼン、ナフタレン,フルオレノ
ン、フルオレン、アントラキノン、2,5−ジフェニル
−1.3.4−オキサジアゾール,ジベンゾチオフェン
,ジベンゾチオフェンジオキサイド、アクリドン、フエ
ナントレンキノン、ジフエニルアミンなどを中心骨格と
するジスアゾ材料等があり,トリスアゾ顔料としては例
えばトリフエニルアミンあるいはN−フェニルカルバゾ
ールなどを中心骨格とするトリスアゾ顔料. (10)アズレニウム塩化合物 (l1)アジン顔料、オキサジン顔料及びチアジン顔料
等のキノンイミン系顔料. (12)ビスベンズイミダゾール誘導体等のベリノン系
顔料. 等が挙げられるが,これらに限定されるものではない, また,本発明においては、電荷発生物質と共に電荷輸送
物質を用いるが,この電荷輸送物質には正孔輸送物質と
電子輸送物質がある.正孔輸送物質としては、たとえば
以下の一般式(1)〜(l3)に示されるような化合物
が例示できる. K1 〔式中,RLはメチル基,エチル基,2−ヒドロキシエ
チル基又は2−クロルエチル基を表わし、R8はメチル
基,エチル基、ベンジル基又はフェニル基を表わし,R
Jは水素、塩素,臭素、炭素数1〜4のアルキル基,炭
素数1〜4のアルコキシル基、ジアルキルアミノ基又は
ニトロ基を表わす.〕K 〔式中. Arはナフタレン類、アントラセン類、スチ
リル基及びそれらの置換体あるいはビリジン類,フラン
類,チオフェン類を表わし、Rはアルキル基又はベンジ
ル基を表わす.〕 K1 〔式中、R1はアルキル基、ベンジル基,フェニル基,
ナフチル基を表わし.R2は水素,炭素数1〜3のアル
キル基,炭素数1〜3のアルコキシ基、ジアルキルアミ
ノ基,ジアラルキルアミノ基またはジアリールアミノ基
を表わし、nは1〜4の整数を表わし、nが2以上のと
きはhは同じでも異なっていてもよい.R1は水素また
はメトキシ基を表わす.1?式中、R,は炭素数1〜l
lのアルキル基、置換もしくは無置換のフェニル基又は
複素環基を表わし、R■、R3はそれぞれ同一でも異な
っていてもよく水素,炭素数1〜4のアルキル基,ヒド
ロキシアルキル基.クロルアルキル基,W換又は無W1
換のアラルキル基を表わし、また、R2とR,は互いに
結合し窒素を含む複素環を形成していてもよい.R4は
同一でも異なっていてもよく水素,炭素数1〜4のアル
キル基,アルコキシ基又はハロゲンを表わす.〕K 〔式中,Rは水素またはハロゲン原子を表わし、Arは
置換または無置換のフエニル基、ナフチル基,アントリ
ル基あるいはカルバゾリル基を表わす.〕〔式中、H1
は水素、ハロゲン、シアノ基、炭素数1〜4のアルコキ
シ基または炭素数1〜4のアルキル基を表わし. Ar
は R1は炭素数1〜4のアルキル基を表わし, R,,R
,は水素、ハロゲン,炭素数1〜4のアルキル基,炭素
数1〜4のアルコキシ基またはジアルキルアミノ基を表
わし、nは1または2であって、nが2のときはR,は
同一でも異なってもよく、R.およびR,は水素、炭素
数1−4の置換または無置換のアルキル基あるいは置換
または無置換のベンジル基を表わす.〕〔式中、Rはカ
ルバゾリル基、ピリジン基、チェニル基、インドリル基
、フリル基或いは置換もしくは非置換のフェニル基、ス
チリル基,ナフチル基またはアントリル基であって,こ
れらの置換基がジアルキルアミノ基,アルキル基、アル
コキシ基、カルボキシ基又はそのエステル、ハロゲン原
子,シアノ基,アラルキルアミノ基、トアルキルーN−
アラルキルアミノ基、アミノ基、ニトロ基およびアセチ
ルアミノ基からなる群から選ばれた基を表わす.ゴ R1 〔式中、R,は低級アルキル基またはベンジル基又は置
換もしくは非置換のアリール基を表わし,R2は水素原
子,低級アルキル基,低級アルコキシ基、ハロゲン原子
、ニトロ基,アミノ基あるいは低級アルキル基またはベ
ンジル基で置換されたアミノ基を表わし、nは1または
2の整数を表わす.〕〔式中、R,は水素原子,アルキ
ル基、アルコキシ基またはハロゲン原子を表わし、R2
およびR3はアルキル基、置換または無置換のアラルキ
ル基あるいは置換または無置換アリール基を表わし、R
4は水素原子または置換もしくは無置換のフエニル基を
表わし,また、^rはフエニル基またはナフチル基を表
わす.〕 9−アントリル基または置換もしくは無置換のN−アル
キルカルバゾリル基を表わし,ここでR4は水素原子,
アルキル基,アルコキシ基,ハロゲン原子アルキル基、
置換または無置換のアラルキル基、置換または無置換の
アリール基を示し、R,およびR6は環を形成してもよ
い)を表わし,mは0,1,2または3のwl&であっ
て、履が2以上のときはR,は同一でも異なってもよい
.〕 Kコ 〔式中,nは0または1の整数、Rエ#R21R3は水
素原子、アルキル基,アルコキシ基または置換もしくは
無置換のフェニル基を示し,^は 拘 〔式中、R1、R2およびR,は水素、低級アルキル基
、低級アルコキシ基、ジアルキルアミノ基またはハロゲ
ン原子を表わし,nはOまたはlを表わす.〕〔式中,
R,は水素原子、アルキル基、アルコキシ基、ハロゲン
原子を表わし、R,,R,は同一でも異なっていてもよ
く,水素原子、アルキル基、アルコキシ基、ハロゲン原
子を表わす.〕 Kl 〔式中、R1、R2は同一でも異なっていてもよく,水
素原子、アルキル基、アルコキシ基、ハロゲン原子を表
わす.R3は水素原子、アルキル基,アルコキシ基,ハ
ロゲン原子を表わす.〕 一般式(1)で表わされる化合物には,たとえば9一エ
チル力ルバゾール−3−アルデヒド−1−メチル−1−
フエニルヒドラゾン,9−エチル力ルバゾール−3−ア
ノレデヒド−1−ペンジノレー1−フエニノレヒドラゾ
ン,9−エチル力ルバゾール−3−アルデヒド−1.1
−ジフエニルヒドラゾンなどである. 一般式(2)で表わされる化合物には、たとえば4ージ
エチルアミノスチレンーβ−アルデヒド−1−メチル−
1−フェニルヒドラゾン、4−メトキシナフタレンーl
−アルデヒド−1−ベンジルー1−フエニルヒドラゾン
などがある. 一般式(3)で表わされる化合物にはたとえば、4ーメ
トキシベンズアルデヒド−1−メチル−1−フェニルヒ
ドラゾン,2,4−ジメトキシベンズアルデビド−1−
ベンジルー1−フェニルヒドラゾン、4−ジエチルアミ
ノベンズアルデヒド−1,I−ジフエニルヒドラゾン.
