JP3658134B2 - Electrophotographic photoreceptor - Google Patents

Electrophotographic photoreceptor Download PDF

Info

Publication number
JP3658134B2
JP3658134B2 JP08284197A JP8284197A JP3658134B2 JP 3658134 B2 JP3658134 B2 JP 3658134B2 JP 08284197 A JP08284197 A JP 08284197A JP 8284197 A JP8284197 A JP 8284197A JP 3658134 B2 JP3658134 B2 JP 3658134B2
Authority
JP
Japan
Prior art keywords
group
charge transport
transport layer
modified polysiloxane
coating solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08284197A
Other languages
Japanese (ja)
Other versions
JPH10282694A (en
Inventor
洋志 中井
康夫 鈴木
孝彰 池上
望 田元
浩司 岸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP08284197A priority Critical patent/JP3658134B2/en
Publication of JPH10282694A publication Critical patent/JPH10282694A/en
Application granted granted Critical
Publication of JP3658134B2 publication Critical patent/JP3658134B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は電子写真感光体に関し、詳しくはトナーの転写効率、更にクリーニング性に優れるとともに環境安定性にも優れた高耐久な電子写真感光体に関する。
【0002】
【従来の技術】
従来より電子写真感光体の光導電性材料としてセレン、α−シリコン、酸化亜鉛等の無機光導電性材料が感度、耐久性の面から主として用いられてきたが、これらの無機材料は有害物質であったり、生産性が劣るために高コストなものとなるという欠点を有している。このため無公害であり、塗工による大量生産が可能で低コスト化が容易な有機感光体の開発が近年盛んに行われている。
【0003】
【発明が解決しようとする課題】
これらの有機感光体は無公害、低コスト等の利点を有するものの、その感度、環境安定性、及び耐久性に問題が残されており、中でも特に環境安定性及び耐久性に優れた電子写真感光体の開発が熱望されている。更に近年の高画質化の要求は、トナーを小粒径化させる方向にあり、これに対応した転写効率及びクリーニング性が高い電子写真感光体が要求されている。
【0004】
これらの欠点を解決する方法として、感光体表面に設けられた電荷輸送層にシリコーン樹脂、又はシリコーン含有ポリマーを含有させる方法が提案されている(特開昭57−64243号公報、特開昭60−256146号公報、特開昭61−95358号公報、特開昭61−132954号公報、特開昭61−219047号公報)。しかしながらシリコーン樹脂やシリコーン含有ポリマーを添加する方法では耐摩耗性が悪く、更には残留電位が上昇するという欠点を有している。このように従来のシリコーン含有ポリマー等を含む有機感光体は種々の耐久性に問題があり、その改善が熱望されている。
【0005】
以上のように種々の耐久性に問題が残されている上に、高い転写効率及びクリーニング性が要求されていることに対しても、十分な特性が得られていないのが実状である。本発明の目的は上記の問題を解決するものとして、繰返し使用時に残留電位の上昇がなく、更には高い転写効率及びクリーニング性が改善された高耐久な電子写真感光体を提供することにある。
【0006】
【課題を解決するための手段】
本発明者らは上記課題を達成するべく検討を重ねた結果、本発明を完成するに至った。すなわち本発明によれば、
(1)導電性支持体上に感光層を設けた電子写真感光体において、該電子写真感光体の最外層が下記一般式で表わされるメチルフェニルポリシロキサンと変性ポリシロキサンとの混合物を含有していることを特徴とする電子写真感光体、
【0007】
【化3】