4−メトキシベンズアルデヒド−1−ベンジルー1−(
4−メトキシ)フェニルヒドラゾン、4−ジフエニルア
ミノベンズアルデヒド−1−ベンジルー1−フエニルヒ
ドラゾン、4−ジベンジルアミノベンズアルデヒドーl
,1−ジフエニルヒドラゾンなどがある.一般式(4)
で表わされる化合物には、たとえばl,1−ビス(4−
ジベンジルアミノフエニル)プロノ{ン,トリス(4−
ジエチルアミノフエニル)メタン, 1.1−ビス(4
−ジベンジルアミノフエニル)プロパン、2.2′−ジ
メチル−4.4′−ビス(ジエチルアミノ)一トリフェ
ニルメタンなどがある. 一般式(5)で表わされる化合物には、たとえば9−(
4−ジエチルアミノスチリル)アントラセン、9ーブロ
ムー10−(4−ジエチルアミノスチリル)アントラセ
ンなどがある. 一般式(6)で表わされる化合物には、たとえば9−(
4−ジメチルアミノベンジリデン)フルオレン、3一(
9−フルオレニリデン)一1−エチル力ルバゾールなど
がある. 一般式(7)で表わされる化合物には,たとえば1,2
−ビス(4−ジエチルアミノスチリル)ベンゼン、1.
2−ビス(2.4−ジメトキシスチリル)ベンゼンがあ
る. 一般式(8)で表わされる化合物には,たとえば3−ス
チリル−9−エチル力ルバゾール, 3−(4−メトキ
シスチリル)−9−エチル力ルパゾールなどがある.一
般式(9)で表わされる化合物には、たとえば4−ジフ
ェニルアミノスチルベン,4−ジベンジルアミノスチル
ベン,4−ジトリルアミノスチルベン,1−(4−ジフ
エニルアミノスチリル)ナフタレン,1一(4−ジエチ
ルアミノスチリル)ナフチレンなどがある. 一般式(10)で表わされる化合物には,たとえば4′
−ジフェニルアミノーα−フエニノレスチノレベン,4
′−メチルフェニルアミノーα−フエニルスチルベンな
どがある. 一般式(l1)で表わされる化合物には、たとえばl−
フェニル−3−(4−ジエチルアミノスチリル)−5−
(4一ジエチルアミノフェニル)ビラゾリン,1−フエ
ニル−3−(4−ジメチルアミノスチリル)−5−(4
−ジメチルアミノフェニル)ビラゾリンなどがある.一
般式(l2)で表わされる化合物には. N,N’−ジ
フェニノレーN,N’−ビス(3−メチノレフェニノレ
)−(1.1’−ビスフェニル)−4,4’−ジアミン
, N,N’ジフエニルーN.N’−ビス(クロロフエ
ニル)−(1.1’−ビフエニノレ)一4.4′−ジア
ミン, 3.3’−ジメチルベンジジンなどがある. 一般式(l3)で表わされる化合物には,ジフェニル−
4−ビフェニリルアミン,ジ(4−メチルフェニル)−
4−ビフェニリルアミン、ジ(4−メトキシフェニル)
−4−ビフェニリルアミンなどが挙げられる.この他の
正孔輸送物質としては,たとえば2.5−ビス(4−ジ
エチルアミノフェニル)−1.3.4−オキサジアゾー
ル,2.5−ビス(4− (4−ジエチルアミノスチリ
ル)フェニル)−1.3.4−オキシジアゾール、2−
 (9−エチル力ルバゾリル−3−)−5−(4−ジエ
チルアミノフェニル)−1.3.4−オキサジアゾール
などのオキサジアゾール化合物,2−ビニル−4−(2
−クロロフェニル)−5−(4−ジエチルアミノフェニ
ル)オキサゾール,2−(4−ジエチノレアミノフェニ
ル)−4−フエニルオキサゾールなどのオキサゾール化
合物などの低分子化合物がある.また,ポリートビニル
カルバゾール,ハロゲン化ポリーN−ビニル力ルバゾー
ル,ポリビニルビレン,ポリビニルアントラセン、ビレ
ンホルムアルデヒド樹脂,エチル力ルバゾールホルムア
ルデヒド樹脂などの高分子化合物も使用できる.電子輸
送物質としては,たとえば,クロルアニル、ブロムアニ
ル、テトラシアノエチレン、テトラシアノキノンジメタ
ン、2,4.7−トリニトロー9一フルオレノン. 2
,4,5.7−テトラニトロ−9−フルオレノン. 2
,4,5.7−テトラニトロキサントン. 2,4.8
−トリニトロチオキサントン、2,6.8−トリニト口
−4}1−インデノ[:1.2−b)チオフエン−4−
オン. 1,3.7−トリニトロジベンゾチオフエンー
5,5−ジオキサイドなどがある. 本発明の電子写真感光体の感光層は,電荷発生層,電荷
輸送層を組み合わせて、正常電型もしくは、負帯電の機
能分離型をとることができる.負帯電型の場合は,基体
上に電荷発生物質及び結着剤を含む電荷発生層、その上
に電荷輸送物質及び結着剤を含む電荷輸送層を形成する
ものであるが,正帯電型とする場合には,電荷発生層、
電荷輸送層を逆に積層する.なお,電荷発生層中に電荷
輸送物質を含有させてもよい,特に正帯電構成の場合感
度が良好となる. 又,接着性、電荷ブロッキング性を向上させるために感
光層と基体との間に中間層を設けてもよい.さらに耐摩
耗性等、機械的耐久性を向上させるために感光層上に保
護層を設けてもよい.電荷発生層,電荷輸送層及び分散
型感光層形成時に用いる結着剤としては,ポリカーボネ
ート(ビスフェノールAタイプ、ビスフェノールZタイ
プ)、ポリエステル、メタクリル樹脂,アクリル樹脂、
ポリエチレン、塩化ビニル,酢酸ビニル、ポリスチレン
.フェノール樹脂、エボキシ樹脂,ポリウレタン、塩化
ビニリデン,アルキッド樹脂,シリコン樹脂,ポリビニ
ル力ルバゾール,ポリビニルブチラール、ポリビニルホ
ルマール,ポリアリレート、ポリアクリルアミド,ボリ
アミド,フエノキシ樹脂などが用いられる.これらのバ
インダーは単独又は2種以上の混合物として用いること
ができる. 以上のような層構成,物質を用いて感光体を作成する場
合には.膜厚,物質の割合に好ましい範囲がある. 負帯電型(基体/電荷発生層/電荷輸送層の積層)の場
合.電荷発生層において,結着剤に対する電荷発生物質
の割合は20〜500重量%,膜厚は0.1〜5声が好
ましい.電荷輸送層においては結着剤に対する電荷輸送
物質の割合は、20〜200重量算,膜厚は5〜50戸
とするのが好ましい. 正帯電型(基体l電荷輸送層/電荷発生層の積層)の場
合、電荷輸送層においては,結着剤に対する電荷輸送物
質の割合は,20〜200重量%、膜厚は5〜50一と
するのが好ましい.電荷発生層においては電荷発生物質
を結着剤に対し10〜100重量%含有することが好ま
しい.さらに電荷発生層中には電荷輸送物質を含有させ
ることが好ましく、含有させることにより残留電位の抑
制,感度の向上に対し効果をもつ.この場合の電荷輸送
物質は結着剤に対し20〜200重量%含有させること
が好ましい.又,本発明のTEMPO誘導体の感光層へ
の添加量としては、機能分離型の場合、電荷輸送層に添
加する場合は電荷輸送物質に対し0.01〜5.0重量
%であることが好ましい.電荷発生層中に添加する場合
は電荷発生物質に対し0.1−20.0重量襲であるこ
とが好ましい.分散型の場合は,電荷輸送物質に対しo
.oi〜5.0重量%添加することが好ましい.TEM
PO誘導体の添加量が前記下限値より少ない場合は添加
による高耐久化の効果は得られず、前記上限値より多い
場合は、感度低下等悪影響をひきおこす. 必要に応じて設けられる中間層としては,一般には樹脂
を主成分とするが,これらの樹脂はその上に感光層を溶
剤で塗布することを考えると、一般の有機溶剤に対して
耐溶剤性の高い樹脂であることが望ましい.このような
樹脂としては,ポリビニルアルコール,カゼイン,ポリ
アクリル酸ナトリウム等の水溶性樹脂、共重合ナイロン
,メトキシメチル化ナイロン等のアルコール可溶性樹脂
、ポリウレタン、メラミン樹脂,フェノール樹脂,エボ
キシ樹脂等、三次元網目構造を形成する硬化型樹脂など
が挙げられる. また中間層にはモアレ防止,残留電位の低減等のために
酸化チタン、シリカ,アルミナ、酸化ジルコニウム、酸
化スズ、酸化インジウム等で例示できる金ス酸化物の微
粉末顔料を加えてもよい.また電荷発生層、電荷輸送層
を形成するに際し使用される溶剤あるいは分散媒として
は、〜,N′ージメチルホルムアミド、アセトン,メチ
ルエチルケトン,シクロヘキサノン,ベンゼン,トルエ
ン,キシレン、クロロホルム,1,2−ジクロロエタン
、ジクロロメタン,モノクロルベンゼン.テトラヒド口
フラン、ジオキサン、メタノール,エタノール、イソブ
ロパノール,酢酸エチル,酢酸ブチル.ジメチルスルホ
キシド等を挙げることができる.感光層を形成する方法
としては電荷発生層、電荷輸送層の塗工液に基体を浸漬
する方法,塗工液を基体にスプレーする方法などが用い
られる.本発明の電子写真感光体に用いられる基体とし
ては,アルミニウム,黄銅,ステンレス,ニッケルなど
の金凋ドラム及びシート.ポリエチレンテレフタレート
,ボリブロビレン,ナイロン,紙などの材料にアルミニ
ウム,ニッケルなどの金属を蒸看するか,あるいは酸化
チタン、酸化スズ,カ一ボンブラックなどの導電性物質
を適当なバインダーとともに塗布して導電処理したプラ
スチック,紙等のシート状または円筒状基体があげられ
る.〔発明の効果〕 本発明の電子写真感光体は,前記構成からなるので長期
の繰り返し使用によっても帯電性等の感光体特性が劣化
せず、高耐久性で保存性が良好であるため,その実用的
価値が極めて高いものである。
[Detailed Description of the Invention] [Industrial Field] The present invention relates to an electrophotographic photoreceptor, and more specifically, an electrophotographic photoreceptor that exhibits good sensitivity, excellent environmental resistance, and excellent durability. Regarding photoreceptors. [Prior Art] Inorganic materials such as selenium, cadmium sulfide, and zinc oxide have been conventionally known as photoconductive materials for electrophotographic photoreceptors. However, these inorganic materials do not necessarily satisfy the characteristics such as photosensitivity, thermal stability, and durability required for electrophotographic photoreceptors, as well as the manufacturing conditions. For example, selenium tends to crystallize due to heat, dirt, etc., and its properties tend to deteriorate. In addition, it has drawbacks such as manufacturing cost, impact resistance, toxicity, and other issues that require careful handling. Photoreceptors using cadmium sulfide have poor moisture resistance and durability, and are also susceptible to toxicity. Zinc oxide also has the disadvantage of poor moisture resistance and durability. In contrast to electrophotographic photoreceptors using these inorganic photoconductive materials, photoreceptors using organic photoconductive materials are being actively researched due to their light weight, ease of film formation, manufacturing cost, and wide variation as organic compounds. Development is underway. For example, in the early stages, photoreceptors containing polyvinyl-rubazole and 2,4,7-trinitro-9-fluorenone as described in Japanese Patent Publication No. 50-10496, and polyvinyl-rubazole as described in Japanese Patent Publication No. 48-25658 as biryllium salts. Photoreceptors sensitized with dyes or photoreceptors mainly composed of eutectic complexes have been proposed. However, these photoreceptors do not have sufficient sensitivity and durability. Therefore, in recent years, a functionally separated photoreceptor in which the charge generation layer and charge transport layer are separated has been proposed.
A photoreceptor comprising a combination of chlordiane blue and a hydrazone compound described in Japanese Patent Publication No. 55-42380, and a bisazo compound used as a charge generating substance in Japanese Patent Publication No. 53-1334.