Figure 0003658134
【0008】
上記一般式中のR1〜R10はそれぞれ異なってもよく、メチル基、置換基を有してもよいフェニル基(但し少なくとも一つは置換基を有してもよいフェニル基である)を表す。m,nは0又は正の整数である(但し、m,nは同時に0ではない)。
【0009】
(2)変性ポリシロキサンがアミノ変性ポリシロキサン、エポキシ変性ポリシロキサン、カルボキシ変性ポリシロキサン、カルビノール変性ポリシロキサンから選ばれる上記(1)項記載の電子写真感光体、
(3)変性ポリシロキサンがメルカプト変性ポリシロキサン、フェノール変性ポリシロキサン、ポリエーテル変性ポリシロキサンから選ばれる上記(1)項記載の電子写真感光体、
(4)変性ポリシロキサンが脂肪酸エステル変性ポリシロキサン、アルコキシ変性ポリシロキサン、フッ素変性ポリシロキサンから選ばれる上記(1)項記載の電子写真感光体、
(5)変性ポリシロキサンが異種官能基変性ポリシロキサンである上記(1)項記載の電子写真感光体、
(6)最外層の結着樹脂が下記一般式で表される構造単位を主繰返し単位として有するポリカーボネートであることを特徴とする上記(1)〜(5)項に記載の電子写真感光体、
【0010】
【化4】
Figure 0003658134
【0011】
式中、Zは置換基を有してもよい炭素環又は複素環を形成するのに必要な非金属原子群を表し、R1〜R8は水素原子、ハロゲン原子、又は各々置換基を有してもよい脂肪族基若しくは炭素環基を表す、
が提供される。
次に図面を用いて本発明を詳しく説明する。
【0012】
図1は本発明に用いられる単層感光体を表す断面図であり、導電性支持体11上に、電荷発生材料と電荷輸送材料を主成分とする単層感光層15が設けられている。図2,3は本発明に用いられる積層感光体の構成例を示す断面図であり、電荷発生材料を主成分とする電荷発生層17と電荷輸送材料を主成分とする電荷輸送層19とが積層された構成をとっている。
【0013】
本発明において最外層とは上記(1)〜(5)に示される特定のポリシロキサン混合物を含有する層であって、電子写真感光体の表面に設けられた層を指す。従って、単層感光体の場合は感光層が最外層であり、積層感光体の場合には電荷発生層若しくは電荷輸送層のうち、どちらか表面に設けられた層が最外層ということになる。その方法として本発明では最外層に相当する塗工液に上記(1)〜(5)のポリシロキサン混合物を含有させるが、より効果を高めるために添加量を増加させた場合には、これらのポリシロキサン混合物を含有させた塗工液用溶媒に所定の材料を溶解又は分散させた方が好ましい。又、必要に応じて、更に該塗工液をペイントシェーカーやサンドミル、ビーズミル、ボールミル等によって2次分散せしめてもよい。
【0014】
本発明に用いられる上記(1)〜(5)のポリシロキサン混合物は、それぞれ単独では繰返し使用時の高い転写効率・クリーニング性の持続性、或いは表面のエネルギーを下げる効果を有していると考えられるが、これらを混合して用いた際には相乗効果が発現し、それぞれ単独使用時に比べて効果が飛躍的に向上する。
本発明に用いられるメチルフェニルポリシロキサンとしては、下記一般式で表される少なくとも一種のものであり、環状構造をとってもよい。
【0015】
【化5】
Figure 0003658134
【0016】
上記一般式中のR1〜R10はそれぞれ異なってもよく、メチル基、置換基を有してもよいフェニル基(但し少なくとも一つは置換基を有してもよいフェニル基である)を表す。m,nは0又は正の整数である(但し、m,nは同時に0ではない)。
【0017】
本発明において前記メチルフェニルポリシロキサンとともに組み合わせて使用する変性ポリシロキサンとしては、アミノ変性、エポキシ変性、カルボキシ変性、カルビノール変性、メタクリル変性、メルカプト変性、フェノール変性、ポリエーテル変性、アルキル変性、脂肪酸エステル変性、ビニル変性、アルコキシ変性、異種官能基変性、フッ素変性されたポリシロキサンを挙げることができ、これらの少なくとも1種が前記ポリシロキサンと組み合わされる。
本発明に用いられるアミノ変性ポリシロキサンとしては、下記一般式で表される少なくとも一種のものであり、環状構造をとってもよい。
【0018】
【化6】
Figure 0003658134
【0019】
上記一般式中のR1〜R10はそれぞれ異なってもよく、炭素数1〜3のアルキル基、−R11−NH−R12NH2又は−R13−NH2を表し(但し少なくとも一つは−R11−NH−R12NH2又は−R13−NH2である)、R11〜R13はアルキレン基を表す。m,nは0又は正の整数である(但し、m,nは同時に0ではない)。
本発明に用いられるエポキシ変性ポリシロキサンとしては、下記一般式で表される少なくとも一種のものであり、環状構造をとってもよい。
【0020】
【化7】
Figure 0003658134
【0021】
上記一般式中のR1〜R10はそれぞれ異なってもよく、炭素数1〜3のアルキル基、及び
【0022】
【化8】
Figure 0003658134
【0023】
を表し(但し少なくとも一つは
【0024】
【化9】
Figure 0003658134
【0025】
である)、R11〜R12はアルキレン基を表す。m,nは0又は正の整数である(但し、m,nは同時に0ではない)。
本発明に用いられるカルボキシ変性ポリシロキサンとしては、下記一般式で表される少なくとも一種のものであり、環状構造をとってもよい。
【0026】
【化10】
Figure 0003658134
【0027】
上記一般式中のR1〜R10はそれぞれ異なってもよく、炭素数1〜3のアルキル基、炭素数1〜3のアルコキシ基、−R11−COOHを表し(但し少なくとも一つは−R11−COOHである)、R11はアルキレン基を表す。m,nは0又は正の整数である(但し、m,nは同時に0ではない)。
本発明に用いられるカルビノール変性ポリシロキサンとしては、下記一般式で表される少なくとも一種のものであり、環状構造をとってもよい。
【0028】
【化11】
Figure 0003658134
【0029】
上記一般式中のR〜R10はそれぞれ異なってもよく、炭素数1〜3のアルキル基、炭素数1〜3のアルコキシ基、−R11−OHを表し(但し少なくとも一つは−R11−OHである)、R11はアルキレン基を表す。m、nは0又は正の整数である(但し、m、nは同時に0でない)。
【0031】
本発明に用いられるメルカプト変性ポリシロキサンとしては、下記一般式で表される少なくとも一種のものであり、環状構造をとってもよい。
【0032】
【化13】
Figure 0003658134
【0033】
上記一般式中のR1〜R10はそれぞれ異なってもよく、炭素数1〜3のアルキル基、炭素数1〜3のアルコキシ基、−R11−SHを表し(但し少なくとも一つは−R11−SHである)、R11はアルキレン基を表す。m,nは0又は正の整数である(但し、m,nは同時に0ではない)。
【0034】
本発明に用いられるフェノール変性ポリシロキサンとしては、下記一般式で表される少なくとも一種のものであり、環状構造をとってもよい。
【0035】
【化14】
Figure 0003658134
【0036】
上記一般式中のR1〜R10はそれぞれ異なってもよく、炭素数1〜3のアルキル基、炭素数1〜3のアルコキシ基、及び
【0037】
【化15】
Figure 0003658134
【0038】
を表し(但し少なくとも一つは
【0039】
【化16】
Figure 0003658134
【0040】
である)、R11はアルキレン基を表す。m,nは0又は正の整数である(但し、m,nは同時に0ではない)。
本発明に用いられるポリエーテル変性ポリシロキサンとしては、下記一般式で表される少なくとも一種のものであり、環状構造をとってもよい。
【0041】
【化17】
Figure 0003658134
【0042】
上記一般式中のR〜R10はそれぞれ異なってもよく、炭素数1〜3のアルキル基、−R11−(CO)a(CO)b−R12を表し(但し少なくとも一つは−R11−(CO)a(CO)b−R12である)、R11はアルキレン基、R12はアルキル基、水素、又は−R13−OHを表す(R13はアルキレン基を表す)。m、n、a、bは0又は正の整数である(但し、m、nは同時に0ではない)。
【0044】
本発明に用いる脂肪酸エステル変性ポリシロキサンとしては、下記一般式で表される少なくとも一種のものであり、環状構造をとってもよい。
【0045】
【化19】
Figure 0003658134
【0046】
上記の一般式中のR〜R10はそれぞれ異なってもよく、炭素数1〜3のアルキル基、炭素数1〜3のアルコキシ基、−OCO−R11を表し(但し少なくとも一つは−OCO−R11である)、R11はアルキル基を表す。m、nは0又は正の整数である(但し、m、nは同時に0ではない)。
【0048】
本発明に用いられるアルコキシ変性ポリシロキサンとしては、下記一般式で表される少なくとも一種のものであり、環状構造をとってもよい。
【0049】
【化21】
Figure 0003658134
【0050】
上記一般式中のR1〜R10はそれぞれ異なってもよく、炭素数1〜3のアルキル基、炭素数1〜30のアルコキシ基を表し(但し少なくとも一つは炭素数4〜30のアルコキシ基である)。m,nは0又は正の整数である(但し、m,nは同時に0ではない)。
本発明に用いられる異種官能基変性ポリシロキサンとは、異なった2種以上の官能基を有する変性ポリシロキサンであって、下記一般式で表される少なくとも一種のものであり、環状構造をとってもよい。
【0051】
【化22】
Figure 0003658134
【0052】
上記一般式中のR1〜R10はそれぞれ異なってもよく、炭素数1〜3のアルキル基、炭素数1〜3のアルコキシ基、アミノ基、エポキシ基、ポリエーテル基をを表す(但し少なくとも二つは炭素数1〜3のアルコキシ基、アミノ基、エポキシ基、およびポリエーテル基からなる群より選ばれるものである)。m,nは0又は正の整数である(但し、m,nは同時に0ではない)。
本発明に用いられるフッ素変性ポリシロキサンとしては、下記一般式で表される少なくとも一種のものであり、環状構造をとってもよい。
【0053】
【化23】
Figure 0003658134
【0054】
上記一般式中のR1〜R10はそれぞれ異なってもよく、炭素数1〜3のアルキル基、炭素数1〜3のアルコキシ基、−R11−CF3を表し(但し少なくとも一つは−R11−CF3である)、R11はアルキレン基を表す。m,nは0又は正の整数である(但し、m,nは同時に0ではない)。
【0055】
本発明に用いられる上記(1)〜(5)のポリシロキサン混合物の添加量としては、最外層の結着樹脂に対して0.5〜10%(重量比)が好ましく、これより添加量が少ないと、繰返し使用時の高い転写効率、クリーニング性の持続性がなくなり、一方、これより添加量が多いと成膜性が悪くなり、初期地肌汚れ等の画像欠陥が発生しやすくなる。又、メチルフェニルポリシロキサンと各変性ポリシロキサンの混合比としては、5:95〜95:5(重量比)が好ましい。
【0056】
本発明に用いられる上記(1)〜(5)のポリシロキサンの分子量(重合度)を表す粘度としては、それぞれ100CS(25℃)以上のものが好ましく、これが高くなるほど実使用時の耐刷性が向上するが、含有される少なくとも1種がこれに相当していれば満足できるものとなる。
【0057】
導電性支持体11としては、体積抵抗1010Ωcm以下の導電性を示すもの、例えばアルミニウム、ニッケル、クロム、ニクロム、銅、銀、金、白金などの金属、酸化スズ、酸化インジウムなどの金属酸化物を蒸着又はスパッタリングにより、フィルム状もしくは円筒状のプラスチック、紙に被覆したもの、あるいはアルミニウム、アルミニウム合金、ニッケル、ステンレス等の板及びそれらを素管化後、切削、超仕上げ、研磨等で表面処理した管等を使用することができる。
次に感光層15について説明する。感光層は単層でも積層でもよいが、説明の都合上、先ず電荷発生層17と電荷輸送層19で構成される場合から述べる。
電荷発生層17は電荷発生材料を主成分とする層である。
【0058】
電荷発生材料には無機及び有機材料が用いられ、その代表としてモノアゾ顔料、ジスアゾ顔料、トリスアゾ顔料、ペリレン系顔料、ペリノン系顔料、キナクリドン系顔料、キノン系縮合多環化合物、スクアリック酸系染料、フタロシアニン系顔料、ナフタロシアニン系顔料、アズレニウム塩系染料、セレン、セレン−テルル、セレン−ヒ素合金、アモルファス・シリコン等が挙げられ用いられる。
電荷発生材料は単独であるいは2種以上混合して用いられる。
【0059】
電荷発生層17は電荷発生材料を適宜バインダー樹脂とともに、テトラヒドロフラン、シクロヘキサノン、ジオキサン、2−ブタノン、ジクロルエタン等の適当な溶媒を用いてボールミル、アトライター、サンドミルなどにより分散し、分散液を塗布することにより形成できる。塗布は浸漬塗工法やスプレーコート、ビードコート法などを用いて行うことができる。適宜用いられるバインダー樹脂としてはポリアミド、ポリウレタン、ポリエステル、エポキシ樹脂、ポリケトン、ポリカーボネート、シリコーン樹脂、アクリル樹脂、ポリビニルブチラール、ポリビニルホルマール、ポリビニルケトン、ポリスチレン、ポリアクリルアミドなどが挙げられ用いられるが、電荷発生層17が図3の如き最外層に相当する場合には、特に下記一般式で表される構造単位を主繰返し単位として有するポリカーボネートが、前述の(1)〜(6)に示されるポリシロキサン混合物との親和性に優れており、生産性の面からも更に好ましいものである。
【0060】
【化24】
Figure 0003658134
【0061】
式中、Zは置換基を有してもよい炭素環又は複素環を形成するのに必要な非金属原子群を表し、R1〜R8は、水素原子、ハロゲン原子、又は各々置換基を有してもよい脂肪族基若しくは炭素環基を表す。上記の如きバインダー樹脂の量としては、電荷発生材料1重量部に対して0〜2重量部が適当である。電荷発生層17が最外層に相当しない場合には、公知の真空薄膜作製法にても設けることができる。電荷発生層17の膜厚は0.01〜5μm程度が適当であり、好ましくは0.1〜2μmである。
【0062】
電荷輸送層19は電荷輸送材料及びバインダー樹脂を適当な溶剤に溶解ないし分散し、これを塗布、乾燥することにより形成できる。又、必要により可塑剤等を添加することもできる。
電荷輸送材料としては、以下に例示する一般式で示される材料が挙げられる。これらの電荷輸送材料は単独又は混合して用いてもよい。
【0063】
本発明の電子写真感光体に用いられる電荷輸送物質としては、オキサゾール誘導体、イミダゾール誘導体、トリフェニルアミン誘導体及び以下に述べるような一般式(1)〜一般式(19)で表される化合物等が使用できる。
【0064】
【化25】
Figure 0003658134
【0065】
(式中、R1はメチル基、エチル基、2−ヒドロキシエチル基、又は2−クロルエチル基を表し、R2はメチル基、エチル基、ベンジル基、又はフェニル基を表し、R3は水素原子、臭素原子、炭素数1〜4のアルキル基、炭素数1〜4のアルコキシ基、ジアルキルアミノ基、又はニトロ基を表す。)
一般式(1)で表される化合物には、例えば9−エチルカルバゾール−3−アルデヒド−1−メチル−1−フェニルヒドラゾン、9−エチルカルバゾール−3−アルデヒド−1−ベンジル−1−フェニルヒドラゾン、9−エチルカルバゾール−3−アルデヒド−1,1−ジフェニルヒドラゾンなどがある。
【0066】
【化26】
Figure 0003658134
【0067】
(式中、Arはナフタレン環、アントラセン環、スチリル環、及びそれらの置換体あるいはピリジン環、フラン環、チオフェン環を表し、Rはアルキル基又はベンジル基を表す。)
一般式(2)で表される化合物には、例えば4−ジエチルアミノスチリル−β−アルデヒド−1−メチル−1−フェニルヒドラゾン、4−メトキシナフタレン−1−アルデヒド−1−ベンジル−1−フェニルヒドラゾンなどがある。
【0068】
【化27】
Figure 0003658134
【0069】
(式中、R1はアルキル基、ベンジル基、フェニル基、又はナフチル基を表し、R2は水素原子、炭素数1〜3のアルキル基、炭素数1〜3のアルコキシ基、ジアルキルアミノ基、ジアラルキルアミノ基、又はジアリールアミノ基を表し、nは1〜4の整数を表し、nが2以上の時はR2は同じでも異なっても良い。R3は水素原子、又はメトキシ基を表す。)
一般式(3)で表される化合物には、例えば4−メトキシベンズアルデヒド−1−メチル−1−フェニルヒドラゾン、2,4−ジメトキシベンズアルデヒド−1−ベンジル−1−フェニルヒドラゾン、4−ジエチルアミノベンズアルデヒド−1,1−ジフェニルヒドラゾン、4−メトキシベンズアルデヒド−1−ベンジル−1−(4−メトキシ)フェニルヒドラゾン、4−ジフェニルアミノベンズアルデヒド−1−ベンジル−1−フェニルヒドラゾン、4−ジベンジルアミノベンズアルデヒド−1,1−ジフェニルヒドラゾンなどがある。
【0070】
【化28】
Figure 0003658134
【0071】
(式中、R1は炭素数1〜11のアルキル基、置換若しくは無置換のフェニル基、又は複素環基を表し、R2,R3は、それぞれ同一でも異なっても良く、水素原子、炭素数1〜4のアルキル基、ヒドロキシアルキル基、クロルアルキル基、又は置換若しくは無置換のアラルキル基を表し、又、R2,R3は互いに結合し窒素原子を含む複素環を形成しても良い。R4は同一でも異なっていても良く、水素原子、炭素数1〜4のアルキル基、アルコキシ基、ハロゲン原子を表す。)
一般式(4)で表される化合物には、例えば1,1−ビス(4−ジベンジルアミノフェニル)プロパン、トリス(4−ジエチルアミノフェニル)メタン、1,1−ビス(4−ジベンジルアミノフェニル)プロパン、2,2’−ジメチル−4,4’−ビス(ジエチルアミノ)−トリフェニルメタンなどがある。
【0072】
【化29】
Figure 0003658134
【0073】
(式中、R1は水素原子、置換若しくは無置換のアルキル基及びフェニル基を表し、R2は水素原子、置換若しくは無置換のアルキル基、アルコキシ基又はハロゲン原子を示す。)
一般式(5)で表される化合物としては、例えばN−エチル−3,6−テトラベンジルアミノカルバゾールなどがある。
【0074】
【化30】
Figure 0003658134
【0075】
(式中、Rは水素原子、又はハロゲン原子を表し、Arは置換若しくは無置換のフェニル基、ナフチル基、アントリル基、又はカルバゾリル基を表す。)
一般式(6)で表される化合物には、例えば9−(4−ジエチルアミノスチリル)アントラセン、9−ブロム−10−(4−ジエチルアミノスチリル)アントラセンなどがある。
【0076】
【化31】
Figure 0003658134
【0077】
(式中、R1は水素原子、ハロゲン原子、シアノ基、炭素数1〜4のアルコキシ基又は炭素数1〜4のアルキル基を表し、Arは
【0078】
【化32】
Figure 0003658134
【0079】
を表し、R2は炭素数1〜4のアルキル基を表し、R3は水素原子、ハロゲン原子、炭素数1〜4のアルキル基、炭素数1〜4のアルコキシ基又はジアルキルアミノ基を表し、nは1又は2であって、nが2のときR3は同一でも異なっても良く、R4及びR5は水素原子、炭素数1〜4の置換若しくは無置換のアルキル基又は置換若しくは無置換のベンジル基を表す。)
一般式(7)で表される化合物には、例えば9−(4−ジメチルアミノベンジリデン)フルオレン、3−(9−フルオレニリデン)−9−エチルカルバゾールなどがある。
【0080】
【化33】
Figure 0003658134
【0081】
(式中、Rはカルバゾリル基、ピリジル基、チエニル基、インドリル基、フリル基、或いはそれぞれ置換若しくは非置換のフェニル基、スチリル基、ナフチル基又はアントリル基であって、これらの置換基がジアルキルアミノ基、アルキル基、アルコキシ基、カルボキシ基、又はそのエステル、ハロゲン原子シアノ基、アラルキルアミノ基、N−アルキル−N−アラルキルアミノ基、アミノ基、ニトロ基、及びアセチルアミノ基からなる群から選ばれた基を表す。)
一般式(8)で表される化合物には、例えば1,2−ビス(4−ジエチルアミノスチリル)ベンゼン、1,2−ビス(2,4−ジメトキシスチリル)ベンゼンなどがある。
【0082】
【化34】
Figure 0003658134
【0083】
(式中、R1は低級アルキル基、置換若しくは無置換のフェニル基又はベンジル基を表し、R2,R3は水素原子、低級アルキル基、低級アルコキシ基、ハロゲン原子、ニトロ基、アミノ基、或いは低級アルキル基又はベンジル基で置換されたアミノ基を表し、nは1又は2の整数を表す。)
一般式(9)で表される化合物には、例えば3−スチリル−9−エチルカルバゾール、3−(4−メトキシスチリル)−9−エチルカルバゾールなどがある。
【0084】
【化35】
Figure 0003658134
【0085】
(式中、R1は水素原子、アルキル基、アルコキシ基又はハロゲン原子を表し、R2及びR3はアルキル基、置換若しくは無置換のアラルキル基或いは置換若しくは無置換のアリール基を表し、R4は水素原子、低級アルキル基又は置換若しくは無置換のフェニル基を表し、又、Arは置換若しくは無置換のフェニル基又はナフチル基を表す。)
一般式(10)で表される化合物には、例えば4−ジフェニルアミノスチルベン、4−ジベンジルアミノスチルベン、4−ジトリルアミノスチルベン、1−(4−ジフェニルアミノスチリル)ナフタレン、1−(4−ジエチルアミノスチリル)ナフタレンなどがある。
【0086】
【化36】
Figure 0003658134
【0087】
〔式中、nは0又は1の整数、R1は水素原子、アルキル基又は置換若しくは無置換のフェニル基を表し、Ar1は置換若しくは無置換のアリール基を表し、R5は置換アルキル基を含むアルキル基、或いは置換若しくは無置換のアリール基を表し、Aは、
【0088】
【化37】
Figure 0003658134
【0089】
9−アントリル基、又は置換若しくは無置換のカルバゾリル基を表し、ここでR2は水素原子、アルキル基、アルコキシ基、ハロゲン原子、又は
【0090】
【化38】
Figure 0003658134
【0091】
(但し、R3及びR4はアルキル基、置換若しくは無置換のアラルキル基又は置換若しくは無置換のアリール基を示し、R3及びR4は同じでも異なっていても良く、R4は環を形成しても良い、)を表し、mは0,1,2又は3の整数であって、mが2以上の時はR2は同一でも異なっても良い。又、nが0のとき、AとR1は共同で環を形成しても良い。)
一般式(11)で表される化合物には、例えば4’−ジフェニルアミノ−α−フェニルスチルベン、4’−ビス(4−メチルフェニル)アミノ−α−フェニルスチルベンなどがある。
【0092】
【化39】
Figure 0003658134
【0093】
(式中、R1,R2及びR3は水素原子、低級アルキル基、低級アルコキシ基、ジアルキルアミノ基、又はハロゲン原子を表し、nは0又は1を表す。)
一般式(12)で表される化合物としては、例えば1−フェニル−3−(4−ジエチルアミノスチリル)−5−(4−ジエチルアミノフェニル)ピラゾリン、1−フェニル−3−(4−ジメチルアミノスチリル)−5−(4−ジメチルアミノフェニル)ピラゾリンなどがある。
【0094】
【化40】
Figure 0003658134
【0095】
(式中、R1,R2は置換アルキル基を含むアルキル基、又は置換若しくは無置換のアリール基を表し、Aは置換アミノ基、置換若しくは無置換のアリール基又はアリル基を表す。)
一般式(13)で表される化合物には、例えば2,5−ビス(4−ジエチルアミノフェニル)−1,3,4−オキサジアゾール、2−N,N−ジフェニルアミノ−5−(4−ジエチルアミノフェニル)1,3,4−オキサジアゾール、2−(4−ジメチルアミノフェニル)−5−(4−ジエチルアミノフェニル)−1,3,4−オキサジアゾールなどがある。
【0096】
【化41】
Figure 0003658134
【0097】
(式中、Xは水素原子、低級アルキル基、又はハロゲン原子を表し、Rは置換アルキル基を含むアルキル基、又は置換若しくは無置換のアリール基を表し、Aは置換アミノ基又は置換若しくは無置換のアリール基を表す。)
一般式(14)で表される化合物としては、例えば2−N,N−ジフェニルアミノ−5−(N−エチルカルバゾール−3−イル)−1,3,4−オキサジアゾール、2−(4−ジエチルアミノフェニル)−5−(N−エチルカルバゾール−3−イル)1,3,4−オキサジアゾールなどがある。
【0098】
【化42】
Figure 0003658134
【0099】
(式中、R1は低級アルキル基、低級アルコキシ基又はハロゲン原子を表し、nは0〜4の整数を表し、R2,R3は同じでも異なっていても良く、水素原子、低級アルキル基、低級アルコキシ基又はハロゲン原子を表す。)
一般式(15)で表されるベンジジン化合物には、例えばN,N’−ジフェニル−N,N’−ビス(3−メチルフェニル)−〔1,1’−ビフェニル〕−4,4’−ジアミン、3,3’−ジメチル−N,N,N’,N’−テトラキス(4−メチルフェニル)−〔1,1’−ビフェニル〕−4,4’−ジアミンなどがある。
【0100】
【化43】
Figure 0003658134
【0101】
(式中、R1,R3及びR4は水素原子、アミノ基、アルコキシ基、チオアルコキシ基、アリールオキシ基、メチレンジオキシ基、置換若しくは無置換のアルキル基、ハロゲン原子又は置換若しくは無置換のアリール基を、R2は水素原子、アルコキシ基、置換若しくは無置換のアルキル基,ハロゲン原子を表す。但し、R1,R2,R3及びR4はすべて水素原子である場合を除く。又、k,l,m及びnは1,2,3又は4の整数であり、各々が2,3又は4の整数の時は前記R1,R2,R3及びR4は同じでも異なっていても良い。)
一般式(16)で表されるビフェニルアミン化合物には、例えば4’−メトキシ−N,N−ジフェニル−〔1,1’−ビフェニル〕−4−アミン、4’−メチル−N,N’−ビス(4−メチルフェニル)−〔1,1’−ビフェニル〕−4−アミン、4’−メトキシ−N,N’−ビス(4−メチルフェニル)−〔1,1’−ビフェニル〕−4−アミンなどがある。
【0102】
【化44】
Figure 0003658134
【0103】
(式中、Arは炭素数18個以下の縮合多環式炭化水素基を表し、又、R1及びR2は水素原子、ハロゲン原子、置換若しくは無置換のアルキル基、アルコキシ基、置換若しくは無置換のフェニル基を表し、それぞれ同じでも異なっていてもよい。)
一般式(17)で表されるトリアリールアミン化合物には、例えば1−フェニルアミノピレン、1−ジ(p−トリルアミノ)ピレンなどがある。
A−CH=CH−Ar−CH=CH−A (18)
〔式中、Arは置換若しくは無置換の芳香族炭化水素基を表し、Aは、
【0104】
【化45】
Figure 0003658134
【0105】
(但し、Ar1は置換若しくは無置換の芳香族炭化水素基を表し、R1及びR2は置換若しくは無置換のアルキル基、又は置換若しくは無置換のアリール基である)を表す。〕
一般式(18)で表されるジオレフィン芳香族化合物には、例えば1,4−ビス(4−ジフェニルアミノスチリル)ベンゼン、1,4−ビス〔4−ジ(p−トリル)アミノスチリル〕ベンゼンなどがある。
【0106】
【化46】
Figure 0003658134
【0107】
(式中、Arは芳香族炭化水素基を、Rは水素原子、置換若しくは無置換のアルキル基又はアリール基をそれぞれ表す。nは0又は1、mは1又は2であって、n=0、m=1の場合、ArとRは共同で環を形成しても良い。)
一般式(19)で表されるスチリルピレン化合物としては、例えば1−(4−ジフェニルアミノスチリル)ピレン、1−〔4−ジ(p−トリル)アミノアチリル〕ピレンなどがある。
【0108】
電荷輸送材料とともに電荷輸送層19に使用されるバインダー樹脂としては、ポリスチレン、スチレン−アクリロニトリル共重合体、スチレン−ブタジエン共重合体、スチレン−無水マレイン酸共重合体、ポリエステル、ポリ塩化ビニル、塩化ビニル−酢酸ビニル共重合体、ポリ酢酸ビニル、ポリ塩化ビニリデン、ポリアリレート、フェノキシ樹脂、ポリカーボネート、酢酸セルロース樹脂、エチルセルロース樹脂、ポリビニルブチラール、ポリビニルホルマール、ポリビニルトルエン、アクリル樹脂、シリコーン樹脂、エポキシ樹脂、メラミン樹脂、ウレタン樹脂、フェノール樹脂、アルキッド樹脂等の熱可塑性、又は熱硬化性樹脂が挙げられる。これらの中でもポリカーボネートは電子写真感光体とした際の環境特性及び耐摩耗性、機械特性に優れており好ましいものであるが、特に下記一般式で表される構造単位を主繰返し単位として有するポリカーボネートは、前述の(1)〜(6)に示されるポリシロキサン混合物との親和性に優れており、生産性の面からも更に好ましいものである。
【0109】
【化47】
Figure 0003658134
【0110】
式中、Zは置換基を有してもよい炭素環又は複素環を形成するのに必要な非金属原子群を表し、R1〜R8は、水素原子、ハロゲン原子、又は各々置換基を有してもよい脂肪族基若しくは炭素環基を表す。このようなポリカーボネート樹脂は、例えば三菱瓦斯化学社製ユーピロンZ−200、帝人化成社パンライトK−1300として上市されている。
溶剤としてはテトラヒドロフラン、ジオキサン、トルエン、2−ブタノン、モノクロルベンゼン、ジクロルエタン、塩化メチレンなどが用いられる。電荷輸送層19の厚さは5〜100μmが適当である。
【0111】
本発明において電荷輸送層19中に可塑剤を添加してもよい。可塑剤としては、ジブチルフタレート、ジオクチルフタレートなど一般の樹脂の可塑剤として使用されているものがそのまま使用でき、その使用量はバインダー樹脂に対して0〜30重量%程度が適当である。
次に感光層15が単層構成の場合について述べる。この場合も多くは電荷発生物質と電荷輸送物質よりなる機能分離型のものが挙げられる。
【0112】
即ち少なくとも電荷発生材料及び電荷輸送材料を、バインダー樹脂とともに適当な溶剤に溶解ないし分散し、これを塗布、乾燥することによって形成できる。又、必要により可塑剤等を添加することもできる。
バインダー樹脂としては先に電荷輸送層19で挙げたバインダー樹脂をそのまま用いることができるほかに、電荷発生層17で挙げたバインダー樹脂を混合してもよい。単層感光層の膜厚は5〜100μmが適当である。
【0113】
本発明の電子写真感光体には、導電性支持体11と感光層との間に下引き層を設けることができる。下引き層は一般に樹脂を主成分とするが、これらの樹脂はその上に感光層を溶剤でもって塗布することを考えると、一般の有機溶剤に対して耐溶解性の高い樹脂であることが望ましい。このような樹脂としてはポリビニルアルコール、カゼイン、ポリアクリル酸ナトリウム等の水溶性樹脂、共重合ナイロン、メトキシメチル化ナイロン等のアルコール可溶性樹脂、ポリウレタン、メラミン樹脂、アルキッド−メラミン樹脂、エポキシ樹脂等、三次元網目構造を形成する硬化型樹脂などが挙げられる。
【0114】
又、下引き層にはモアレ防止、残留電位の低減等のために酸化チタン、シリカ、アルミナ、酸化ジルコニウム、酸化スズ、酸化インジウム等で例示できる金属酸化物の微粉末を加えてもよい。これらの下引き層は、前述の感光層のごとく適当な溶媒、塗工法を用いて形成することができる。
【0115】
更に本発明の下引き層として、シランカップリング剤、チタンカップリング剤、クロムカップリング剤等を使用して、例えばゾル−ゲル法等により形成した金属酸化物層も有用である。
この他に本発明の下引き層にはAl23を陽極酸化にて設けたものや、ポリパラキシリレン(パリレン)等の有機物や、SiO、SnO2、TiO2、ITO、CeO2等の無機物を真空薄膜作製法にて設けたものも良好に使用できる。下引き層の膜厚は0〜5μmが適当である。
【0116】
【実施例】
次に実施例を示すが、実施例は本発明を詳しく説明するものであり、本発明が実施例によって制約されるものではない。なお、実施例中の部はすべて重量部である。
【0117】
実施例1
外径100mmのアルミニウムシリンダー上に、下記組成の下引層塗工液、電荷発生層塗工液、電荷輸送層塗工液を順次、塗布・乾燥して各々3μmの下引層、0.2μmの電荷発生層、28μmの電荷輸送層を形成し、本発明の電子写真感光体を作製した。
【0118】
Figure 0003658134
【0119】
【化48】
Figure 0003658134
【0120】
Figure 0003658134
Figure 0003658134
実施例2
実施例1の電荷輸送層塗工液を下記組成のものにした以外は実施例1と同様にして本発明の電子写真感光体を作製した。
【0121】
Figure 0003658134
実施例3
実施例1の電荷輸送層塗工液を下記組成のものにした以外は実施例1と同様にして本発明の電子写真感光体を作製した。
【0122】
Figure 0003658134
実施例4
実施例1の電荷輸送層塗工液を下記組成のものにした以外は実施例1と同様にして本発明の電子写真感光体を作製した。
【0123】
Figure 0003658134
実施例5
実施例1の電荷輸送層塗工液を下記組成のものにした以外は実施例1と同様にして本発明の電子写真感光体を作製した。
【0124】
Figure 0003658134
実施例6
実施例1の電荷輸送層塗工液を下記組成のものにした以外は実施例1と同様にして本発明の電子写真感光体を作製した。
【0125】
Figure 0003658134
実施例7
実施例1の電荷輸送層塗工液を下記組成のものにした以外は実施例1と同様にして本発明の電子写真感光体を作製した。
【0126】
Figure 0003658134
実施例8
実施例1の電荷輸送層塗工液を下記組成のものにした以外は実施例1と同様にして本発明の電子写真感光体を作製した。
【0127】
Figure 0003658134
実施例9
実施例1の電荷輸送層塗工液において、電荷輸送層の結着樹脂を下記のものに変更した以外は実施例1と同様にして本発明の電子写真感光体を作製した。
【0128】
ポリカーボネート(帝人化成製パンライトK−1300) 10部
比較例1
実施例1の電荷輸送層塗工液を下記組成のものにした以外は同様にして比較例1の電子写真感光体を作製した。
【0129】
Figure 0003658134
比較例2
実施例1の電荷輸送層塗工液を下記組成のものにした以外は同様にして比較例2の電子写真感光体を作製した。
【0130】
Figure 0003658134
比較例3
実施例1の電荷輸送層塗工液を下記組成のものにした以外は同様にして比較例3の電子写真感光体を作製した。
【0131】
Figure 0003658134
比較例4
実施例1の電荷輸送層塗工液を下記組成のものにした以外は同様にして比較例4の電子写真感光体を作製した。
【0132】
Figure 0003658134
以上の各感光体を特開昭60−100167号公報に開示されている評価装置で次のような測定を行った。コロナ放電電圧−6.0kVで帯電20秒後の電位Vm(V)、暗減衰20秒後の電位Vo(V)、強度1μW/cm2の単色光(780nm、半値巾20nm)による露光20秒後の残留電位VR(V)、更に電位Voを1/2に減衰させるのに必要な露光量E1/2〔μJ/cm2〕を測定した。
電位保持率を次のように定義する。
【0133】
電位保持率=Vo/Vm
実施例及び比較例の各感光体を(株)リコー製複写機DA−355改造機に搭載して連続1万枚の複写を行い、異常画像の有無を目視により判定した。又、複写試験終了後の各感光体は、上記と同じ方法で感光体特性を測定した。試験結果を表1に示す。
【0134】
【表1】
Figure 0003658134
【0135】
実施例10
実施例1の電荷輸送層塗工液を下記組成のものにした以外は実施例1と同様にして本発明の電子写真感光体を作製した。
【0136】
Figure 0003658134
実施例11
実施例1の電荷輸送層塗工液を下記組成のものにした以外は実施例1と同様にして本発明の電子写真感光体を作製した。
【0137】
Figure 0003658134
実施例12
実施例1の電荷輸送層塗工液を下記組成のものにした以外は実施例1と同様にして本発明の電子写真感光体を作製した。
【0138】
Figure 0003658134
実施例13
実施例1の電荷輸送層塗工液を下記組成のものにした以外は実施例1と同様にして本発明の電子写真感光体を作製した。
【0139】
Figure 0003658134
実施例14
実施例1の電荷輸送層塗工液を下記組成のものにした以外は実施例1と同様にして本発明の電子写真感光体を作製した。
【0140】
Figure 0003658134
実施例15
実施例1の電荷輸送層塗工液を下記組成のものにした以外は実施例1と同様にして本発明の電子写真感光体を作製した。
【0141】
Figure 0003658134
実施例16
実施例1の電荷輸送層塗工液を下記組成のものにした以外は実施例1と同様にして本発明の電子写真感光体を作製した。
【0142】
Figure 0003658134
実施例17
実施例1の電荷輸送層塗工液を下記組成のものにした以外は実施例1と同様にして本発明の電子写真感光体を作製した。
【0143】
Figure 0003658134
実施例18
実施例10の電荷輸送層塗工液において、電荷輸送層の結着樹脂を下記のものに変更した以外は実施例10と同様にして本発明の電子写真感光体を作製した。
ポリカーボネート(帝人化成製パンライトK−1300) 10部
比較例5
実施例10の電荷輸送層塗工液を下記組成のものにした以外は同様にして比較例5の電子写真感光体を作製した。
【0144】
Figure 0003658134
以上の各感光体を特開昭60−100167号公報に開示されている評価装置で次のような測定を行った。コロナ放電電圧−6.0kVで帯電20秒後の電位Vm(V)、暗減衰20秒後の電位Vo(V)、強度1μW/cm2の単色光(780nm、半値巾20nm)による露光20秒後の残留電位VR(V)、更に電位Voを1/2に減衰させるのに必要な露光量E1/2〔μJ/cm2〕を測定した。
電位保持率を次のように定義する。
【0145】
電位保持率=Vo/Vm
実施例及び比較例の各感光体を(株)リコー製複写機DA−355改造機に搭載して連続1万枚の複写を行い、異常画像の有無を目視により判定した。又、複写試験終了後の各感光体は、上記と同じ方法で感光体特性を測定した。試験結果を表2に示す。
【0146】
【表2】
Figure 0003658134
【0147】
実施例19
実施例1の電荷輸送層塗工液を下記組成のものにした以外は実施例1と同様にして本発明の電子写真感光体を作製した。
【0148】
Figure 0003658134
実施例20
実施例1の電荷輸送層塗工液を下記組成のものにした以外は実施例1と同様にして本発明の電子写真感光体を作製した。
【0149】
Figure 0003658134
実施例21
実施例1の電荷輸送層塗工液を下記組成のものにした以外は実施例1と同様にして本発明の電子写真感光体を作製した。
【0150】
Figure 0003658134
実施例22
実施例1の電荷輸送層塗工液を下記組成のものにした以外は実施例1と同様にして本発明の電子写真感光体を作製した。
【0151】
Figure 0003658134
実施例23
実施例1の電荷輸送層塗工液を下記組成のものにした以外は実施例1と同様にして本発明の電子写真感光体を作製した。
【0152】
Figure 0003658134
実施例24
実施例1の電荷輸送層塗工液を下記組成のものにした以外は実施例1と同様にして本発明の電子写真感光体を作製した。
【0153】
Figure 0003658134
実施例25
実施例1の電荷輸送層塗工液を下記組成のものにした以外は実施例1と同様にして本発明の電子写真感光体を作製した。
【0154】
Figure 0003658134
実施例26
実施例1の電荷輸送層塗工液を下記組成のものにした以外は実施例1と同様にして本発明の電子写真感光体を作製した。
【0155】
Figure 0003658134
実施例27
実施例19の電荷輸送層塗工液において、電荷輸送層の結着樹脂を下記のものに変更した以外は実施例19と同様にして本発明の電子写真感光体を作製した。
ポリカーボネート(帝人化成製パンライトK−1300) 10部
比較例6
実施例19の電荷輸送層塗工液を下記組成のものにした以外は同様にして比較例6の電子写真感光体を作製した。
【0156】
Figure 0003658134
以上の各感光体を特開昭60−100167号公報に開示されている評価装置で次のような測定を行った。コロナ放電電圧−6.0kVで帯電20秒後の電位Vm(V)、暗減衰20秒後の電位Vo(V)、強度1μW/cm2の単色光(780nm、半値巾20nm)による露光20秒後の残留電位VR(V)、更に電位Voを1/2に減衰させるのに必要な露光量E1/2〔μJ/cm2〕を測定した。
電位保持率を次のように定義する。
【0157】
電位保持率=Vo/Vm
実施例及び比較例の各感光体を(株)リコー製複写機DA−355改造機に搭載して連続1万枚の複写を行い、異常画像の有無を目視により判定した。又、複写試験終了後の各感光体は、上記と同じ方法で感光体特性を測定した。試験結果を表3に示す。
【0158】
【表3】
Figure 0003658134
【0159】
実施例28
実施例1の電荷輸送層塗工液を下記組成のものにした以外は実施例1と同様にして本発明の電子写真感光体を作製した。
【0160】
Figure 0003658134
実施例29
実施例1の電荷輸送層塗工液を下記組成のものにした以外は実施例1と同様にして本発明の電子写真感光体を作製した。
【0161】
Figure 0003658134
実施例30
実施例1の電荷輸送層塗工液を下記組成のものにした以外は実施例1と同様にして本発明の電子写真感光体を作製した。
【0162】
Figure 0003658134
実施例31
実施例1の電荷輸送層塗工液を下記組成のものにした以外は実施例1と同様にして本発明の電子写真感光体を作製した。
【0163】
Figure 0003658134
実施例32
実施例1の電荷輸送層塗工液を下記組成のものにした以外は実施例1と同様にして本発明の電子写真感光体を作製した。
【0164】
Figure 0003658134
実施例33
実施例1の電荷輸送層塗工液を下記組成のものにした以外は実施例1と同様にして本発明の電子写真感光体を作製した。
【0165】
Figure 0003658134
実施例34
実施例1の電荷輸送層塗工液を下記組成のものにした以外は実施例1と同様にして本発明の電子写真感光体を作製した。
【0166】
Figure 0003658134
実施例35
実施例1の電荷輸送層塗工液を下記組成のものにした以外は実施例1と同様にして本発明の電子写真感光体を作製した。
【0167】
Figure 0003658134
実施例36
実施例28の電荷輸送層塗工液において、電荷輸送層の結着樹脂を下記のものに変更した以外は実施例28と同様にして本発明の電子写真感光体を作製した。
ポリカーボネート(帝人化成製パンライトK−1300) 10部
比較例7
実施例28の電荷輸送層塗工液を下記組成のものにした以外は同様にして比較例7の電子写真感光体を作製した。
【0168】
Figure 0003658134
以上の各感光体を特開昭60−100167号公報に開示されている評価装置で次のような測定を行った。コロナ放電電圧−6.0kVで帯電20秒後の電位Vm(V)、暗減衰20秒後の電位Vo(V)、強度1μW/cm2の単色光(780nm、半値巾20nm)による露光20秒後の残留電位VR(V)、更に電位Voを1/2に減衰させるのに必要な露光量E1/2〔μJ/cm2〕を測定した。
電位保持率を次のように定義する。
【0169】
電位保持率=Vo/Vm
実施例及び比較例の各感光体を(株)リコー製複写機DA−355改造機に搭載して連続1万枚の複写を行い、異常画像の有無を目視により判定した。又、複写試験終了後の各感光体は、上記と同じ方法で感光体特性を測定した。試験結果を表4に示す。
【0170】
【表4】
Figure 0003658134
【0171】
実施例37
実施例1の電荷輸送層塗工液を下記組成のものにした以外は実施例1と同様にして本発明の電子写真感光体を作製した。
【0172】
Figure 0003658134
実施例38
実施例1の電荷輸送層塗工液を下記組成のものにした以外は実施例1と同様にして本発明の電子写真感光体を作製した。
【0173】
Figure 0003658134
実施例39
実施例1の電荷輸送層塗工液を下記組成のものにした以外は実施例1と同様にして本発明の電子写真感光体を作製した。
【0174】
Figure 0003658134
実施例40
実施例1の電荷輸送層塗工液を下記組成のものにした以外は実施例1と同様にして本発明の電子写真感光体を作製した。
【0175】
Figure 0003658134
実施例41
実施例1の電荷輸送層塗工液を下記組成のものにした以外は実施例1と同様にして本発明の電子写真感光体を作製した。
【0176】
Figure 0003658134
実施例42
実施例1の電荷輸送層塗工液を下記組成のものにした以外は実施例1と同様にして本発明の電子写真感光体を作製した。
【0177】
Figure 0003658134
実施例43
実施例1の電荷輸送層塗工液を下記組成のものにした以外は実施例1と同様にして本発明の電子写真感光体を作製した。
【0178】
Figure 0003658134
実施例44
実施例1の電荷輸送層塗工液を下記組成のものにした以外は実施例1と同様にして本発明の電子写真感光体を作製した。
【0179】
Figure 0003658134
実施例45
実施例37の電荷輸送層塗工液において、電荷輸送層の結着樹脂を下記のものに変更した以外は実施例37と同様にして本発明の電子写真感光体を作製した。
ポリカーボネート(帝人化成製パンライトK−1300) 10部
比較例8
実施例37の電荷輸送層塗工液を下記組成のものにした以外は同様にして比較例8の電子写真感光体を作製した。
【0180】
Figure 0003658134
以上の各感光体を特開昭60−100167号公報に開示されている評価装置で次のような測定を行った。コロナ放電電圧−6.0kVで帯電20秒後の電位Vm(V)、暗減衰20秒後の電位Vo(V)、強度1μW/cm2の単色光(780nm、半値巾20nm)による露光20秒後の残留電位VR(V)、更に電位Voを1/2に減衰させるのに必要な露光量E1/2〔μJ/cm2〕を測定した。
電位保持率を次のように定義する。
【0181】
電位保持率=Vo/Vm
実施例及び比較例の各感光体を(株)リコー製複写機DA−355改造機に搭載して連続1万枚の複写を行い、異常画像の有無を目視により判定した。又、複写試験終了後の各感光体は、上記と同じ方法で感光体特性を測定した。試験結果を表5に示す。
【0182】
【表5】
Figure 0003658134
【0183】
実施例46
実施例1の電荷輸送層塗工液を下記組成のものにした以外は実施例1と同様にして本発明の電子写真感光体を作製した。
【0184】
Figure 0003658134
実施例47
実施例1の電荷輸送層塗工液を下記組成のものにした以外は実施例1と同様にして本発明の電子写真感光体を作製した。
【0185】
Figure 0003658134
実施例48
実施例1の電荷輸送層塗工液を下記組成のものにした以外は実施例1と同様にして本発明の電子写真感光体を作製した。
【0186】
Figure 0003658134
実施例49
実施例1の電荷輸送層塗工液を下記組成のものにした以外は実施例1と同様にして本発明の電子写真感光体を作製した。
【0187】
Figure 0003658134
実施例50
実施例1の電荷輸送層塗工液を下記組成のものにした以外は実施例1と同様にして本発明の電子写真感光体を作製した。
【0188】
Figure 0003658134
実施例51
実施例1の電荷輸送層塗工液を下記組成のものにした以外は実施例1と同様にして本発明の電子写真感光体を作製した。
【0189】
Figure 0003658134