45, JP-A No. 54-21728,
JP-A-58-198043 and JP-A-58-19935 are described as charge transport materials.
Those listed as 2nd place are known. However, even these function-separated photoconductors are not satisfactory, especially in terms of durability.In recent years, as demands for durability have increased more and more, ensuring charging stability has become an issue that cannot be ignored. .. In other words, if the charging property decreases, the image density of the copy will decrease in the copier.
Laser printers that use a reversal development method cause deterioration in image quality, such as background stains.
In order to solve these problems. It has been proposed to provide an intermediate layer between the conductive substrate and the photosensitive layer. However, if a high-resistance material with high barrier properties is used for the intermediate layer in order to stabilize the charging property, although the charging property will be improved, the drawbacks are that the photosensitivity will decrease and the residual potential will increase. Furthermore, if a material with relatively low resistance that does not increase the residual potential is used, charging stability will be insufficient. On the other hand, when a photoreceptor is actually used in a copying machine, it is exposed to ozone generated from a charger, so
The addition of an antioxidant to the photosensitive layer has been proposed as seen in Japanese Patent Application Laid-open Nos. 122444-122444, 156052-1982, 39863-1986, and 73255-1983. However, most antioxidants have only a small effect on charge stability, and even those that are effective have side effects such as increased residual potential. [Problems to be Solved by the Invention] The present invention provides an electrophotographic photoreceptor whose charging potential does not decrease even during repeated copying processes by incorporating a substance in the photoreceptor that is extremely effective in increasing the durability of the photoreceptor. The purpose is to provide the following. [Means for Solving the Problems] According to the present invention, in an electrophotographic photoreceptor in which a photosensitive layer containing at least a charge-generating substance and a charge-transporting substance is provided on a conductive support, two .2,6,6-tetramethyl-1-piperidinyloxy derivative (hereinafter referred to as T
Provided is an electrophotographic photoreceptor characterized by containing an EMPO derivative (EMPO derivative). Since the electrophotographic photoreceptor of the present invention contains a TEMPO derivative in the photosensitive layer,
In addition to being highly sensitive, it has the advantage that the charging potential does not decrease even when the copying process of charging and exposure is repeated. Ding EMPO! The reason why It conductors have such effects is not clear at present, but it is believed that TENPO derivatives are chemically adsorbed to charge-generating and charge-transporting substances.
This is thought to be due to the fact that charges generated by light absorption are prevented from being trapped in the photosensitive layer, and are quickly moved or recombined, thereby suppressing the decrease in charging potential during repeated use. It will be done. Specific examples of TEMPO derivatives used in the present invention include Teha, Tatoeba, TEMPO, 4-7 Mi/-TEMPO,
4-(ethoxyfluorophosphinyloxy)-TEMP
0, 4-HiF Mouth? r C-TEMP0. 4-Isophyt Cy7neh-TEMP0.4-Maleimido T
EMP0. 4-(4-nitropenzoyloxy)-TE
Examples include MPO, 4-, t-ki'/-TEMPO, etc., but the larel is not limited to these. As the charge generating substance applied to the present invention, any inorganic pigment or organic dye can be used as long as it absorbs visible light and laser light and generates free charges. Examples of organic dyes and pigments include: (1) Berylene pigments such as berylene anhydride and berylene ugly imide. (2) Indigo pigment. (3) Quinacridone pigment. (4) Polycyclic quinones such as anthraquinones, bilenequinones, anthorthros, and flavanthrones. (5) Bisbenzimidazole *a. (6) Square methine pigment. (7) Indathlon pigment. (8) Phthalocyanine pigments such as metal phthalocyanines and metal-free phthalocyanines. (9) Monoazo pigment. Azo pigments such as disazo pigments and triazo pigments. Examples of monoazo pigments include azo pigments having a central skeleton of anthraquinone, N-phenylcarbazole, etc., and examples of disazo pigments include benzidine-based materials such as Diane Blue Chlor Diane Blue. Or, N-ethylcanolebazonole, stynoleben, distylbenzene, naphthalene, fluorenone, fluorene, anthraquinone, 2,5-diphenyl-1.3.4-oxadiazole, dibenzothiophene, dibenzothiophene dioxide, acridone, There are disazo materials having a central skeleton such as phenanthrenequinone and diphenylamine. Examples of trisazo pigments include trisazo pigments having a central skeleton such as triphenylamine or N-phenylcarbazole. (10) Azulenium salt compound (l1) Quinoneimine pigments such as azine pigments, oxazine pigments, and thiazine pigments. (12) Verinone pigments such as bisbenzimidazole derivatives. In addition, in the present invention, a charge transport material is used together with a charge generation material, and the charge transport material includes a hole transport material and an electron transport material. Examples of the hole transport substance include compounds represented by the following general formulas (1) to (13). K1 [wherein RL represents a methyl group, ethyl group, 2-hydroxyethyl group or 2-chloroethyl group, R8 represents a methyl group, ethyl group, benzyl group or phenyl group, R