実施例52
実施例1の電荷輸送層塗工液を下記組成のものにした以外は実施例1と同様にして本発明の電子写真感光体を作製した。
【0190】
Figure 0003658134
実施例53
実施例1の電荷輸送層塗工液を下記組成のものにした以外は実施例1と同様にして本発明の電子写真感光体を作製した。
【0191】
Figure 0003658134
実施例54
実施例46の電荷輸送層塗工液において、電荷輸送層の結着樹脂を下記のものに変更した以外は実施例46と同様にして本発明の電子写真感光体を作製した。
ポリカーボネート(帝人化成製パンライトK−1300) 10部
比較例9
実施例46の電荷輸送層塗工液を下記組成のものにした以外は同様にして比較例9の電子写真感光体を作製した。
【0192】
Figure 0003658134
以上の各感光体を特開昭60−100167号公報に開示されている評価装置で次のような測定を行った。コロナ放電電圧−6.0kVで帯電20秒後の電位Vm(V)、暗減衰20秒後の電位Vo(V)、強度1μW/cm2の単色光(780nm、半値巾20nm)による露光20秒後の残留電位VR(V)、更に電位Voを1/2に減衰させるのに必要な露光量E1/2〔μJ/cm2〕を測定した。
電位保持率を次のように定義する。
【0193】
電位保持率=Vo/Vm
実施例及び比較例の各感光体を(株)リコー製複写機DA−355改造機に搭載して連続1万枚の複写を行い、異常画像の有無を目視により判定した。又、複写試験終了後の各感光体は、上記と同じ方法で感光体特性を測定した。試験結果を表6に示す。
【0194】
【表6】
Figure 0003658134
【0195】
実施例55
実施例1の電荷輸送層塗工液を下記組成のものにした以外は実施例1と同様にして本発明の電子写真感光体を作製した。
【0196】
Figure 0003658134
実施例56
実施例1の電荷輸送層塗工液を下記組成のものにした以外は実施例1と同様にして本発明の電子写真感光体を作製した。
【0197】
Figure 0003658134
実施例57
実施例1の電荷輸送層塗工液を下記組成のものにした以外は実施例1と同様にして本発明の電子写真感光体を作製した。
【0198】
Figure 0003658134
実施例58
実施例1の電荷輸送層塗工液を下記組成のものにした以外は実施例1と同様にして本発明の電子写真感光体を作製した。
【0199】
Figure 0003658134
実施例59
実施例1の電荷輸送層塗工液を下記組成のものにした以外は実施例1と同様にして本発明の電子写真感光体を作製した。
【0200】
Figure 0003658134
実施例60
実施例1の電荷輸送層塗工液を下記組成のものにした以外は実施例1と同様にして本発明の電子写真感光体を作製した。
【0201】
Figure 0003658134
実施例61
実施例1の電荷輸送層塗工液を下記組成のものにした以外は実施例1と同様にして本発明の電子写真感光体を作製した。
【0202】
Figure 0003658134
実施例62
実施例1の電荷輸送層塗工液を下記組成のものにした以外は実施例1と同様にして本発明の電子写真感光体を作製した。
【0203】
Figure 0003658134
実施例63
実施例55の電荷輸送層塗工液において、電荷輸送層の結着樹脂を下記のものに変更した以外は実施例55と同様にして本発明の電子写真感光体を作製した。
ポリカーボネート(帝人化成製パンライトK−1300) 10部
比較例10
実施例55の電荷輸送層塗工液を下記組成のものにした以外は同様にして比較例10の電子写真感光体を作製した。
【0204】
Figure 0003658134
以上の各感光体を特開昭60−100167号公報に開示されている評価装置で次のような測定を行った。コロナ放電電圧−6.0kVで帯電20秒後の電位Vm(V)、暗減衰20秒後の電位Vo(V)、強度1μW/cm2の単色光(780nm、半値巾20nm)による露光20秒後の残留電位VR(V)、更に電位Voを1/2に減衰させるのに必要な露光量E1/2〔μJ/cm2〕を測定した。
電位保持率を次のように定義する。
【0205】
電位保持率=Vo/Vm
実施例及び比較例の各感光体を(株)リコー製複写機DA−355改造機に搭載して連続1万枚の複写を行い、異常画像の有無を目視により判定した。又、複写試験終了後の各感光体は、上記と同じ方法で感光体特性を測定した。試験結果を表7に示す。
【0206】
【表7】
Figure 0003658134
【0207】
実施例64
実施例1の電荷輸送層塗工液を下記組成のものにした以外は実施例1と同様にして本発明の電子写真感光体を作製した。
【0208】
Figure 0003658134
実施例65
実施例1の電荷輸送層塗工液を下記組成のものにした以外は実施例1と同様にして本発明の電子写真感光体を作製した。
【0209】
Figure 0003658134
実施例66
実施例1の電荷輸送層塗工液を下記組成のものにした以外は実施例1と同様にして本発明の電子写真感光体を作製した。
【0210】
Figure 0003658134
実施例67
実施例1の電荷輸送層塗工液を下記組成のものにした以外は実施例1と同様にして本発明の電子写真感光体を作製した。
【0211】
Figure 0003658134
実施例68
実施例1の電荷輸送層塗工液を下記組成のものにした以外は実施例1と同様にして本発明の電子写真感光体を作製した。
【0212】
Figure 0003658134
実施例69
実施例1の電荷輸送層塗工液を下記組成のものにした以外は実施例1と同様にして本発明の電子写真感光体を作製した。
【0213】
Figure 0003658134
実施例70
実施例1の電荷輸送層塗工液を下記組成のものにした以外は実施例1と同様にして本発明の電子写真感光体を作製した。
【0214】
Figure 0003658134
実施例71
実施例1の電荷輸送層塗工液を下記組成のものにした以外は実施例1と同様にして本発明の電子写真感光体を作製した。
【0215】
Figure 0003658134
実施例72
実施例64の電荷輸送層塗工液において、電荷輸送層の結着樹脂を下記のものに変更した以外は実施例64と同様にして本発明の電子写真感光体を作製した。
ポリカーボネート(帝人化成製パンライトK−1300) 10部
比較例11
実施例64の電荷輸送層塗工液を下記組成のものにした以外は同様にして比較例11の電子写真感光体を作製した。
【0216】
Figure 0003658134
以上の各感光体を特開昭60−100167号公報に開示されている評価装置で次のような測定を行った。コロナ放電電圧−6.0kVで帯電20秒後の電位Vm(V)、暗減衰20秒後の電位Vo(V)、強度1μW/cm2の単色光(780nm、半値巾20nm)による露光20秒後の残留電位VR(V)、更に電位Voを1/2に減衰させるのに必要な露光量E1/2〔μJ/cm2〕を測定した。
電位保持率を次のように定義する。
【0217】
電位保持率=Vo/Vm
実施例及び比較例の各感光体を(株)リコー製複写機DA−355改造機に搭載して連続1万枚の複写を行い、異常画像の有無を目視により判定した。又、複写試験終了後の各感光体は、上記と同じ方法で感光体特性を測定した。試験結果を表8に示す。
【0218】
【表8】
Figure 0003658134
【0219】
実施例73
実施例1の電荷輸送層塗工液を下記組成のものにした以外は実施例1と同様にして本発明の電子写真感光体を作製した。
【0220】
Figure 0003658134
実施例74
実施例1の電荷輸送層塗工液を下記組成のものにした以外は実施例1と同様にして本発明の電子写真感光体を作製した。
【0221】
Figure 0003658134
実施例75
実施例1の電荷輸送層塗工液を下記組成のものにした以外は実施例1と同様にして本発明の電子写真感光体を作製した。
【0222】
Figure 0003658134
実施例76
実施例1の電荷輸送層塗工液を下記組成のものにした以外は実施例1と同様にして本発明の電子写真感光体を作製した。
【0223】
Figure 0003658134
実施例77
実施例1の電荷輸送層塗工液を下記組成のものにした以外は実施例1と同様にして本発明の電子写真感光体を作製した。
【0224】
Figure 0003658134
実施例78
実施例1の電荷輸送層塗工液を下記組成のものにした以外は実施例1と同様にして本発明の電子写真感光体を作製した。
【0225】
Figure 0003658134
実施例79
実施例1の電荷輸送層塗工液を下記組成のものにした以外は実施例1と同様にして本発明の電子写真感光体を作製した。
【0226】
Figure 0003658134
実施例80
実施例1の電荷輸送層塗工液を下記組成のものにした以外は実施例1と同様にして本発明の電子写真感光体を作製した。
【0227】
Figure 0003658134
実施例81
実施例73の電荷輸送層塗工液において、電荷輸送層の結着樹脂を下記のものに変更した以外は実施例73と同様にして本発明の電子写真感光体を作製した。
ポリカーボネート(帝人化成製パンライトK−1300) 10部
比較例12
実施例73の電荷輸送層塗工液を下記組成のものにした以外は同様にして比較例12の電子写真感光体を作製した。
【0228】
Figure 0003658134
以上の各感光体を特開昭60−100167号公報に開示されている評価装置で次のような測定を行った。コロナ放電電圧−6.0kVで帯電20秒後の電位Vm(V)、暗減衰20秒後の電位Vo(V)、強度1μW/cm2の単色光(780nm、半値巾20nm)による露光20秒後の残留電位VR(V)、更に電位Voを1/2に減衰させるのに必要な露光量E1/2〔μJ/cm2〕を測定した。
電位保持率を次のように定義する。
【0229】
電位保持率=Vo/Vm
実施例及び比較例の各感光体を(株)リコー製複写機DA−355改造機に搭載して連続1万枚の複写を行い、異常画像の有無を目視により判定した。又、複写試験終了後の各感光体は、上記と同じ方法で感光体特性を測定した。試験結果を表9に示す。
【0230】
【表9】
Figure 0003658134
【0231】
実施例82
実施例1の電荷輸送層塗工液を下記組成のものにした以外は実施例1と同様にして本発明の電子写真感光体を作製した。
【0232】
Figure 0003658134
実施例83
実施例1の電荷輸送層塗工液を下記組成のものにした以外は実施例1と同様にして本発明の電子写真感光体を作製した。
【0233】
Figure 0003658134
実施例84
実施例1の電荷輸送層塗工液を下記組成のものにした以外は実施例1と同様にして本発明の電子写真感光体を作製した。
【0234】
Figure 0003658134
実施例85
実施例1の電荷輸送層塗工液を下記組成のものにした以外は実施例1と同様にして本発明の電子写真感光体を作製した。
【0235】
Figure 0003658134
実施例86
実施例1の電荷輸送層塗工液を下記組成のものにした以外は実施例1と同様にして本発明の電子写真感光体を作製した。
【0236】
Figure 0003658134
実施例87
実施例1の電荷輸送層塗工液を下記組成のものにした以外は実施例1と同様にして本発明の電子写真感光体を作製した。
【0237】
Figure 0003658134
実施例88
実施例1の電荷輸送層塗工液を下記組成のものにした以外は実施例1と同様にして本発明の電子写真感光体を作製した。
【0238】
Figure 0003658134
実施例89
実施例1の電荷輸送層塗工液を下記組成のものにした以外は実施例1と同様にして本発明の電子写真感光体を作製した。
【0239】
Figure 0003658134
実施例90
実施例82の電荷輸送層塗工液において、電荷輸送層の結着樹脂を下記のものに変更した以外は実施例82と同様にして本発明の電子写真感光体を作製した。
ポリカーボネート(帝人化成製パンライトK−1300) 10部
比較例13
実施例82の電荷輸送層塗工液を下記組成のものにした以外は同様にして比較例13の電子写真感光体を作製した。
【0240】
Figure 0003658134
以上の各感光体を特開昭60−100167号公報に開示されている評価装置で次のような測定を行った。コロナ放電電圧−6.0kVで帯電20秒後の電位Vm(V)、暗減衰20秒後の電位Vo(V)、強度1μW/cm2の単色光(780nm、半値巾20nm)による露光20秒後の残留電位VR(V)、更に電位Voを1/2に減衰させるのに必要な露光量E1/2〔μJ/cm2〕を測定した。
電位保持率を次のように定義する。
【0241】
電位保持率=Vo/Vm
実施例及び比較例の各感光体を(株)リコー製複写機DA−355改造機に搭載して連続1万枚の複写を行い、異常画像の有無を目視により判定した。又、複写試験終了後の各感光体は、上記と同じ方法で感光体特性を測定した。試験結果を表10に示す。
【0242】
【表10】
Figure 0003658134
【0243】
実施例91
実施例1の電荷輸送層塗工液を下記組成のものにした以外は実施例1と同様にして本発明の電子写真感光体を作製した。
【0244】
Figure 0003658134
実施例92
実施例1の電荷輸送層塗工液を下記組成のものにした以外は実施例1と同様にして本発明の電子写真感光体を作製した。
【0245】
Figure 0003658134
実施例93
実施例1の電荷輸送層塗工液を下記組成のものにした以外は実施例1と同様にして本発明の電子写真感光体を作製した。
【0246】
Figure 0003658134
実施例94
実施例1の電荷輸送層塗工液を下記組成のものにした以外は実施例1と同様にして本発明の電子写真感光体を作製した。
【0247】
Figure 0003658134
実施例95
実施例1の電荷輸送層塗工液を下記組成のものにした以外は実施例1と同様にして本発明の電子写真感光体を作製した。
【0248】
Figure 0003658134
実施例96
実施例1の電荷輸送層塗工液を下記組成のものにした以外は実施例1と同様にして本発明の電子写真感光体を作製した。
【0249】
Figure 0003658134
実施例97
実施例1の電荷輸送層塗工液を下記組成のものにした以外は実施例1と同様にして本発明の電子写真感光体を作製した。
【0250】
Figure 0003658134
実施例98
実施例1の電荷輸送層塗工液を下記組成のものにした以外は実施例1と同様にして本発明の電子写真感光体を作製した。
【0251】
Figure 0003658134
実施例99
実施例9の電荷輸送層塗工液において、電荷輸送層の結着樹脂を下記のものに変更した以外は実施例9と同様にして本発明の電子写真感光体を作製した。
【0252】
ポリカーボネート(帝人化成製パンライトK−1300) 10部
比較例14
実施例91の電荷輸送層塗工液を下記組成のものにした以外は同様にして比較例14の電子写真感光体を作製した。
【0253】
Figure 0003658134
以上の各感光体を特開昭60−100167号公報に開示されている評価装置で次のような測定を行った。コロナ放電電圧−6.0kVで帯電20秒後の電位Vm(V)、暗減衰20秒後の電位Vo(V)、強度1μW/cm2の単色光(780nm、半値巾20nm)による露光20秒後の残留電位VR(V)、更に電位Voを1/2に減衰させるのに必要な露光量E1/2〔μJ/cm2〕を測定した。
電位保持率を次のように定義する。
【0254】
電位保持率=Vo/Vm
実施例及び比較例の各感光体を(株)リコー製複写機DA−355改造機に搭載して連続1万枚の複写を行い、異常画像の有無を目視により判定した。又、複写試験終了後の各感光体は、上記と同じ方法で感光体特性を測定した。試験結果を表11に示す。
【0255】
【表11】
Figure 0003658134
【0256】
【発明の効果】
本発明によれば特定の二種類のポリシロキサン化合物を組み合わせて使用することにより、高感度を失うことなく繰返し使用によっても優れた安定性を示す電子写真感光体を提供することができる。
【図面の簡単な説明】
【図1】単層感光体の断面説明図。
【図2】積層感光体の断面説明図。
【図3】別の積層感光体の断面図。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electrophotographic photosensitive member, and more particularly to a highly durable electrophotographic photosensitive member that is excellent in toner transfer efficiency, cleaning properties, and environmental stability.
[0002]
[Prior art]
Conventionally, inorganic photoconductive materials such as selenium, α-silicon, and zinc oxide have been mainly used as photoconductive materials for electrophotographic photoreceptors from the viewpoint of sensitivity and durability, but these inorganic materials are harmful substances. Or has a drawback of high cost due to poor productivity. For this reason, organic photoreceptors that are pollution-free, can be mass-produced by coating, and can be easily reduced in cost have been actively developed in recent years.
[0003]
[Problems to be solved by the invention]
Although these organic photoreceptors have advantages such as pollution-free and low cost, problems remain in their sensitivity, environmental stability, and durability, and in particular, electrophotographic photosensitive materials excellent in environmental stability and durability. The development of the body is eager. In recent years, there has been a demand for higher image quality in the direction of reducing the particle size of toner, and an electrophotographic photoreceptor having high transfer efficiency and high cleaning properties corresponding to this has been required.
[0004]
As a method for solving these drawbacks, there has been proposed a method in which a charge transport layer provided on the surface of a photoreceptor contains a silicone resin or a silicone-containing polymer (Japanese Patent Laid-Open Nos. 57-64243 and 60). -256146, JP-A 61-95358, JP-A 61-132594, JP-A 61-219047). However, the method of adding a silicone resin or a silicone-containing polymer has the disadvantage that the wear resistance is poor and the residual potential is increased. As described above, the conventional organic photoreceptor containing the silicone-containing polymer has various durability problems, and improvement is desired.
[0005]
As described above, there are still problems in various durability, and in addition, even though high transfer efficiency and cleanability are required, it is a fact that sufficient characteristics are not obtained. SUMMARY OF THE INVENTION An object of the present invention is to provide a highly durable electrophotographic photosensitive member that does not increase the residual potential during repeated use and that has improved high transfer efficiency and cleaning properties.
[0006]
[Means for Solving the Problems]
As a result of repeated studies to achieve the above problems, the present inventors have completed the present invention. That is, according to the present invention,
(1) In an electrophotographic photosensitive member in which a photosensitive layer is provided on a conductive support, the outermost layer of the electrophotographic photosensitive member contains a mixture of methylphenyl polysiloxane and modified polysiloxane represented by the following general formula. An electrophotographic photosensitive member,
[0007]
[Chemical 3]
Figure 0003658134
[0008]
R 1 to R 10 in the above general formula may be different from each other, and may be a methyl group or a phenyl group which may have a substituent (however, at least one is a phenyl group which may have a substituent). Represent. m and n are 0 or a positive integer (however, m and n are not 0 at the same time).
[0009]
(2) The electrophotographic photoreceptor according to (1) above, wherein the modified polysiloxane is selected from amino-modified polysiloxane, epoxy-modified polysiloxane, carboxy-modified polysiloxane, and carbinol-modified polysiloxane.
(3) The electrophotographic photosensitive member according to (1) above, wherein the modified polysiloxane is selected from mercapto-modified polysiloxane, phenol-modified polysiloxane, and polyether-modified polysiloxane.
(4) The electrophotographic photoreceptor according to (1) above, wherein the modified polysiloxane is selected from fatty acid ester-modified polysiloxane, alkoxy-modified polysiloxane, and fluorine-modified polysiloxane.
(5) The electrophotographic photosensitive member according to (1) above, wherein the modified polysiloxane is a different functional group-modified polysiloxane.
(6) The electrophotographic photosensitive member according to any one of (1) to (5) above, wherein the outermost binder resin is a polycarbonate having a structural unit represented by the following general formula as a main repeating unit.
[0010]
[Formula 4]
Figure 0003658134
[0011]
In the formula, Z represents a nonmetallic atom group necessary for forming an optionally substituted carbocyclic or heterocyclic ring, and R 1 to R 8 each have a hydrogen atom, a halogen atom, or each having a substituent. Represents an aliphatic group or a carbocyclic group,
Is provided.
Next, the present invention will be described in detail with reference to the drawings.
[0012]
FIG. 1 is a cross-sectional view showing a single-layer photosensitive member used in the present invention. A single-layer photosensitive layer 15 mainly composed of a charge generating material and a charge transporting material is provided on a conductive support 11. 2 and 3 are cross-sectional views showing examples of the structure of the laminated photoconductor used in the present invention. A charge generation layer 17 mainly composed of a charge generation material and a charge transport layer 19 mainly composed of a charge transport material are shown. It has a stacked configuration.
[0013]
In the present invention, the outermost layer is a layer containing the specific polysiloxane mixture shown in the above (1) to (5) and refers to a layer provided on the surface of the electrophotographic photosensitive member. Therefore, in the case of a single layer photoreceptor, the photosensitive layer is the outermost layer, and in the case of a laminated photoreceptor, the layer provided on the surface of either the charge generation layer or the charge transport layer is the outermost layer. As a method for this, in the present invention, the coating liquid corresponding to the outermost layer contains the polysiloxane mixture of the above (1) to (5), but when the addition amount is increased in order to enhance the effect, these It is preferable to dissolve or disperse a predetermined material in a coating solution solvent containing a polysiloxane mixture. Further, if necessary, the coating solution may be secondarily dispersed by a paint shaker, a sand mill, a bead mill, a ball mill or the like.
[0014]
The polysiloxane mixtures of the above (1) to (5) used in the present invention are considered to have high transfer efficiency and sustainability of cleaning property during repeated use, or an effect of lowering surface energy. However, when these are mixed and used, a synergistic effect is exhibited, and the effect is remarkably improved as compared with the case where each is used alone.
The methylphenylpolysiloxane used in the present invention is at least one represented by the following general formula and may have a cyclic structure.
[0015]
[Chemical formula 5]
Figure 0003658134
[0016]
R 1 to R 10 in the above general formula may be different from each other, and may be a methyl group or a phenyl group which may have a substituent (however, at least one is a phenyl group which may have a substituent). Represent. m and n are 0 or a positive integer (however, m and n are not 0 at the same time).
[0017]
Examples of the modified polysiloxane used in combination with the methylphenyl polysiloxane in the present invention include amino modification, epoxy modification, carboxy modification, carbinol modification, methacryl modification, mercapto modification, phenol modification, polyether modification, alkyl modification, fatty acid ester. Modification, vinyl modification, alkoxy modification, heterogeneous functional group modification, fluorine-modified polysiloxane can be mentioned, and at least one of these is combined with the polysiloxane.
The amino-modified polysiloxane used in the present invention is at least one represented by the following general formula and may have a cyclic structure.
[0018]
[Chemical 6]
Figure 0003658134
[0019]
R 1 to R 10 in the above general formula may be different and each represents an alkyl group having 1 to 3 carbon atoms, —R 11 —NH—R 12 NH 2 or —R 13 —NH 2 (provided that at least one is present) Is —R 11 —NH—R 12 NH 2 or —R 13 —NH 2 ), R 11 to R 13 represent an alkylene group. m and n are 0 or a positive integer (however, m and n are not 0 at the same time).
The epoxy-modified polysiloxane used in the present invention is at least one represented by the following general formula and may have a cyclic structure.
[0020]
[Chemical 7]
Figure 0003658134
[0021]
R 1 to R 10 in the above general formula may be different from each other, and may be an alkyl group having 1 to 3 carbon atoms, and
[Chemical 8]
Figure 0003658134
[0023]
(Where at least one is
[Chemical 9]
Figure 0003658134
[0025]
R 11 to R 12 each represents an alkylene group. m and n are 0 or a positive integer (however, m and n are not 0 at the same time).
The carboxy-modified polysiloxane used in the present invention is at least one represented by the following general formula and may have a cyclic structure.
[0026]
[Chemical Formula 10]
Figure 0003658134
[0027]
R 1 to R 10 in the above general formula may be different and each represents an alkyl group having 1 to 3 carbon atoms, an alkoxy group having 1 to 3 carbon atoms, or —R 11 —COOH (provided that at least one is —R 11 -COOH), R 11 represents an alkylene group. m and n are 0 or a positive integer (however, m and n are not 0 at the same time).
The carbinol-modified polysiloxane used in the present invention is at least one represented by the following general formula and may have a cyclic structure.
[0028]
Embedded image
Figure 0003658134
[0029]
R 1 to R 10 in the above general formula may be different and each represents an alkyl group having 1 to 3 carbon atoms, an alkoxy group having 1 to 3 carbon atoms, or —R 11 —OH (provided that at least one is —R 11 -OH), R 11 represents an alkylene group. m and n are 0 or a positive integer (however, m and n are not 0 at the same time).
[0031]
The mercapto-modified polysiloxane used in the present invention is at least one represented by the following general formula and may have a cyclic structure.
[0032]
Embedded image
Figure 0003658134
[0033]
R 1 to R 10 in the above general formula may be different and each represents an alkyl group having 1 to 3 carbon atoms, an alkoxy group having 1 to 3 carbon atoms, or —R 11 —SH (provided that at least one is —R 11 -SH), R 11 represents an alkylene group. m and n are 0 or a positive integer (however, m and n are not 0 at the same time).
[0034]
The phenol-modified polysiloxane used in the present invention is at least one represented by the following general formula, and may have a cyclic structure.
[0035]
Embedded image
Figure 0003658134
[0036]
R 1 to R 10 in the above general formula may be different from each other, and are an alkyl group having 1 to 3 carbon atoms, an alkoxy group having 1 to 3 carbon atoms, and
Embedded image
Figure 0003658134
[0038]
Where at least one is
Embedded image
Figure 0003658134
[0040]
R 11 represents an alkylene group. m and n are 0 or a positive integer (however, m and n are not 0 at the same time).
The polyether-modified polysiloxane used in the present invention is at least one represented by the following general formula and may have a cyclic structure.
[0041]
Embedded image
Figure 0003658134
[0042]
The R 1 to R 10 in the general formula may be different from each other, alkyl groups having 1 to 3 carbon atoms, -R 11 - a (C 2 H 4 O) a (C 3 H 6 O) b-R 12 represents (provided that at least one -R 11 - (a C 2 H 4 O) a ( C 3 H 6 O) b-R 12), R 11 is an alkylene group, R 12 is an alkyl group, hydrogen, or - R 13 —OH is represented (R 13 represents an alkylene group). m, n, a and b are 0 or a positive integer (provided that m and n are not 0 at the same time).
[0044]
The fatty acid ester-modified polysiloxane used in the present invention is at least one represented by the following general formula and may have a cyclic structure.
[0045]
Embedded image
Figure 0003658134
[0046]
R 1 to R 10 in the above general formulas may be different and each represents an alkyl group having 1 to 3 carbon atoms, an alkoxy group having 1 to 3 carbon atoms, or —OCO—R 11 (provided that at least one is — a OCO-R 11), R 11 represents an alkyl group. m and n are 0 or a positive integer (however, m and n are not 0 at the same time).
[0048]
The alkoxy-modified polysiloxane used in the present invention is at least one represented by the following general formula and may have a cyclic structure.
[0049]
Embedded image
Figure 0003658134
[0050]
R 1 to R 10 in the above general formula may be different and each represents an alkyl group having 1 to 3 carbon atoms or an alkoxy group having 1 to 30 carbon atoms (provided that at least one is an alkoxy group having 4 to 30 carbon atoms). Is). m and n are 0 or a positive integer (however, m and n are not 0 at the same time).
The different functional group-modified polysiloxane used in the present invention is a modified polysiloxane having two or more different functional groups, which is at least one represented by the following general formula, and may have a cyclic structure. .
[0051]
Embedded image
Figure 0003658134
[0052]
R 1 to R 10 in the above general formula may be different and each represents an alkyl group having 1 to 3 carbon atoms, an alkoxy group having 1 to 3 carbon atoms, an amino group, an epoxy group, or a polyether group (provided that at least Two are selected from the group consisting of an alkoxy group having 1 to 3 carbon atoms, an amino group, an epoxy group, and a polyether group). m and n are 0 or a positive integer (however, m and n are not 0 at the same time).