J represents hydrogen, chlorine, bromine, an alkyl group having 1 to 4 carbon atoms, an alkoxyl group having 1 to 4 carbon atoms, a dialkylamino group, or a nitro group. ] K [in the formula. Ar represents naphthalenes, anthracenes, styryl groups and substituted products thereof, pyridines, furans, and thiophenes, and R represents an alkyl group or a benzyl group. ] K1 [wherein R1 is an alkyl group, benzyl group, phenyl group,
Represents naphthyl group. R2 represents hydrogen, an alkyl group having 1 to 3 carbon atoms, an alkoxy group having 1 to 3 carbon atoms, a dialkylamino group, a dialkylamino group, or a diarylamino group, n represents an integer of 1 to 4, and n is 2 In the above cases, h may be the same or different. R1 represents hydrogen or a methoxy group. 1? In the formula, R, has a carbon number of 1 to 1
1 represents an alkyl group, a substituted or unsubstituted phenyl group, or a heterocyclic group, and R and R3 may be the same or different, respectively, hydrogen, an alkyl group having 1 to 4 carbon atoms, a hydroxyalkyl group. Chloroalkyl group, W substituted or no W1
R2 and R may be bonded to each other to form a nitrogen-containing heterocycle. R4 may be the same or different and represents hydrogen, an alkyl group having 1 to 4 carbon atoms, an alkoxy group, or a halogen. [In the formula, R represents hydrogen or a halogen atom, and Ar represents a substituted or unsubstituted phenyl group, naphthyl group, anthryl group, or carbazolyl group. ] [In the formula, H1
represents hydrogen, halogen, cyano group, alkoxy group having 1 to 4 carbon atoms, or alkyl group having 1 to 4 carbon atoms. Ar
R1 represents an alkyl group having 1 to 4 carbon atoms, R,,R
, represents hydrogen, halogen, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, or a dialkylamino group, and n is 1 or 2, and when n is 2, R may be the same. May be different, R. and R represents hydrogen, a substituted or unsubstituted alkyl group having 1 to 4 carbon atoms, or a substituted or unsubstituted benzyl group. [In the formula, R is a carbazolyl group, pyridine group, chenyl group, indolyl group, furyl group, or a substituted or unsubstituted phenyl group, styryl group, naphthyl group, or anthryl group, and these substituents are dialkylamino groups , alkyl group, alkoxy group, carboxy group or ester thereof, halogen atom, cyano group, aralkylamino group, toalkyl N-
Represents a group selected from the group consisting of an aralkylamino group, an amino group, a nitro group, and an acetylamino group. [In the formula, R represents a lower alkyl group, a benzyl group, or a substituted or unsubstituted aryl group, and R2 represents a hydrogen atom, a lower alkyl group, a lower alkoxy group, a halogen atom, a nitro group, an amino group, or a lower alkyl group. represents an amino group substituted with a group or a benzyl group, and n represents an integer of 1 or 2. [In the formula, R represents a hydrogen atom, an alkyl group, an alkoxy group, or a halogen atom, and R2
and R3 represents an alkyl group, a substituted or unsubstituted aralkyl group, or a substituted or unsubstituted aryl group;
4 represents a hydrogen atom or a substituted or unsubstituted phenyl group, and ^r represents a phenyl group or a naphthyl group. ] represents a 9-anthryl group or a substituted or unsubstituted N-alkylcarbazolyl group, where R4 is a hydrogen atom,
Alkyl group, alkoxy group, halogen atom alkyl group,
represents a substituted or unsubstituted aralkyl group, a substituted or unsubstituted aryl group, R and R6 may form a ring), m is wl& of 0, 1, 2 or 3, and When is 2 or more, R may be the same or different. [In the formula, n is an integer of 0 or 1, R21R3 represents a hydrogen atom, an alkyl group, an alkoxy group, or a substituted or unsubstituted phenyl group, and ^ is a R represents hydrogen, a lower alkyl group, a lower alkoxy group, a dialkylamino group or a halogen atom, and n represents O or l. ] [In the formula,
R represents a hydrogen atom, an alkyl group, an alkoxy group, or a halogen atom, and R,,R, may be the same or different and represent a hydrogen atom, an alkyl group, an alkoxy group, or a halogen atom. ] Kl [In the formula, R1 and R2 may be the same or different and represent a hydrogen atom, an alkyl group, an alkoxy group, or a halogen atom. R3 represents a hydrogen atom, an alkyl group, an alkoxy group, or a halogen atom. ] The compound represented by the general formula (1) includes, for example, 9-ethyl-rubazol-3-aldehyde-1-methyl-1-
Phenylhydrazone, 9-Ethyl Rubazole-3-Anoledehyde-1-Phenylhydrazone, 9-Ethyl Rubazole-3-Aldehyde-1.1
-Diphenylhydrazone, etc. Examples of the compound represented by the general formula (2) include 4-diethylaminostyrene-β-aldehyde-1-methyl-
1-phenylhydrazone, 4-methoxynaphthalene-l
-Aldehyde-1-benzyl-1-phenylhydrazone, etc. Examples of the compound represented by the general formula (3) include 4-methoxybenzaldehyde-1-methyl-1-phenylhydrazone, 2,4-dimethoxybenzaldehyde-1-
Benzyl-1-phenylhydrazone, 4-diethylaminobenzaldehyde-1,I-diphenylhydrazone.
4-Methoxybenzaldehyde-1-benzyl-1-(
4-methoxy)phenylhydrazone, 4-diphenylaminobenzaldehyde-1-benzyl-1-phenylhydrazone, 4-dibenzylaminobenzaldehyde
, 1-diphenylhydrazone, etc. General formula (4)
Examples of compounds represented by include l,1-bis(4-
dibenzylaminophenyl) pronone, tris(4-
diethylaminophenyl)methane, 1,1-bis(4
-dibenzylaminophenyl)propane, 2,2'-dimethyl-4,4'-bis(diethylamino)-triphenylmethane, etc. The compound represented by general formula (5) includes, for example, 9-(
Examples include 4-diethylaminostyryl)anthracene and 9-bromo-10-(4-diethylaminostyryl)anthracene. The compound represented by general formula (6) includes, for example, 9-(
4-dimethylaminobenzylidene) fluorene, 3-(
Examples include 9-fluorenylidene)-1-ethylrubazole. The compound represented by the general formula (7) includes, for example, 1,2
-bis(4-diethylaminostyryl)benzene, 1.