The fluorine-modified polysiloxane used in the present invention is at least one kind represented by the following general formula and may have a cyclic structure.
[0053]
Embedded image
Figure 0003658134
[0054]
R 1 to R 10 in the above general formula may be different and each represents an alkyl group having 1 to 3 carbon atoms, an alkoxy group having 1 to 3 carbon atoms, or —R 11 —CF 3 (provided that at least one is — R 11 —CF 3 ), R 11 represents an alkylene group. m and n are 0 or a positive integer (however, m and n are not 0 at the same time).
[0055]
The addition amount of the polysiloxane mixture of the above (1) to (5) used in the present invention is preferably 0.5 to 10% (weight ratio) with respect to the outermost binder resin, and the addition amount is thereby higher. When the amount is small, the high transfer efficiency and the persistence of the cleaning property at the time of repeated use are lost. On the other hand, when the addition amount is larger than this, the film formability is deteriorated and image defects such as initial background stains are liable to occur. The mixing ratio of methylphenyl polysiloxane and each modified polysiloxane is preferably 5:95 to 95: 5 (weight ratio).
[0056]
The viscosity representing the molecular weight (degree of polymerization) of the polysiloxanes (1) to (5) used in the present invention is preferably 100 CS (25 ° C.) or more, and the higher this is, the printing durability in actual use. However, it is satisfactory if at least one of them is included.
[0057]
Examples of the conductive support 11 include those having a volume resistance of 10 10 Ωcm or less, such as metals such as aluminum, nickel, chromium, nichrome, copper, silver, gold, and platinum, and metal oxides such as tin oxide and indium oxide. Surfaces by cutting, superfinishing, polishing, etc., after depositing a material by vapor deposition or sputtering, film or cylindrical plastic, paper coated, or a plate of aluminum, aluminum alloy, nickel, stainless steel, etc. Treated tubes or the like can be used.
Next, the photosensitive layer 15 will be described. The photosensitive layer may be a single layer or a laminate, but for convenience of explanation, the case where it is composed of the charge generation layer 17 and the charge transport layer 19 will be described first.
The charge generation layer 17 is a layer mainly composed of a charge generation material.
[0058]
Inorganic and organic materials are used as charge generation materials, and representative examples thereof include monoazo pigments, disazo pigments, trisazo pigments, perylene pigments, perinone pigments, quinacridone pigments, quinone condensed polycyclic compounds, squalic acid dyes, and phthalocyanines. Pigments, naphthalocyanine pigments, azulenium salt dyes, selenium, selenium-tellurium, selenium-arsenic alloys, amorphous silicon and the like are used.
The charge generating material may be used alone or in combination of two or more.
[0059]
The charge generation layer 17 is obtained by dispersing the charge generation material together with a binder resin, using a suitable solvent such as tetrahydrofuran, cyclohexanone, dioxane, 2-butanone, dichloroethane or the like by a ball mill, an attritor, a sand mill, etc., and applying a dispersion. Can be formed. The coating can be performed using a dip coating method, a spray coating method, a bead coating method, or the like. Examples of the binder resin used as appropriate include polyamide, polyurethane, polyester, epoxy resin, polyketone, polycarbonate, silicone resin, acrylic resin, polyvinyl butyral, polyvinyl formal, polyvinyl ketone, polystyrene, and polyacrylamide. When 17 corresponds to the outermost layer as shown in FIG. 3, a polycarbonate having a structural unit represented by the following general formula as a main repeating unit is particularly a polysiloxane mixture represented by the above (1) to (6): This is more preferable from the viewpoint of productivity.
[0060]
Embedded image
Figure 0003658134
[0061]
In the formula, Z represents a nonmetallic atom group necessary for forming an optionally substituted carbocycle or heterocycle, and R 1 to R 8 each represents a hydrogen atom, a halogen atom, or each substituent. An aliphatic group or a carbocyclic group which may be contained. The amount of the binder resin as described above is suitably 0 to 2 parts by weight with respect to 1 part by weight of the charge generating material. When the charge generation layer 17 does not correspond to the outermost layer, it can be provided also by a known vacuum thin film manufacturing method. The film thickness of the charge generation layer 17 is suitably about 0.01 to 5 μm, preferably 0.1 to 2 μm.
[0062]
The charge transport layer 19 can be formed by dissolving or dispersing a charge transport material and a binder resin in a suitable solvent, and applying and drying the solution. Moreover, a plasticizer etc. can also be added as needed.
Examples of the charge transport material include materials represented by the following general formulas. These charge transport materials may be used alone or in combination.
[0063]
Examples of the charge transport material used in the electrophotographic photoreceptor of the present invention include oxazole derivatives, imidazole derivatives, triphenylamine derivatives, and compounds represented by the following general formulas (1) to (19). Can be used.
[0064]
Embedded image
Figure 0003658134
[0065]
(In the formula, R 1 represents a methyl group, an ethyl group, a 2-hydroxyethyl group, or a 2-chloroethyl group, R 2 represents a methyl group, an ethyl group, a benzyl group, or a phenyl group, and R 3 represents a hydrogen atom. Represents a bromine atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, a dialkylamino group, or a nitro group.)
Examples of the compound represented by the general formula (1) include 9-ethylcarbazole-3-aldehyde-1-methyl-1-phenylhydrazone, 9-ethylcarbazole-3-aldehyde-1-benzyl-1-phenylhydrazone, And 9-ethylcarbazole-3-aldehyde-1,1-diphenylhydrazone.
[0066]
Embedded image
Figure 0003658134
[0067]
(In the formula, Ar represents a naphthalene ring, anthracene ring, styryl ring, and a substituted product thereof, or a pyridine ring, a furan ring, and a thiophene ring, and R represents an alkyl group or a benzyl group.)
Examples of the compound represented by the general formula (2) include 4-diethylaminostyryl-β-aldehyde-1-methyl-1-phenylhydrazone, 4-methoxynaphthalene-1-aldehyde-1-benzyl-1-phenylhydrazone, and the like. There is.
[0068]
Embedded image
Figure 0003658134
[0069]
(In the formula, R 1 represents an alkyl group, a benzyl group, a phenyl group, or a naphthyl group, and R 2 represents a hydrogen atom, an alkyl group having 1 to 3 carbon atoms, an alkoxy group having 1 to 3 carbon atoms, a dialkylamino group, Represents a diaralkylamino group or a diarylamino group, n represents an integer of 1 to 4, and when n is 2 or more, R 2 may be the same or different, and R 3 represents a hydrogen atom or a methoxy group. .)
Examples of the compound represented by the general formula (3) include 4-methoxybenzaldehyde-1-methyl-1-phenylhydrazone, 2,4-dimethoxybenzaldehyde-1-benzyl-1-phenylhydrazone, 4-diethylaminobenzaldehyde-1. , 1-diphenylhydrazone, 4-methoxybenzaldehyde-1-benzyl-1- (4-methoxy) phenylhydrazone, 4-diphenylaminobenzaldehyde-1-benzyl-1-phenylhydrazone, 4-dibenzylaminobenzaldehyde-1,1 -Diphenylhydrazone and the like.
[0070]
Embedded image
Figure 0003658134
[0071]
(In the formula, R 1 represents an alkyl group having 1 to 11 carbon atoms, a substituted or unsubstituted phenyl group, or a heterocyclic group, and R 2 and R 3 may be the same or different from each other. Represents an alkyl group, a hydroxyalkyl group, a chloroalkyl group, or a substituted or unsubstituted aralkyl group of formulas 1 to 4 , and R 2 and R 3 may be bonded to each other to form a heterocyclic ring containing a nitrogen atom. R 4 may be the same or different and each represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group or a halogen atom.)
Examples of the compound represented by the general formula (4) include 1,1-bis (4-dibenzylaminophenyl) propane, tris (4-diethylaminophenyl) methane, 1,1-bis (4-dibenzylaminophenyl). ) Propane, 2,2′-dimethyl-4,4′-bis (diethylamino) -triphenylmethane, and the like.
[0072]
Embedded image
Figure 0003658134
[0073]
(In the formula, R 1 represents a hydrogen atom, a substituted or unsubstituted alkyl group and a phenyl group, and R 2 represents a hydrogen atom, a substituted or unsubstituted alkyl group, an alkoxy group or a halogen atom.)
Examples of the compound represented by the general formula (5) include N-ethyl-3,6-tetrabenzylaminocarbazole.
[0074]
Embedded image
Figure 0003658134
[0075]
(In the formula, R represents a hydrogen atom or a halogen atom, and Ar represents a substituted or unsubstituted phenyl group, naphthyl group, anthryl group, or carbazolyl group.)
Examples of the compound represented by the general formula (6) include 9- (4-diethylaminostyryl) anthracene and 9-bromo-10- (4-diethylaminostyryl) anthracene.
[0076]
Embedded image
Figure 0003658134
[0077]
(Wherein R 1 represents a hydrogen atom, a halogen atom, a cyano group, an alkoxy group having 1 to 4 carbon atoms, or an alkyl group having 1 to 4 carbon atoms; Ar represents
Embedded image
Figure 0003658134
[0079]
R 2 represents an alkyl group having 1 to 4 carbon atoms, R 3 represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, or a dialkylamino group, n is 1 or 2, and when n is 2, R 3 may be the same or different, and R 4 and R 5 are a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 4 carbon atoms, or a substituted or unsubstituted group. Represents a substituted benzyl group. )
Examples of the compound represented by the general formula (7) include 9- (4-dimethylaminobenzylidene) fluorene and 3- (9-fluorenylidene) -9-ethylcarbazole.
[0080]
Embedded image
Figure 0003658134
[0081]
Wherein R is a carbazolyl group, a pyridyl group, a thienyl group, an indolyl group, a furyl group, or a substituted or unsubstituted phenyl group, styryl group, naphthyl group or anthryl group, and these substituents are dialkylamino Selected from the group consisting of a group, an alkyl group, an alkoxy group, a carboxy group, or an ester thereof, a halogen atom cyano group, an aralkylamino group, an N-alkyl-N-aralkylamino group, an amino group, a nitro group, and an acetylamino group. Represents a group.
Examples of the compound represented by the general formula (8) include 1,2-bis (4-diethylaminostyryl) benzene and 1,2-bis (2,4-dimethoxystyryl) benzene.
[0082]
Embedded image
Figure 0003658134
[0083]
(Wherein R 1 represents a lower alkyl group, a substituted or unsubstituted phenyl group or a benzyl group, R 2 and R 3 represent a hydrogen atom, a lower alkyl group, a lower alkoxy group, a halogen atom, a nitro group, an amino group, Alternatively, it represents an amino group substituted with a lower alkyl group or a benzyl group, and n represents an integer of 1 or 2.)
Examples of the compound represented by the general formula (9) include 3-styryl-9-ethylcarbazole and 3- (4-methoxystyryl) -9-ethylcarbazole.
[0084]
Embedded image
Figure 0003658134
[0085]
(Wherein R 1 represents a hydrogen atom, an alkyl group, an alkoxy group or a halogen atom, R 2 and R 3 represent an alkyl group, a substituted or unsubstituted aralkyl group or a substituted or unsubstituted aryl group, R 4 Represents a hydrogen atom, a lower alkyl group or a substituted or unsubstituted phenyl group, and Ar represents a substituted or unsubstituted phenyl group or a naphthyl group.)
Examples of the compound represented by the general formula (10) include 4-diphenylaminostilbene, 4-dibenzylaminostilbene, 4-ditolylaminostilbene, 1- (4-diphenylaminostyryl) naphthalene, 1- (4- Diethylaminostyryl) naphthalene.
[0086]
Embedded image
Figure 0003658134
[0087]
[Wherein n represents an integer of 0 or 1, R 1 represents a hydrogen atom, an alkyl group or a substituted or unsubstituted phenyl group, Ar 1 represents a substituted or unsubstituted aryl group, and R 5 represents a substituted alkyl group. Represents an alkyl group containing or a substituted or unsubstituted aryl group, and A is
[0088]
Embedded image
Figure 0003658134
[0089]
Represents a 9-anthryl group, or a substituted or unsubstituted carbazolyl group, wherein R 2 represents a hydrogen atom, an alkyl group, an alkoxy group, a halogen atom, or
Embedded image
Figure 0003658134
[0091]
(However, R 3 and R 4 represent an alkyl group, a substituted or unsubstituted aralkyl group or a substituted or unsubstituted aryl group, R 3 and R 4 may be the same or different, and R 4 forms a ring. M is an integer of 0, 1, 2 or 3, and when m is 2 or more, R 2 may be the same or different. When n is 0, A and R 1 may form a ring together. )
Examples of the compound represented by the general formula (11) include 4′-diphenylamino-α-phenylstilbene and 4′-bis (4-methylphenyl) amino-α-phenylstilbene.
[0092]
Embedded image
Figure 0003658134
[0093]
(Wherein R 1 , R 2 and R 3 represent a hydrogen atom, a lower alkyl group, a lower alkoxy group, a dialkylamino group, or a halogen atom, and n represents 0 or 1)
Examples of the compound represented by the general formula (12) include 1-phenyl-3- (4-diethylaminostyryl) -5- (4-diethylaminophenyl) pyrazoline, 1-phenyl-3- (4-dimethylaminostyryl). -5- (4-dimethylaminophenyl) pyrazoline.
[0094]
Embedded image
Figure 0003658134
[0095]
(In the formula, R 1 and R 2 represent an alkyl group containing a substituted alkyl group or a substituted or unsubstituted aryl group, and A represents a substituted amino group, a substituted or unsubstituted aryl group or an allyl group.)
Examples of the compound represented by the general formula (13) include 2,5-bis (4-diethylaminophenyl) -1,3,4-oxadiazole, 2-N, N-diphenylamino-5- (4- Diethylaminophenyl) 1,3,4-oxadiazole, 2- (4-dimethylaminophenyl) -5- (4-diethylaminophenyl) -1,3,4-oxadiazole and the like.
[0096]
Embedded image
Figure 0003658134
[0097]
(In the formula, X represents a hydrogen atom, a lower alkyl group, or a halogen atom, R represents an alkyl group containing a substituted alkyl group, or a substituted or unsubstituted aryl group, and A represents a substituted amino group or a substituted or unsubstituted group. Represents an aryl group of
Examples of the compound represented by the general formula (14) include 2-N, N-diphenylamino-5- (N-ethylcarbazol-3-yl) -1,3,4-oxadiazole, 2- (4 -Diethylaminophenyl) -5- (N-ethylcarbazol-3-yl) 1,3,4-oxadiazole.
[0098]
Embedded image
Figure 0003658134
[0099]
(In the formula, R 1 represents a lower alkyl group, a lower alkoxy group or a halogen atom, n represents an integer of 0 to 4, R 2 and R 3 may be the same or different, and a hydrogen atom or a lower alkyl group. Represents a lower alkoxy group or a halogen atom.)
Examples of the benzidine compound represented by the general formula (15) include N, N′-diphenyl-N, N′-bis (3-methylphenyl)-[1,1′-biphenyl] -4,4′-diamine. 3,3′-dimethyl-N, N, N ′, N′-tetrakis (4-methylphenyl)-[1,1′-biphenyl] -4,4′-diamine.
[0100]
Embedded image
Figure 0003658134
[0101]
(Wherein R 1 , R 3 and R 4 are a hydrogen atom, an amino group, an alkoxy group, a thioalkoxy group, an aryloxy group, a methylenedioxy group, a substituted or unsubstituted alkyl group, a halogen atom, or a substituted or unsubstituted group. R 2 represents a hydrogen atom, an alkoxy group, a substituted or unsubstituted alkyl group, or a halogen atom, except that R 1 , R 2 , R 3, and R 4 are all hydrogen atoms. K, l, m and n are integers of 1 , 2 , 3 or 4, and when each is an integer of 2, 3 or 4, the R 1 , R 2 , R 3 and R 4 are the same or different. May be.)
Examples of the biphenylamine compound represented by the general formula (16) include 4′-methoxy-N, N-diphenyl- [1,1′-biphenyl] -4-amine, 4′-methyl-N, N′-. Bis (4-methylphenyl)-[1,1′-biphenyl] -4-amine, 4′-methoxy-N, N′-bis (4-methylphenyl)-[1,1′-biphenyl] -4- There are amines.
[0102]
Embedded image
Figure 0003658134
[0103]
(In the formula, Ar represents a condensed polycyclic hydrocarbon group having 18 or less carbon atoms, and R 1 and R 2 represent a hydrogen atom, a halogen atom, a substituted or unsubstituted alkyl group, an alkoxy group, a substituted or non-substituted group. Represents a substituted phenyl group, each of which may be the same or different.)
Examples of the triarylamine compound represented by the general formula (17) include 1-phenylaminopyrene and 1-di (p-tolylamino) pyrene.
A-CH = CH-Ar-CH = CH-A (18)
[In the formula, Ar represents a substituted or unsubstituted aromatic hydrocarbon group;
[0104]
Embedded image
Figure 0003658134
[0105]
(Wherein Ar 1 represents a substituted or unsubstituted aromatic hydrocarbon group, and R 1 and R 2 represent a substituted or unsubstituted alkyl group or a substituted or unsubstituted aryl group). ]
Examples of the diolefin aromatic compound represented by the general formula (18) include 1,4-bis (4-diphenylaminostyryl) benzene and 1,4-bis [4-di (p-tolyl) aminostyryl] benzene. and so on.
[0106]
Embedded image
Figure 0003658134
[0107]
(In the formula, Ar represents an aromatic hydrocarbon group, R represents a hydrogen atom, a substituted or unsubstituted alkyl group or an aryl group. N is 0 or 1, m is 1 or 2, and n = 0. When m = 1, Ar and R may form a ring together.)
Examples of the styrylpyrene compound represented by the general formula (19) include 1- (4-diphenylaminostyryl) pyrene and 1- [4-di (p-tolyl) aminoacetylyl] pyrene.
[0108]
Examples of the binder resin used for the charge transport layer 19 together with the charge transport material include polystyrene, styrene-acrylonitrile copolymer, styrene-butadiene copolymer, styrene-maleic anhydride copolymer, polyester, polyvinyl chloride, and vinyl chloride. -Vinyl acetate copolymer, polyvinyl acetate, polyvinylidene chloride, polyarylate, phenoxy resin, polycarbonate, cellulose acetate resin, ethyl cellulose resin, polyvinyl butyral, polyvinyl formal, polyvinyl toluene, acrylic resin, silicone resin, epoxy resin, melamine resin , A thermoplastic resin such as urethane resin, phenol resin, alkyd resin, or thermosetting resin. Among these, polycarbonate is preferable because it is excellent in environmental characteristics, abrasion resistance and mechanical properties when it is used as an electrophotographic photoreceptor, and in particular, a polycarbonate having a structural unit represented by the following general formula as a main repeating unit. These are excellent in affinity with the polysiloxane mixture shown in the above (1) to (6), and more preferable in terms of productivity.
[0109]
Embedded image
Figure 0003658134
[0110]
In the formula, Z represents a nonmetallic atom group necessary for forming an optionally substituted carbocycle or heterocycle, and R 1 to R 8 each represents a hydrogen atom, a halogen atom, or each substituent. An aliphatic group or a carbocyclic group which may be contained. Such polycarbonate resin is marketed, for example, as Iupilon Z-200 manufactured by Mitsubishi Gas Chemical Company, Inc. and Teijin Chemicals Corporation Panlite K-1300.
As the solvent, tetrahydrofuran, dioxane, toluene, 2-butanone, monochlorobenzene, dichloroethane, methylene chloride and the like are used. The thickness of the charge transport layer 19 is suitably 5 to 100 μm.
[0111]
In the present invention, a plasticizer may be added to the charge transport layer 19. As the plasticizer, those used as a plasticizer for general resins such as dibutyl phthalate and dioctyl phthalate can be used as they are, and the amount used is suitably about 0 to 30% by weight based on the binder resin.
Next, the case where the photosensitive layer 15 has a single layer structure will be described. In this case as well, a function-separated type consisting of a charge generation material and a charge transport material can be mentioned.
[0112]
That is, it can be formed by dissolving or dispersing at least a charge generating material and a charge transporting material together with a binder resin in an appropriate solvent, and applying and drying the solution. Moreover, a plasticizer etc. can also be added as needed.
As the binder resin, the binder resin previously mentioned in the charge transport layer 19 can be used as it is, and the binder resin mentioned in the charge generation layer 17 may be mixed. The film thickness of the single photosensitive layer is suitably 5 to 100 μm.
[0113]
In the electrophotographic photoreceptor of the present invention, an undercoat layer can be provided between the conductive support 11 and the photosensitive layer. In general, the undercoat layer is mainly composed of a resin. However, considering that the photosensitive layer is applied with a solvent on these resins, the resin may be a resin having a high resistance to a general organic solvent. desirable. Such resins include water-soluble resins such as polyvinyl alcohol, casein, sodium polyacrylate, alcohol-soluble resins such as copolymer nylon and methoxymethylated nylon, polyurethane, melamine resin, alkyd-melamine resin, epoxy resin, etc. Examples thereof include a curable resin that forms an original network structure.