There is 2-bis(2,4-dimethoxystyryl)benzene. Examples of the compound represented by the general formula (8) include 3-styryl-9-ethylrubazole and 3-(4-methoxystyryl)-9-ethylrupazole. Examples of the compound represented by the general formula (9) include 4-diphenylaminostilbene, 4-dibenzylaminostilbene, 4-ditolylaminostilbene, 1-(4-diphenylaminostyryl)naphthalene, 1-(4- diethylaminostyryl) naphthylene, etc. The compound represented by the general formula (10) includes, for example, 4'
-diphenylamino-α-phenynorestinoleben, 4
'-Methylphenylamino-α-phenylstilbene, etc. The compound represented by the general formula (l1) includes, for example, l-
Phenyl-3-(4-diethylaminostyryl)-5-
(4-diethylaminophenyl)birazoline, 1-phenyl-3-(4-dimethylaminostyryl)-5-(4
-dimethylaminophenyl)virazoline, etc. The compound represented by general formula (l2) has. N,N'-diphenyl-N,N'-bis(3-methylephenyl)-(1.1'-bisphenyl)-4,4'-diamine, N,N'-diphenyl-N. Examples include N'-bis(chlorophenyl)-(1.1'-biphenylinole)-4,4'-diamine and 3,3'-dimethylbenzidine. The compound represented by the general formula (l3) includes diphenyl-
4-biphenylylamine, di(4-methylphenyl)-
4-biphenylylamine, di(4-methoxyphenyl)
Examples include -4-biphenylylamine. Other hole transport substances include, for example, 2.5-bis(4-diethylaminophenyl)-1.3.4-oxadiazole, 2.5-bis(4-(4-diethylaminostyryl)phenyl)- 1.3.4-oxydiazole, 2-
Oxadiazole compounds such as (9-ethylrubazolyl-3-)-5-(4-diethylaminophenyl)-1.3.4-oxadiazole, 2-vinyl-4-(2
There are low molecular weight compounds such as oxazole compounds such as -chlorophenyl)-5-(4-diethylaminophenyl)oxazole and 2-(4-diethynoleaminophenyl)-4-phenyloxazole. Also usable are polymeric compounds such as polyvinylcarbazole, halogenated polyN-vinylrubazole, polyvinylpyrene, polyvinylanthracene, bilene formaldehyde resin, and ethylrubazole formaldehyde resin. Examples of the electron transport substance include chloranil, bromoanil, tetracyanoethylene, tetracyanoquinone dimethane, 2,4,7-trinitro-9-fluorenone. 2
, 4,5.7-tetranitro-9-fluorenone. 2
, 4,5.7-tetranitroxanthone. 2,4.8
-trinitrothioxanthone, 2,6.8-trinito-4}1-indeno[:1.2-b)thiophene-4-
on. Examples include 1,3,7-trinitrodibenzothiophene-5,5-dioxide. The photosensitive layer of the electrophotographic photoreceptor of the present invention can be of a normally charged type or a negatively charged functionally separated type by combining a charge generation layer and a charge transport layer. In the case of a negatively charged type, a charge generating layer containing a charge generating substance and a binder is formed on the substrate, and a charge transporting layer containing a charge transporting substance and a binder is formed thereon, but in the case of a positively charged type, a charge generating layer containing a charge generating substance and a binder is formed on the substrate. In this case, a charge generation layer,
Stack the charge transport layer in reverse order. Note that a charge transporting substance may be included in the charge generation layer, especially in the case of a positively charged structure, the sensitivity is improved. Furthermore, an intermediate layer may be provided between the photosensitive layer and the substrate in order to improve adhesion and charge blocking properties. Furthermore, a protective layer may be provided on the photosensitive layer in order to improve mechanical durability such as abrasion resistance. Binders used in forming the charge generation layer, charge transport layer and dispersed photosensitive layer include polycarbonate (bisphenol A type, bisphenol Z type), polyester, methacrylic resin, acrylic resin,
Polyethylene, vinyl chloride, vinyl acetate, polystyrene. Phenol resin, epoxy resin, polyurethane, vinylidene chloride, alkyd resin, silicone resin, polyvinyl rubber, polyvinyl butyral, polyvinyl formal, polyarylate, polyacrylamide, polyamide, phenoxy resin, etc. are used. These binders can be used alone or as a mixture of two or more. When creating a photoreceptor using the layer structure and materials described above. There is a preferable range for film thickness and material ratio. In the case of negatively charged type (layered structure of substrate/charge generation layer/charge transport layer). In the charge generation layer, the ratio of the charge generation substance to the binder is preferably 20 to 500% by weight, and the film thickness is preferably 0.1 to 5 tones. In the charge transport layer, the ratio of the charge transport substance to the binder is preferably 20 to 200% by weight, and the film thickness is preferably 5 to 50%. In the case of a positively charged type (stacked charge transport layer/charge generation layer on the base), the charge transport layer has a charge transport material ratio of 20 to 200% by weight and a film thickness of 5 to 50% by weight. It is preferable to do so. In the charge generation layer, the charge generation substance is preferably contained in an amount of 10 to 100% by weight based on the binder. Furthermore, it is preferable to include a charge transport substance in the charge generation layer, which has the effect of suppressing residual potential and improving sensitivity. In this case, the charge transport material is preferably contained in an amount of 20 to 200% by weight based on the binder. Further, the amount of the TEMPO derivative of the present invention added to the photosensitive layer is preferably 0.01 to 5.0% by weight based on the charge transport material when added to the charge transport layer in the case of a functionally separated type. .. When added to the charge generation layer, it is preferably added in an amount of 0.1 to 20.0% by weight relative to the charge generation substance. In the case of a dispersed type, o
.. It is preferable to add oi to 5.0% by weight. TEM
If the amount of the PO derivative added is less than the lower limit, the effect of increasing durability cannot be obtained, and if it is more than the upper limit, it may cause negative effects such as a decrease in sensitivity. The intermediate layer provided as needed is generally made of resin as the main component, but considering that the photosensitive layer is coated on top of it with a solvent, these resins have poor solvent resistance to general organic solvents. It is desirable that the resin has a high Examples of such resins include water-soluble resins such as polyvinyl alcohol, casein, and sodium polyacrylate; alcohol-soluble resins such as copolymerized nylon and methoxymethylated nylon; and three-dimensional resins such as polyurethane, melamine resin, phenolic resin, and epoxy resin. Examples include curable resins that form a network structure. Further, fine powder pigments of gold tin oxide such as titanium oxide, silica, alumina, zirconium oxide, tin oxide, indium oxide, etc. may be added to the intermediate layer to prevent moire and reduce residual potential. Solvents or dispersion media used in forming the charge generation layer and the charge transport layer include ~,N'-dimethylformamide, acetone, methyl ethyl ketone, cyclohexanone, benzene, toluene, xylene, chloroform, 1,2-dichloroethane, Dichloromethane, monochlorobenzene. Tetrahydrofuran, dioxane, methanol, ethanol, isopropanol, ethyl acetate, butyl acetate. Examples include dimethyl sulfoxide. Methods for forming the photosensitive layer include immersing the substrate in a coating solution for the charge generation layer and charge transport layer, and spraying the coating solution onto the substrate. Substrates used in the electrophotographic photoreceptor of the present invention include metal drums and sheets made of aluminum, brass, stainless steel, nickel, and the like. Materials such as polyethylene terephthalate, polypropylene, nylon, and paper are treated with conductivity by steaming metals such as aluminum and nickel, or by coating conductive substances such as titanium oxide, tin oxide, and carbon black with a suitable binder. Examples include sheet-like or cylindrical substrates such as plastic and paper. [Effects of the Invention] Since the electrophotographic photoreceptor of the present invention has the above structure, the photoreceptor characteristics such as charging property do not deteriorate even after repeated use over a long period of time, and it has high durability and good storage stability. It has extremely high practical value.

〔実施例〕 以下,実施例により本発明を更に詳細に説明する. 実施例1 アルコール可溶性ボリアミド(アミランCM−8000
;東レ社製)1重量部をメタノール8重量部.i−ブタ
ノール5重量部の混合溶媒に溶解した,これに酸化チタ
ン粉末(タイベークA−100;石原産業社1!)3重
量部を加え,ボールミルで12時間分散し.中間層用塗
布液を作成した.これを長径φ40―.長さ255■の
アルミニウムドラムに浸漬塗工法で塗布、乾燥し、厚さ
24の中間層を形成した.次にポリビニルブチラール樹
脂(エスレックBL−S:積水化学工業社11)2重量
部を1.2−ジクロロエタン125重量部に溶解し、こ
れに特公昭49−4338号公報記載と同様方法にて作
成したX型無金属フタロシアニン1重量部を加え超音波
分散機により超音波分散を行った.こうして得られた電
荷発生層用塗布液を前記中間層上に浸漬塗工法により塗
布、乾燥を行い,膜厚0.57aの電荷発生層を形成し
た.更に,下記構造式(1)で示される電荷輸送物質8
重量部、 ポリカーボネート樹脂(パンライトκ−1300 :帝
人化成社製)10重量部,シリコンオイル(KF−50
 :信越化学工業社製) o.ooz重量部,4−ヒド
ロキシ−TEMPO O.04重量部を塩化メチレン8
5重量部に溶解し電荷輸送層塗布液を作成した.これを
前記電荷発生層に浸漬塗工法で塗布,乾燥し膜厚20戸
の電荷輸送層を形成した.このようにして電子写真感光
体を作成した. 実施例2 実施例lにおける4−ヒドロキシ−TENPOのかわり
に4−オキソーTE!MPOを用いた以外は実施例1と
同様にして電子写真感光体を作成した. 比較例1 実施例1において4−ヒドロキシーTEMPOを除いた
以外は実施例lと同様にして電子写真感光体を作成した
. 実施例3 実施例1と同様にしてアルミニウムドラム上に厚さ2p
aの中間層を形成した. 次にポリビニルブチラール樹脂(エスレックBL−S:
積水化学工業製)5重量部をシクロヘキサノン150重
量部に溶解し,これに下記構造式(A)で示されるトリ
スアゾ顔料10重量部 を加えボールミルで48時間分散し,更にシクロへキサ
ノン210重量部を加えて3時間分散を行った.これを
容器に取り出し、固型分が1.5重量ズになるようにシ
クロヘキサノンで希釈した.こうして得られた電荷発生
層用塗布液を前記中間層上に浸漬塗工法で塗布,乾燥し
厚さ0.2一の電荷発生層を形成した. さらに,下記構造式(■)で示される電荷輸送層8重量
部 ti,(..; ポリカーボネート樹脂(パンライトK−1300:帝人
化成社製)10重量部、シリコンオイル(κF−50;
信越化学工業社製)0.002重量部,4−ヒドロキシ
ーTEMPOO.04重量部を塩化メチレン85重量部
に溶解し・電荷輸送層塗布液を作成した.これを前記電
荷発生層上に浸漬.塗工法で塗布,乾燥し膜厚20pa
の電荷輸送層を形成した.このようにして本発明の電子
写真感光体を作成した. 実施例4 実*m3における4−ヒドロキシー丁HMPOのかわり
に4−アミノー丁1!NPOを用いた以外は実施例3と
同様にして電子写真感光体を作成した. 比較例2 実施例3における4−ヒドロキシーτII!MPOを除
いた以外は実施例3と同様にして電子写真感光体を作成
した. 比較例3,4 実施例3における4−ヒドロキシ−TENPOoがわり
に下記化合物を用いた以外は実施例3と同様にして電子
写真感光体を作成した. 以上のようにして得られた電子写真感光体をレーザープ
リンター(PC−LASER−6000:■リコー製)
に装着し評価を行った. 評価はプリンター中での露光部と非露光部の表面電位を
測定することにより行った. なお,表面電位は現像器をとり除き、現像位置に表面電
位ブローブを装着することにより測定を行った. 得られた結果を表一1に示す. 表−1 表−1の結果から明らかなようにTEMPO誘導体,特
に4−ヒドロキシ−TEMPOを電子写真感光体の感光
層に添加することにより高感度でかつ高耐久な電子写真
感光体を得ることができる. 特許出願人 株式会社 リ  コ ー
[Example] The present invention will be explained in more detail with reference to Examples below. Example 1 Alcohol-soluble polyamide (Amilan CM-8000
; manufactured by Toray Industries, Inc.) 1 part by weight and 8 parts by weight of methanol. To this solution dissolved in a mixed solvent containing 5 parts by weight of i-butanol, 3 parts by weight of titanium oxide powder (Tie Bake A-100; Ishihara Sangyo Co., Ltd. 1!) was added and dispersed in a ball mill for 12 hours. A coating solution for the intermediate layer was created. This has a long diameter of φ40. It was coated on an aluminum drum with a length of 255 cm using a dip coating method and dried to form an intermediate layer with a thickness of 24 cm. Next, 2 parts by weight of polyvinyl butyral resin (S-LEC BL-S: Sekisui Chemical Co., Ltd. 11) was dissolved in 125 parts by weight of 1,2-dichloroethane, and a mixture was prepared in the same manner as described in Japanese Patent Publication No. 49-4338. 1 part by weight of X-type metal-free phthalocyanine was added and ultrasonic dispersion was performed using an ultrasonic dispersion machine. The charge generation layer coating solution thus obtained was applied onto the intermediate layer by dip coating and dried to form a charge generation layer having a thickness of 0.57a. Furthermore, a charge transport substance 8 represented by the following structural formula (1)
Parts by weight, 10 parts by weight of polycarbonate resin (Panlite κ-1300: manufactured by Teijin Chemicals), silicone oil (KF-50)
: Manufactured by Shin-Etsu Chemical Co., Ltd.) o. oz parts by weight, 4-hydroxy-TEMPO O. 04 parts by weight of methylene chloride 8 parts
A charge transport layer coating solution was prepared by dissolving 5 parts by weight. This was applied to the charge generation layer by dip coating and dried to form a charge transport layer with a thickness of 20 layers. In this way, an electrophotographic photoreceptor was created. Example 2 4-oxoTE instead of 4-hydroxy-TENPO in Example 1! An electrophotographic photoreceptor was prepared in the same manner as in Example 1 except that MPO was used. Comparative Example 1 An electrophotographic photoreceptor was prepared in the same manner as in Example 1 except that 4-hydroxy-TEMPO was omitted. Example 3 A 2p thick film was deposited on an aluminum drum in the same manner as in Example 1.