[0114]
In addition, metal oxide fine powders exemplified by titanium oxide, silica, alumina, zirconium oxide, tin oxide, indium oxide and the like may be added to the undercoat layer in order to prevent moire and reduce residual potential. These undercoat layers can be formed using an appropriate solvent and coating method as in the photosensitive layer described above.
[0115]
Furthermore, a metal oxide layer formed by, for example, a sol-gel method using a silane coupling agent, a titanium coupling agent, a chromium coupling agent, or the like is also useful as the undercoat layer of the present invention.
In addition, the undercoat layer of the present invention is provided with Al 2 O 3 by anodic oxidation, organic substances such as polyparaxylylene (parylene), SiO, SnO 2 , TiO 2 , ITO, CeO 2, etc. Those provided with an inorganic material by a vacuum thin film manufacturing method can also be used favorably. The thickness of the undercoat layer is suitably from 0 to 5 μm.
[0116]
【Example】
The following examples illustrate the present invention in detail, and the present invention is not limited by the examples. In addition, all the parts in an Example are a weight part.
[0117]
Example 1
On an aluminum cylinder with an outer diameter of 100 mm, an undercoat layer coating solution, a charge generation layer coating solution, and a charge transport layer coating solution having the following composition were sequentially applied and dried to form a 3 μm undercoat layer and 0.2 μm each. Were formed, and a 28 μm charge transport layer was formed to produce the electrophotographic photoreceptor of the present invention.
[0118]
Figure 0003658134
[0119]
Embedded image
Figure 0003658134
[0120]
Figure 0003658134
Figure 0003658134
Example 2
An electrophotographic photoreceptor of the present invention was produced in the same manner as in Example 1 except that the charge transport layer coating solution of Example 1 had the following composition.
[0121]
Figure 0003658134
Example 3
An electrophotographic photoreceptor of the present invention was produced in the same manner as in Example 1 except that the charge transport layer coating solution of Example 1 had the following composition.
[0122]
Figure 0003658134
Example 4
An electrophotographic photoreceptor of the present invention was produced in the same manner as in Example 1 except that the charge transport layer coating solution of Example 1 had the following composition.
[0123]
Figure 0003658134
Example 5
An electrophotographic photoreceptor of the present invention was produced in the same manner as in Example 1 except that the charge transport layer coating solution of Example 1 had the following composition.
[0124]
Figure 0003658134
Example 6
An electrophotographic photoreceptor of the present invention was produced in the same manner as in Example 1 except that the charge transport layer coating solution of Example 1 had the following composition.
[0125]
Figure 0003658134
Example 7
An electrophotographic photoreceptor of the present invention was produced in the same manner as in Example 1 except that the charge transport layer coating solution of Example 1 had the following composition.
[0126]
Figure 0003658134
Example 8
An electrophotographic photoreceptor of the present invention was produced in the same manner as in Example 1 except that the charge transport layer coating solution of Example 1 had the following composition.
[0127]
Figure 0003658134
Example 9
An electrophotographic photosensitive member of the present invention was produced in the same manner as in Example 1 except that the charge transport layer coating solution of Example 1 was changed to the following for the binder resin of the charge transport layer.
[0128]
Polycarbonate (Teijin Chemicals Panlite K-1300) 10 parts Comparative Example 1
An electrophotographic photosensitive member of Comparative Example 1 was produced in the same manner except that the charge transport layer coating solution of Example 1 had the following composition.
[0129]
Figure 0003658134
Comparative Example 2
An electrophotographic photosensitive member of Comparative Example 2 was produced in the same manner except that the charge transport layer coating solution of Example 1 had the following composition.
[0130]
Figure 0003658134
Comparative Example 3
An electrophotographic photosensitive member of Comparative Example 3 was produced in the same manner except that the charge transport layer coating solution of Example 1 had the following composition.
[0131]
Figure 0003658134
Comparative Example 4
An electrophotographic photosensitive member of Comparative Example 4 was prepared in the same manner except that the charge transport layer coating solution of Example 1 had the following composition.
[0132]
Figure 0003658134
Each of the above photoreceptors was measured as follows with an evaluation apparatus disclosed in JP-A-60-10017. Exposure with monochromatic light (780 nm, half-value width 20 nm) with a potential V m (V) after 20 seconds of charging at a corona discharge voltage of −6.0 kV, a potential V o (V) after 20 seconds of dark decay, and an intensity of 1 μW / cm 2. The residual potential VR (V) after 20 seconds and the exposure dose E 1/2 [μJ / cm 2 ] required to attenuate the potential V o to 1/2 were measured.
The potential holding ratio is defined as follows.
[0133]
Potential holding ratio = V o / V m
Each photoconductor of Examples and Comparative Examples was mounted on a modified Ricoh Co., Ltd. DA-355 copying machine, and continuous 10,000 copies were made, and the presence or absence of abnormal images was visually determined. Each photoconductor after the copying test was measured for the photoconductor characteristics by the same method as described above. The test results are shown in Table 1.
[0134]
[Table 1]
Figure 0003658134
[0135]
Example 10
An electrophotographic photoreceptor of the present invention was produced in the same manner as in Example 1 except that the charge transport layer coating solution of Example 1 had the following composition.
[0136]
Figure 0003658134
Example 11
An electrophotographic photoreceptor of the present invention was produced in the same manner as in Example 1 except that the charge transport layer coating solution of Example 1 had the following composition.
[0137]
Figure 0003658134
Example 12
An electrophotographic photoreceptor of the present invention was produced in the same manner as in Example 1 except that the charge transport layer coating solution of Example 1 had the following composition.
[0138]
Figure 0003658134
Example 13
An electrophotographic photoreceptor of the present invention was produced in the same manner as in Example 1 except that the charge transport layer coating solution of Example 1 had the following composition.
[0139]
Figure 0003658134
Example 14
An electrophotographic photoreceptor of the present invention was produced in the same manner as in Example 1 except that the charge transport layer coating solution of Example 1 had the following composition.
[0140]
Figure 0003658134
Example 15
An electrophotographic photoreceptor of the present invention was produced in the same manner as in Example 1 except that the charge transport layer coating solution of Example 1 had the following composition.
[0141]
Figure 0003658134
Example 16
An electrophotographic photoreceptor of the present invention was produced in the same manner as in Example 1 except that the charge transport layer coating solution of Example 1 had the following composition.
[0142]
Figure 0003658134
Example 17
An electrophotographic photoreceptor of the present invention was produced in the same manner as in Example 1 except that the charge transport layer coating solution of Example 1 had the following composition.
[0143]
Figure 0003658134
Example 18
An electrophotographic photosensitive member of the present invention was produced in the same manner as in Example 10 except that the charge transport layer coating solution of Example 10 was changed to the following for the binder resin of the charge transport layer.
Polycarbonate (Teijin Kasei Panlite K-1300) 10 parts Comparative Example 5
An electrophotographic photosensitive member of Comparative Example 5 was produced in the same manner except that the charge transport layer coating solution of Example 10 had the following composition.
[0144]
Figure 0003658134
Each of the above photoreceptors was measured as follows with an evaluation apparatus disclosed in JP-A-60-10017. Exposure with monochromatic light (780 nm, half-value width 20 nm) with a potential V m (V) after 20 seconds of charging at a corona discharge voltage of −6.0 kV, a potential V o (V) after 20 seconds of dark decay, and an intensity of 1 μW / cm 2. The residual potential VR (V) after 20 seconds, and the exposure amount E 1/2 [μJ / cm 2 ] required to attenuate the potential V o to 1/2 were measured.
The potential holding ratio is defined as follows.
[0145]
Potential holding ratio = V o / V m
Each photoconductor of Examples and Comparative Examples was mounted on a modified Ricoh Co., Ltd. DA-355 copying machine, and continuous 10,000 copies were made, and the presence or absence of abnormal images was visually determined. Each photoconductor after the copying test was measured for the photoconductor characteristics by the same method as described above. The test results are shown in Table 2.
[0146]
[Table 2]
Figure 0003658134
[0147]
Example 19
An electrophotographic photoreceptor of the present invention was produced in the same manner as in Example 1 except that the charge transport layer coating solution of Example 1 had the following composition.
[0148]
Figure 0003658134
Example 20
An electrophotographic photoreceptor of the present invention was produced in the same manner as in Example 1 except that the charge transport layer coating solution of Example 1 had the following composition.
[0149]
Figure 0003658134
Example 21
An electrophotographic photoreceptor of the present invention was produced in the same manner as in Example 1 except that the charge transport layer coating solution of Example 1 had the following composition.
[0150]
Figure 0003658134
Example 22
An electrophotographic photoreceptor of the present invention was produced in the same manner as in Example 1 except that the charge transport layer coating solution of Example 1 had the following composition.
[0151]
Figure 0003658134
Example 23
An electrophotographic photoreceptor of the present invention was produced in the same manner as in Example 1 except that the charge transport layer coating solution of Example 1 had the following composition.
[0152]
Figure 0003658134
Example 24
An electrophotographic photoreceptor of the present invention was produced in the same manner as in Example 1 except that the charge transport layer coating solution of Example 1 had the following composition.
[0153]
Figure 0003658134
Example 25
An electrophotographic photoreceptor of the present invention was produced in the same manner as in Example 1 except that the charge transport layer coating solution of Example 1 had the following composition.
[0154]
Figure 0003658134
Example 26
An electrophotographic photoreceptor of the present invention was produced in the same manner as in Example 1 except that the charge transport layer coating solution of Example 1 had the following composition.
[0155]
Figure 0003658134
Example 27
An electrophotographic photosensitive member of the present invention was prepared in the same manner as in Example 19 except that the charge transport layer coating solution of Example 19 was changed to the following for the binder resin of the charge transport layer.
Polycarbonate (Teijin Kasei Panlite K-1300) 10 parts Comparative Example 6
An electrophotographic photosensitive member of Comparative Example 6 was produced in the same manner except that the charge transport layer coating solution of Example 19 had the following composition.
[0156]
Figure 0003658134
Each of the above photoreceptors was measured as follows with an evaluation apparatus disclosed in JP-A-60-10017. Exposure with monochromatic light (780 nm, half-value width 20 nm) with a potential V m (V) after 20 seconds of charging at a corona discharge voltage of −6.0 kV, a potential V o (V) after 20 seconds of dark decay, and an intensity of 1 μW / cm 2. The residual potential VR (V) after 20 seconds and the exposure dose E 1/2 [μJ / cm 2 ] required to attenuate the potential V o to 1/2 were measured.
The potential holding ratio is defined as follows.
[0157]
Potential holding ratio = V o / V m
Each photoconductor of Examples and Comparative Examples was mounted on a modified Ricoh Co., Ltd. DA-355 copying machine, and continuous 10,000 copies were made, and the presence or absence of abnormal images was visually determined. Each photoconductor after the copying test was measured for the photoconductor characteristics by the same method as described above. The test results are shown in Table 3.
[0158]
[Table 3]
Figure 0003658134
[0159]
Example 28
An electrophotographic photoreceptor of the present invention was produced in the same manner as in Example 1 except that the charge transport layer coating solution of Example 1 had the following composition.
[0160]
Figure 0003658134
Example 29
An electrophotographic photoreceptor of the present invention was produced in the same manner as in Example 1 except that the charge transport layer coating solution of Example 1 had the following composition.
[0161]
Figure 0003658134
Example 30
An electrophotographic photoreceptor of the present invention was produced in the same manner as in Example 1 except that the charge transport layer coating solution of Example 1 had the following composition.
[0162]
Figure 0003658134
Example 31
An electrophotographic photoreceptor of the present invention was produced in the same manner as in Example 1 except that the charge transport layer coating solution of Example 1 had the following composition.
[0163]
Figure 0003658134
Example 32
An electrophotographic photoreceptor of the present invention was produced in the same manner as in Example 1 except that the charge transport layer coating solution of Example 1 had the following composition.
[0164]
Figure 0003658134
Example 33
An electrophotographic photoreceptor of the present invention was produced in the same manner as in Example 1 except that the charge transport layer coating solution of Example 1 had the following composition.
[0165]
Figure 0003658134
Example 34
An electrophotographic photoreceptor of the present invention was produced in the same manner as in Example 1 except that the charge transport layer coating solution of Example 1 had the following composition.
[0166]
Figure 0003658134
Example 35
An electrophotographic photoreceptor of the present invention was produced in the same manner as in Example 1 except that the charge transport layer coating solution of Example 1 had the following composition.
[0167]
Figure 0003658134
Example 36
An electrophotographic photosensitive member of the present invention was produced in the same manner as in Example 28 except that the charge transport layer coating solution of Example 28 was changed to the following binder resin for the charge transport layer.
Polycarbonate (Teijin Chemicals Panlite K-1300) 10 parts Comparative Example 7
An electrophotographic photosensitive member of Comparative Example 7 was produced in the same manner except that the charge transport layer coating solution of Example 28 had the following composition.
[0168]
Figure 0003658134
Each of the above photoreceptors was measured as follows with an evaluation apparatus disclosed in JP-A-60-10017. Exposure with monochromatic light (780 nm, half-value width 20 nm) with a potential V m (V) after 20 seconds of charging at a corona discharge voltage of −6.0 kV, a potential V o (V) after 20 seconds of dark decay, and an intensity of 1 μW / cm 2. The residual potential VR (V) after 20 seconds and the exposure dose E 1/2 [μJ / cm 2 ] required to attenuate the potential V o to 1/2 were measured.
The potential holding ratio is defined as follows.
[0169]
Potential holding ratio = V o / V m
Each photoconductor of Examples and Comparative Examples was mounted on a modified Ricoh Co., Ltd. DA-355 copying machine, and continuous 10,000 copies were made, and the presence or absence of abnormal images was visually determined. Each photoconductor after the copying test was measured for the photoconductor characteristics by the same method as described above. The test results are shown in Table 4.
[0170]
[Table 4]
Figure 0003658134
[0171]
Example 37
An electrophotographic photoreceptor of the present invention was produced in the same manner as in Example 1 except that the charge transport layer coating solution of Example 1 had the following composition.
[0172]
Figure 0003658134
Example 38
An electrophotographic photoreceptor of the present invention was produced in the same manner as in Example 1 except that the charge transport layer coating solution of Example 1 had the following composition.
[0173]
Figure 0003658134
Example 39
An electrophotographic photoreceptor of the present invention was produced in the same manner as in Example 1 except that the charge transport layer coating solution of Example 1 had the following composition.
[0174]
Figure 0003658134
Example 40
An electrophotographic photoreceptor of the present invention was produced in the same manner as in Example 1 except that the charge transport layer coating solution of Example 1 had the following composition.
[0175]
Figure 0003658134
Example 41
An electrophotographic photoreceptor of the present invention was produced in the same manner as in Example 1 except that the charge transport layer coating solution of Example 1 had the following composition.
[0176]
Figure 0003658134
Example 42
An electrophotographic photoreceptor of the present invention was produced in the same manner as in Example 1 except that the charge transport layer coating solution of Example 1 had the following composition.
[0177]
Figure 0003658134
Example 43
An electrophotographic photoreceptor of the present invention was produced in the same manner as in Example 1 except that the charge transport layer coating solution of Example 1 had the following composition.
[0178]
Figure 0003658134
Example 44
An electrophotographic photoreceptor of the present invention was produced in the same manner as in Example 1 except that the charge transport layer coating solution of Example 1 had the following composition.
[0179]
Figure 0003658134
Example 45
An electrophotographic photosensitive member of the present invention was produced in the same manner as in Example 37 except that the charge transport layer coating solution of Example 37 was changed to the following for the binder resin of the charge transport layer.
Polycarbonate (Teijin Kasei Panlite K-1300) 10 parts Comparative Example 8
An electrophotographic photosensitive member of Comparative Example 8 was produced in the same manner except that the charge transport layer coating solution of Example 37 had the following composition.
[0180]
Figure 0003658134
Each of the above photoreceptors was measured as follows with an evaluation apparatus disclosed in JP-A-60-10017. Exposure with monochromatic light (780 nm, half-value width 20 nm) with a potential V m (V) after 20 seconds of charging at a corona discharge voltage of −6.0 kV, a potential V o (V) after 20 seconds of dark decay, and an intensity of 1 μW / cm 2. The residual potential VR (V) after 20 seconds and the exposure dose E 1/2 [μJ / cm 2 ] required to attenuate the potential V o to 1/2 were measured.
The potential holding ratio is defined as follows.
[0181]
Potential holding ratio = V o / V m
Each photoconductor of Examples and Comparative Examples was mounted on a modified Ricoh Co., Ltd. DA-355 copying machine, and continuous 10,000 copies were made, and the presence or absence of abnormal images was visually determined. Each photoconductor after the copying test was measured for the photoconductor characteristics by the same method as described above. The test results are shown in Table 5.
[0182]
[Table 5]
Figure 0003658134
[0183]
Example 46
An electrophotographic photoreceptor of the present invention was produced in the same manner as in Example 1 except that the charge transport layer coating solution of Example 1 had the following composition.
[0184]
Figure 0003658134
Example 47
An electrophotographic photoreceptor of the present invention was produced in the same manner as in Example 1 except that the charge transport layer coating solution of Example 1 had the following composition.
[0185]
Figure 0003658134
Example 48
An electrophotographic photoreceptor of the present invention was produced in the same manner as in Example 1 except that the charge transport layer coating solution of Example 1 had the following composition.
[0186]
Figure 0003658134
Example 49
An electrophotographic photoreceptor of the present invention was produced in the same manner as in Example 1 except that the charge transport layer coating solution of Example 1 had the following composition.
[0187]
Figure 0003658134
Example 50
An electrophotographic photoreceptor of the present invention was produced in the same manner as in Example 1 except that the charge transport layer coating solution of Example 1 had the following composition.
[0188]
Figure 0003658134
Example 51
An electrophotographic photoreceptor of the present invention was produced in the same manner as in Example 1 except that the charge transport layer coating solution of Example 1 had the following composition.
[0189]
Figure 0003658134
Example 52
An electrophotographic photoreceptor of the present invention was produced in the same manner as in Example 1 except that the charge transport layer coating solution of Example 1 had the following composition.
[0190]
Figure 0003658134
Example 53
An electrophotographic photoreceptor of the present invention was produced in the same manner as in Example 1 except that the charge transport layer coating solution of Example 1 had the following composition.
[0191]
Figure 0003658134
Example 54
An electrophotographic photosensitive member of the present invention was produced in the same manner as in Example 46 except that the charge transport layer coating solution of Example 46 was changed to the following binder resin for the charge transport layer.
Polycarbonate (Teijin Kasei Panlite K-1300) 10 parts Comparative Example 9
An electrophotographic photosensitive member of Comparative Example 9 was produced in the same manner except that the charge transport layer coating solution of Example 46 had the following composition.
[0192]
Figure 0003658134
Each of the above photoreceptors was measured as follows with an evaluation apparatus disclosed in JP-A-60-10017. Exposure with monochromatic light (780 nm, half-value width 20 nm) with a potential V m (V) after 20 seconds of charging at a corona discharge voltage of −6.0 kV, a potential V o (V) after 20 seconds of dark decay, and an intensity of 1 μW / cm 2. The residual potential VR (V) after 20 seconds and the exposure dose E 1/2 [μJ / cm 2 ] required to attenuate the potential V o to 1/2 were measured.
The potential holding ratio is defined as follows.
[0193]
Potential holding ratio = V o / V m
Each photoconductor of Examples and Comparative Examples was mounted on a modified Ricoh Co., Ltd. DA-355 copying machine, and continuous 10,000 copies were made, and the presence or absence of abnormal images was visually determined. Each photoconductor after the copying test was measured for the photoconductor characteristics by the same method as described above. The test results are shown in Table 6.
[0194]
[Table 6]
Figure 0003658134
[0195]
Example 55
An electrophotographic photoreceptor of the present invention was produced in the same manner as in Example 1 except that the charge transport layer coating solution of Example 1 had the following composition.
[0196]
Figure 0003658134
Example 56
An electrophotographic photoreceptor of the present invention was produced in the same manner as in Example 1 except that the charge transport layer coating solution of Example 1 had the following composition.
[0197]
Figure 0003658134
Example 57
An electrophotographic photoreceptor of the present invention was produced in the same manner as in Example 1 except that the charge transport layer coating solution of Example 1 had the following composition.
[0198]
Figure 0003658134
Example 58
An electrophotographic photoreceptor of the present invention was produced in the same manner as in Example 1 except that the charge transport layer coating solution of Example 1 had the following composition.
[0199]
Figure 0003658134
Example 59
An electrophotographic photoreceptor of the present invention was produced in the same manner as in Example 1 except that the charge transport layer coating solution of Example 1 had the following composition.
[0200]
Figure 0003658134
Example 60
An electrophotographic photoreceptor of the present invention was produced in the same manner as in Example 1 except that the charge transport layer coating solution of Example 1 had the following composition.
[0201]
Figure 0003658134
Example 61
An electrophotographic photoreceptor of the present invention was produced in the same manner as in Example 1 except that the charge transport layer coating solution of Example 1 had the following composition.
[0202]
Figure 0003658134
Example 62
An electrophotographic photoreceptor of the present invention was produced in the same manner as in Example 1 except that the charge transport layer coating solution of Example 1 had the following composition.
[0203]
Figure 0003658134
Example 63
An electrophotographic photosensitive member of the present invention was produced in the same manner as in Example 55 except that the charge transport layer coating solution of Example 55 was changed to the following for the binder resin of the charge transport layer.
10 parts of polycarbonate (Teijin Chemicals Panlite K-1300) Comparative Example 10
An electrophotographic photosensitive member of Comparative Example 10 was prepared in the same manner except that the charge transport layer coating solution of Example 55 had the following composition.
[0204]
Figure 0003658134
Each of the above photoreceptors was measured as follows with an evaluation apparatus disclosed in JP-A-60-10017. Exposure with monochromatic light (780 nm, half-value width 20 nm) with a potential V m (V) after 20 seconds of charging at a corona discharge voltage of −6.0 kV, a potential V o (V) after 20 seconds of dark decay, and an intensity of 1 μW / cm 2. The residual potential VR (V) after 20 seconds and the exposure dose E 1/2 [μJ / cm 2 ] required to attenuate the potential V o to 1/2 were measured.
The potential holding ratio is defined as follows.
[0205]
Potential holding ratio = V o / V m
Each photoconductor of Examples and Comparative Examples was mounted on a modified Ricoh Co., Ltd. DA-355 copying machine, and continuous 10,000 copies were made, and the presence or absence of abnormal images was visually determined. Each photoconductor after the copying test was measured for the photoconductor characteristics by the same method as described above. The test results are shown in Table 7.
[0206]
[Table 7]
Figure 0003658134
[0207]
Example 64
An electrophotographic photoreceptor of the present invention was produced in the same manner as in Example 1 except that the charge transport layer coating solution of Example 1 had the following composition.
[0208]
Figure 0003658134
Example 65
An electrophotographic photoreceptor of the present invention was produced in the same manner as in Example 1 except that the charge transport layer coating solution of Example 1 had the following composition.
[0209]
Figure 0003658134
Example 66
An electrophotographic photoreceptor of the present invention was produced in the same manner as in Example 1 except that the charge transport layer coating solution of Example 1 had the following composition.
[0210]
Figure 0003658134
Example 67
An electrophotographic photoreceptor of the present invention was produced in the same manner as in Example 1 except that the charge transport layer coating solution of Example 1 had the following composition.
[0211]
Figure 0003658134
Example 68
An electrophotographic photoreceptor of the present invention was produced in the same manner as in Example 1 except that the charge transport layer coating solution of Example 1 had the following composition.
[0212]
Figure 0003658134
Example 69
An electrophotographic photoreceptor of the present invention was produced in the same manner as in Example 1 except that the charge transport layer coating solution of Example 1 had the following composition.
[0213]
Figure 0003658134
Example 70
An electrophotographic photoreceptor of the present invention was produced in the same manner as in Example 1 except that the charge transport layer coating solution of Example 1 had the following composition.
[0214]
Figure 0003658134
Example 71
An electrophotographic photoreceptor of the present invention was produced in the same manner as in Example 1 except that the charge transport layer coating solution of Example 1 had the following composition.
[0215]
Figure 0003658134
Example 72
An electrophotographic photosensitive member of the present invention was produced in the same manner as in Example 64 except that the charge transport layer coating solution of Example 64 was changed to the following for the binder resin of the charge transport layer.
Polycarbonate (Teijin Chemicals Panlite K-1300) 10 parts Comparative Example 11
An electrophotographic photosensitive member of Comparative Example 11 was produced in the same manner except that the charge transport layer coating solution of Example 64 had the following composition.
[0216]
Figure 0003658134
Each of the above photoreceptors was measured as follows with an evaluation apparatus disclosed in JP-A-60-10017. Exposure with monochromatic light (780 nm, half-value width 20 nm) with a potential V m (V) after 20 seconds of charging at a corona discharge voltage of −6.0 kV, a potential V o (V) after 20 seconds of dark decay, and an intensity of 1 μW / cm 2. The residual potential VR (V) after 20 seconds and the exposure dose E 1/2 [μJ / cm 2 ] required to attenuate the potential V o to 1/2 were measured.
The potential holding ratio is defined as follows.
[0217]
Potential holding ratio = V o / V m
Each photoconductor of Examples and Comparative Examples was mounted on a modified Ricoh Co., Ltd. DA-355 copying machine, and continuous 10,000 copies were made, and the presence or absence of abnormal images was visually determined. Each photoconductor after the copying test was measured for the photoconductor characteristics by the same method as described above. The test results are shown in Table 8.
[0218]
[Table 8]
Figure 0003658134
[0219]
Example 73
An electrophotographic photoreceptor of the present invention was produced in the same manner as in Example 1 except that the charge transport layer coating solution of Example 1 had the following composition.
[0220]
Figure 0003658134
Example 74
An electrophotographic photoreceptor of the present invention was produced in the same manner as in Example 1 except that the charge transport layer coating solution of Example 1 had the following composition.
[0221]
Figure 0003658134
Example 75
An electrophotographic photoreceptor of the present invention was produced in the same manner as in Example 1 except that the charge transport layer coating solution of Example 1 had the following composition.
[0222]
Figure 0003658134
Example 76
An electrophotographic photoreceptor of the present invention was produced in the same manner as in Example 1 except that the charge transport layer coating solution of Example 1 had the following composition.
[0223]
Figure 0003658134
Example 77
An electrophotographic photoreceptor of the present invention was produced in the same manner as in Example 1 except that the charge transport layer coating solution of Example 1 had the following composition.
[0224]
Figure 0003658134
Example 78
An electrophotographic photoreceptor of the present invention was produced in the same manner as in Example 1 except that the charge transport layer coating solution of Example 1 had the following composition.
[0225]
Figure 0003658134
Example 79
An electrophotographic photoreceptor of the present invention was produced in the same manner as in Example 1 except that the charge transport layer coating solution of Example 1 had the following composition.
[0226]
Figure 0003658134
Example 80
An electrophotographic photoreceptor of the present invention was produced in the same manner as in Example 1 except that the charge transport layer coating solution of Example 1 had the following composition.
[0227]
Figure 0003658134
Example 81
An electrophotographic photosensitive member of the present invention was produced in the same manner as in Example 73 except that the charge transport layer coating solution of Example 73 was changed to the following binder resin for the charge transport layer.
Polycarbonate (Teijin Chemicals Panlite K-1300) 10 parts Comparative Example 12
An electrophotographic photosensitive member of Comparative Example 12 was produced in the same manner except that the charge transport layer coating solution of Example 73 had the following composition.
[0228]
Figure 0003658134
Each of the above photoreceptors was measured as follows with an evaluation apparatus disclosed in JP-A-60-10017. Exposure with monochromatic light (780 nm, half-value width 20 nm) with a potential V m (V) after 20 seconds of charging at a corona discharge voltage of −6.0 kV, a potential V o (V) after 20 seconds of dark decay, and an intensity of 1 μW / cm 2. The residual potential VR (V) after 20 seconds and the exposure dose E 1/2 [μJ / cm 2 ] required to attenuate the potential V o to 1/2 were measured.
The potential holding ratio is defined as follows.
[0229]
Potential holding ratio = V o / V m
Each photoconductor of Examples and Comparative Examples was mounted on a modified Ricoh Co., Ltd. DA-355 copying machine, and continuous 10,000 copies were made, and the presence or absence of abnormal images was visually determined. Each photoconductor after the copying test was measured for the photoconductor characteristics by the same method as described above. The test results are shown in Table 9.
[0230]
[Table 9]
Figure 0003658134
[0231]
Example 82
An electrophotographic photoreceptor of the present invention was produced in the same manner as in Example 1 except that the charge transport layer coating solution of Example 1 had the following composition.
[0232]
Figure 0003658134
Example 83
An electrophotographic photoreceptor of the present invention was produced in the same manner as in Example 1 except that the charge transport layer coating solution of Example 1 had the following composition.
[0233]
Figure 0003658134
Example 84
An electrophotographic photoreceptor of the present invention was produced in the same manner as in Example 1 except that the charge transport layer coating solution of Example 1 had the following composition.
[0234]
Figure 0003658134
Example 85
An electrophotographic photoreceptor of the present invention was produced in the same manner as in Example 1 except that the charge transport layer coating solution of Example 1 had the following composition.
[0235]
Figure 0003658134
Example 86
An electrophotographic photoreceptor of the present invention was produced in the same manner as in Example 1 except that the charge transport layer coating solution of Example 1 had the following composition.
[0236]
Figure 0003658134
Example 87
An electrophotographic photoreceptor of the present invention was produced in the same manner as in Example 1 except that the charge transport layer coating solution of Example 1 had the following composition.
[0237]
Figure 0003658134
Example 88
An electrophotographic photoreceptor of the present invention was produced in the same manner as in Example 1 except that the charge transport layer coating solution of Example 1 had the following composition.
[0238]
Figure 0003658134
Example 89
An electrophotographic photoreceptor of the present invention was produced in the same manner as in Example 1 except that the charge transport layer coating solution of Example 1 had the following composition.
[0239]
Figure 0003658134
Example 90
An electrophotographic photosensitive member of the present invention was produced in the same manner as in Example 82 except that the charge transport layer coating solution of Example 82 was changed to the following for the binder resin of the charge transport layer.
Polycarbonate (Teijin Kasei Panlite K-1300) 10 parts Comparative Example 13
An electrophotographic photosensitive member of Comparative Example 13 was prepared in the same manner except that the charge transport layer coating solution of Example 82 had the following composition.
[0240]
Figure 0003658134
Each of the above photoreceptors was measured as follows with an evaluation apparatus disclosed in JP-A-60-10017. Exposure with monochromatic light (780 nm, full width at half maximum of 20 nm) with a potential V m (V) after 20 seconds of charging at a corona discharge voltage of −6.0 kV, a potential V o (V) after 20 seconds of dark decay, and an intensity of 1 μW / cm 2. The residual potential VR (V) after 20 seconds and the exposure dose E 1/2 [μJ / cm 2 ] required to attenuate the potential V o to 1/2 were measured.
The potential holding ratio is defined as follows.
[0241]
Potential holding ratio = V o / V m
Each photoconductor of Examples and Comparative Examples was mounted on a modified Ricoh Co., Ltd. DA-355 copying machine, and continuous 10,000 copies were made, and the presence or absence of abnormal images was visually determined. Each photoconductor after the copying test was measured for the photoconductor characteristics by the same method as described above. The test results are shown in Table 10.
[0242]
[Table 10]
Figure 0003658134
[0243]
Example 91
An electrophotographic photoreceptor of the present invention was produced in the same manner as in Example 1 except that the charge transport layer coating solution of Example 1 had the following composition.
[0244]
Figure 0003658134
Example 92
An electrophotographic photoreceptor of the present invention was produced in the same manner as in Example 1 except that the charge transport layer coating solution of Example 1 had the following composition.
[0245]
Figure 0003658134
Example 93
An electrophotographic photoreceptor of the present invention was produced in the same manner as in Example 1 except that the charge transport layer coating solution of Example 1 had the following composition.
[0246]
Figure 0003658134
Example 94
An electrophotographic photoreceptor of the present invention was produced in the same manner as in Example 1 except that the charge transport layer coating solution of Example 1 had the following composition.
[0247]
Figure 0003658134
Example 95
An electrophotographic photoreceptor of the present invention was produced in the same manner as in Example 1 except that the charge transport layer coating solution of Example 1 had the following composition.
[0248]
Figure 0003658134
Example 96
An electrophotographic photoreceptor of the present invention was produced in the same manner as in Example 1 except that the charge transport layer coating solution of Example 1 had the following composition.
[0249]
Figure 0003658134
Example 97
An electrophotographic photoreceptor of the present invention was produced in the same manner as in Example 1 except that the charge transport layer coating solution of Example 1 had the following composition.
[0250]
Figure 0003658134
Example 98
An electrophotographic photoreceptor of the present invention was produced in the same manner as in Example 1 except that the charge transport layer coating solution of Example 1 had the following composition.
[0251]
Figure 0003658134
Example 99
An electrophotographic photosensitive member of the present invention was produced in the same manner as in Example 9 except that the charge transport layer coating solution in Example 9 was changed to the following for the binder resin of the charge transport layer.
[0252]
Polycarbonate (Teijin Kasei Panlite K-1300) 10 parts Comparative Example 14
An electrophotographic photosensitive member of Comparative Example 14 was produced in the same manner except that the charge transport layer coating solution of Example 91 had the following composition.
[0253]
Figure 0003658134
Each of the above photoreceptors was measured as follows with an evaluation apparatus disclosed in JP-A-60-10017. Exposure with monochromatic light (780 nm, full width at half maximum of 20 nm) with a potential V m (V) after 20 seconds of charging at a corona discharge voltage of −6.0 kV, a potential V o (V) after 20 seconds of dark decay, and an intensity of 1 μW / cm 2. The residual potential VR (V) after 20 seconds, and the exposure amount E 1/2 [μJ / cm 2 ] required to attenuate the potential V o to 1/2 were measured.
The potential holding ratio is defined as follows.
[0254]
Potential holding ratio = V o / V m
Each photoconductor of Examples and Comparative Examples was mounted on a modified Ricoh Co., Ltd. DA-355 copying machine, and continuous 10,000 copies were made, and the presence or absence of abnormal images was visually determined. Each photoconductor after the copying test was measured for the photoconductor characteristics by the same method as described above. The test results are shown in Table 11.
[0255]
[Table 11]
Figure 0003658134
[0256]
【The invention's effect】
According to the present invention, by using a combination of two specific types of polysiloxane compounds, it is possible to provide an electrophotographic photoreceptor that exhibits excellent stability even after repeated use without losing high sensitivity.
[Brief description of the drawings]
FIG. 1 is a cross-sectional explanatory view of a single-layer photoconductor.
FIG. 2 is an explanatory cross-sectional view of a laminated photoreceptor.
FIG. 3 is a cross-sectional view of another laminated photoconductor.