The middle layer of a was formed. Next, polyvinyl butyral resin (S-LEC BL-S:
Sekisui Chemical Co., Ltd.) 5 parts by weight were dissolved in 150 parts by weight of cyclohexanone, 10 parts by weight of trisazo pigment represented by the following structural formula (A) were added thereto, dispersed for 48 hours in a ball mill, and further 210 parts by weight of cyclohexanone was added. In addition, dispersion was performed for 3 hours. This was taken out into a container and diluted with cyclohexanone so that the solid content was 1.5 wt. The charge generation layer coating solution thus obtained was applied onto the intermediate layer by dip coating and dried to form a charge generation layer having a thickness of 0.21. Further, a charge transport layer represented by the following structural formula (■) 8 parts by weight ti, (...; 10 parts by weight of polycarbonate resin (Panlite K-1300: manufactured by Teijin Chemicals), silicone oil (κF-50;
Shin-Etsu Chemical Co., Ltd.) 0.002 parts by weight, 4-hydroxy-TEMPOO. A charge transport layer coating solution was prepared by dissolving 04 parts by weight in 85 parts by weight of methylene chloride. This was dipped onto the charge generation layer. Applied using coating method and dried to a film thickness of 20pa
A charge transport layer was formed. In this way, the electrophotographic photoreceptor of the present invention was produced. Example 4 4-amino-cho 1 instead of 4-hydroxy-cho HMPO in fruit*m3! An electrophotographic photoreceptor was prepared in the same manner as in Example 3 except that NPO was used. Comparative Example 2 4-Hydroxy-τII in Example 3! An electrophotographic photoreceptor was prepared in the same manner as in Example 3 except that MPO was omitted. Comparative Examples 3 and 4 An electrophotographic photoreceptor was prepared in the same manner as in Example 3, except that the following compound was used instead of 4-hydroxy-TENPOo in Example 3. The electrophotographic photoreceptor obtained as described above was printed on a laser printer (PC-LASER-6000: ■ manufactured by Ricoh).
It was installed and evaluated. Evaluation was performed by measuring the surface potential of exposed and non-exposed areas in the printer. The surface potential was measured by removing the developing device and attaching a surface potential probe to the developing position. The results obtained are shown in Table 1. Table 1 As is clear from the results in Table 1, it is possible to obtain a highly sensitive and highly durable electrophotographic photoreceptor by adding a TEMPO derivative, especially 4-hydroxy-TEMPO, to the photosensitive layer of the electrophotographic photoreceptor. can. Patent applicant Ricoh Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] (1)導電性基体上に少なくとも電荷発生物質と電荷輸
送物質を含有する感光層を設けた電子写真感光体におい
て、前記感光層中に2,2,6,6−テトラメチル−1
−ピペリジニロキシ誘導体を含有させたことを特徴とす
る電子写真感光体。
(1) In an electrophotographic photoreceptor in which a photosensitive layer containing at least a charge-generating substance and a charge-transporting substance is provided on a conductive substrate, the photosensitive layer contains 2,2,6,6-tetramethyl-1
- An electrophotographic photoreceptor containing a piperidinyloxy derivative.
JP5399389A 1989-03-06 1989-03-06 Electrophotographic sensitive body Pending JPH02232658A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5399389A JPH02232658A (en) 1989-03-06 1989-03-06 Electrophotographic sensitive body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5399389A JPH02232658A (en) 1989-03-06 1989-03-06 Electrophotographic sensitive body

Publications (1)

Publication Number Publication Date
JPH02232658A true JPH02232658A (en) 1990-09-14

Family

ID=12958138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5399389A Pending JPH02232658A (en) 1989-03-06 1989-03-06 Electrophotographic sensitive body

Country Status (1)

Country Link
JP (1) JPH02232658A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0628880A2 (en) * 1993-06-05 1994-12-14 Japat Ltd Photoreceptor
WO2018016343A1 (en) * 2016-07-19 2018-01-25 日産化学工業株式会社 Varnish for forming charge-transporting thin film

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62220435A (en) * 1986-03-14 1987-09-28 東芝テック株式会社 Weighing in-line system
JPS63206757A (en) * 1987-02-23 1988-08-26 Mitsubishi Paper Mills Ltd Electrophotographic sensitive body

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62220435A (en) * 1986-03-14 1987-09-28 東芝テック株式会社 Weighing in-line system
JPS63206757A (en) * 1987-02-23 1988-08-26 Mitsubishi Paper Mills Ltd Electrophotographic sensitive body

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0628880A2 (en) * 1993-06-05 1994-12-14 Japat Ltd Photoreceptor
EP0628880A3 (en) * 1993-06-05 1995-03-29 Japat Ltd Photoreceptor.
WO2018016343A1 (en) * 2016-07-19 2018-01-25 日産化学工業株式会社 Varnish for forming charge-transporting thin film
JPWO2018016343A1 (en) * 2016-07-19 2019-05-16 日産化学株式会社 Varnish for charge transport thin film formation
TWI794182B (en) * 2016-07-19 2023-03-01 日商日產化學工業股份有限公司 Paint for forming charge-transporting thin film

Similar Documents

Publication Publication Date Title
JPH11242348A (en) Electrophotographic pigment and electrophotographic photoreceptor using the same
JP2932503B2 (en) Electrophotographic photoreceptor
JPH02232658A (en) Electrophotographic sensitive body
JPH05165244A (en) Electrophotographic sensitive body
JP3604255B2 (en) Electrophotographic photoreceptor
JP3658136B2 (en) Electrophotographic photoreceptor
JP3658134B2 (en) Electrophotographic photoreceptor
JPH01197759A (en) Electrophotographic sensitive body
JP3708677B2 (en) Electrophotographic photoreceptor
JPH07230176A (en) Electrophotographic photoreceptor
JPH01197758A (en) Electrophotographic sensitive body
JP4164779B2 (en) Electrophotographic photoreceptor
JP2688485B2 (en) Electrophotographic photoreceptor
JP2936511B2 (en) Electrophotographic sensitive body
JPH0446348A (en) Photosensitive body
JP3715068B2 (en) Electrophotographic photoreceptor
JP2606702B2 (en) Electrophotographic photoreceptor
JP3681500B2 (en) Electrophotographic photoreceptor
JPH02165154A (en) Electrophotographic sensitive body
JP4003894B2 (en) Electrophotographic photoreceptor
JPH02264263A (en) Electrophotographic sensitive body
JP3705895B2 (en) Electrophotographic photoreceptor
JP2731555B2 (en) Electrophotographic photoreceptor
JP3049787B2 (en) Photoconductor
JPH10207095A (en) Electrophotogaphic photoreceptor