Claims (6)

導電性支持体上に感光層を設けた電子写真感光体において、該電子写真感光体の最外層が下記一般式で表わされるメチルフェニルポリシロキサンと変性ポリシロキサンとの混合物を含有していることを特徴とする電子写真感光体。
Figure 0003658134
上記一般式中のR1〜R10はそれぞれ異なってもよく、メチル基、置換基を有してもよいフェニル基(但し少なくとも一つは置換基を有してもよいフェニル基である)を表す。m,nは0又は正の整数である(但し、m,nは同時に0ではない)。
In the electrophotographic photosensitive member in which a photosensitive layer is provided on a conductive support, the outermost layer of the electrophotographic photosensitive member contains a mixture of methylphenyl polysiloxane and modified polysiloxane represented by the following general formula. An electrophotographic photosensitive member.
Figure 0003658134
R 1 to R 10 in the above general formula may be different from each other, and may be a methyl group or a phenyl group which may have a substituent (however, at least one is a phenyl group which may have a substituent). Represent. m and n are 0 or a positive integer (however, m and n are not 0 at the same time).
変性ポリシロキサンがアミノ変性ポリシロキサン、エポキシ変性ポリシロキサン、カルボキシ変性ポリシロキサン、カルビノール変性ポリシロキサンから選ばれる請求項1記載の電子写真感光体。The electrophotographic photoreceptor according to claim 1, wherein the modified polysiloxane is selected from amino-modified polysiloxane, epoxy-modified polysiloxane, carboxy-modified polysiloxane, and carbinol-modified polysiloxane. 変性ポリシロキサンがメルカプト変性ポリシロキサン、フェノール変性ポリシロキサン、ポリエーテル変性ポリシロキサンから選ばれる請求項1記載の電子写真感光体。The electrophotographic photoreceptor according to claim 1, wherein the modified polysiloxane is selected from mercapto-modified polysiloxane, phenol-modified polysiloxane, and polyether-modified polysiloxane. 変性ポリシロキサンが脂肪酸エステル変性ポリシロキサン、アルコキシ変性ポリシロキサン、フッ素変性ポリシロキサンから選ばれる請求項1記載の電子写真感光体。The electrophotographic photoreceptor according to claim 1, wherein the modified polysiloxane is selected from fatty acid ester-modified polysiloxane, alkoxy-modified polysiloxane, and fluorine-modified polysiloxane. 変性ポリシロキサンが異種官能基変性ポリシロキサンである請求項1記載の電子写真感光体。2. The electrophotographic photosensitive member according to claim 1, wherein the modified polysiloxane is a different functional group-modified polysiloxane. 最外層の結着樹脂が下記一般式で表される構造単位を主繰返し単位として有するポリカーボネートであることを特徴とする請求項1〜5に記載の電子写真感光体。
Figure 0003658134
式中、Zは置換基を有してもよい炭素環又は複素環を形成するのに必要な非金属原子群を表し、R1〜R8は水素原子、ハロゲン原子、又は各々置換基を有してもよい脂肪族基若しくは炭素環基を表す。
6. The electrophotographic photosensitive member according to claim 1, wherein the outermost binder resin is a polycarbonate having a structural unit represented by the following general formula as a main repeating unit.
Figure 0003658134
In the formula, Z represents a nonmetallic atom group necessary for forming an optionally substituted carbocyclic or heterocyclic ring, and R 1 to R 8 each have a hydrogen atom, a halogen atom, or each having a substituent. Represents an aliphatic group or a carbocyclic group.
JP08284197A 1997-04-01 1997-04-01 Electrophotographic photoreceptor Expired - Fee Related JP3658134B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08284197A JP3658134B2 (en) 1997-04-01 1997-04-01 Electrophotographic photoreceptor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08284197A JP3658134B2 (en) 1997-04-01 1997-04-01 Electrophotographic photoreceptor

Publications (2)

Publication Number Publication Date
JPH10282694A JPH10282694A (en) 1998-10-23
JP3658134B2 true JP3658134B2 (en) 2005-06-08

Family

ID=13785625

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08284197A Expired - Fee Related JP3658134B2 (en) 1997-04-01 1997-04-01 Electrophotographic photoreceptor

Country Status (1)

Country Link
JP (1) JP3658134B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002333730A (en) * 2001-05-11 2002-11-22 Mitsubishi Chemicals Corp Electrophotographic photoreceptor
JP4840064B2 (en) * 2006-10-06 2011-12-21 富士ゼロックス株式会社 Electrophotographic photosensitive member, image forming apparatus, and process cartridge
JP5411611B2 (en) * 2009-07-23 2014-02-12 信越化学工業株式会社 Electrophotographic photoreceptor

Also Published As

Publication number Publication date
JPH10282694A (en) 1998-10-23

Similar Documents

Publication Publication Date Title
JP3708323B2 (en) Electrophotographic photoreceptor
JP3604255B2 (en) Electrophotographic photoreceptor
JP3658136B2 (en) Electrophotographic photoreceptor
JP3658134B2 (en) Electrophotographic photoreceptor
JP2002169318A (en) Electrophotographic photoreceptor, process cartridge, electrophotographic device and electrophotographic system
JP3709049B2 (en) Electrophotographic photoreceptor
JP3708677B2 (en) Electrophotographic photoreceptor
JP3708672B2 (en) Electrophotographic photoreceptor
JP3708673B2 (en) Electrophotographic photoreceptor
JP3658132B2 (en) Electrophotographic photoreceptor
JPH05165244A (en) Electrophotographic sensitive body
JP3715068B2 (en) Electrophotographic photoreceptor
JP3709048B2 (en) Electrophotographic photoreceptor
JP3681500B2 (en) Electrophotographic photoreceptor
JP3705895B2 (en) Electrophotographic photoreceptor
JP3705890B2 (en) Electrophotographic photoreceptor
JP3749595B2 (en) Electrophotographic photoreceptor
JP4003894B2 (en) Electrophotographic photoreceptor
JP3708278B2 (en) Electrophotographic photoreceptor
JP4514759B2 (en) Electrophotographic photoreceptor
JP4164779B2 (en) Electrophotographic photoreceptor
JPH11218945A (en) Electrophotographic photoreceptor and image forming method
JPH04321053A (en) Electrophotographic sensitive body
JPH10207095A (en) Electrophotogaphic photoreceptor
JPH05323641A (en) Electrophotogtaphic sensitive body

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040528

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050311

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090318

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100318

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110318

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120318

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130318

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140318

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees