JPH02232352A - Formation of combined thermal-sprayed film - Google Patents

Formation of combined thermal-sprayed film

Info

Publication number
JPH02232352A
JPH02232352A JP5279489A JP5279489A JPH02232352A JP H02232352 A JPH02232352 A JP H02232352A JP 5279489 A JP5279489 A JP 5279489A JP 5279489 A JP5279489 A JP 5279489A JP H02232352 A JPH02232352 A JP H02232352A
Authority
JP
Japan
Prior art keywords
pores
sprayed coating
resin
coating
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5279489A
Other languages
Japanese (ja)
Inventor
Yoshio Harada
良夫 原田
Noriyuki Mifune
三船 法行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tocalo Co Ltd
Original Assignee
Tocalo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tocalo Co Ltd filed Critical Tocalo Co Ltd
Priority to JP5279489A priority Critical patent/JPH02232352A/en
Publication of JPH02232352A publication Critical patent/JPH02232352A/en
Pending legal-status Critical Current

Links

Landscapes

  • Coating By Spraying Or Casting (AREA)

Abstract

PURPOSE:To obtain the combined thermal-sprayed film which is improved in corrosion resistance, insulating characteristic, etc., by packing a synthetic resin by an electrochemical technique into the pores of the film formed by thermal spraying on a material to be treated and curing the resin. CONSTITUTION:The film constituted of metals, ceramics and cermet material is formed by thermal spraying on a material to be treated. The material with the thermally sprayed film is immersed in an electrolyte contg. a water soluble resin, such as acrylic resin or polyester resin or a high-polymer material in the form of emulsion. The above-mentioned electrolyte is impregnated into the pores of about 0.1 to 1mum size in the thermally sprayed film and in succession, the material is subjected to an energization treatment with the thermally sprayed film as an electrode. The above-mentioned resin or high-polymer material are insolubilized in the pores of the thermally sprayed film in this way and further, the thermally sprayed film is calcined by heating. As a result, the combined thermally sprayed film which is packed with the cured resin or high-polymer material in the pores and exhibits the characteristics intrinsic to the thermally sprayed film is obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、溶射皮膜の気孔を水溶性樹脂もしくは高分子
物質にて充填した複合溶射皮膜の形成方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for forming a composite thermal spray coating in which the pores of the thermal spray coating are filled with a water-soluble resin or a polymeric substance.

この複合溶射皮膜は、耐食性や耐摩耗性が要求される電
気抵抗体などの溶射皮膜を施した製品全般に有利に適合
するものである。
This composite thermal spray coating is advantageously suitable for all products coated with a thermal spray coating, such as electrical resistors, which require corrosion resistance and wear resistance.

〔従来の技術〕[Conventional technology]

一般に溶射法は、燃焼ガスやプラズマジエ7}などの高
温環境中に粉末材料を投入し、これを溶融または軟化状
態にして被処理体に吹付け、皮膜を形成するものである
。このため、粉末材料として各種の金属,合金をはじめ
、炭化物,酸化物,窒化物,硼化物などのセラミックス
類を使用することが可能であり、表面改質技術として重
要な地{立を占めている. しかし大気中で形成された溶射皮膜は、溶射中に空気中
の酸素によって部分酸化された微粒子の集合体であるた
め、粒子同士が融合することな《、また被処理体とも冶
金結合せず単なる機械的結合力に頼っている状態にある
.したがって、皮膜には常に数%〜袷数%の気孔が点在
し、皮膜の密着力が比較的低い欠点がある.さらに気孔
が多いと、酸化物セラミックスの溶射皮膜の場合は断熱
効果が向上するものの、湿潤環境下では貫通気孔から浸
入した水分によって被処理体が腐食され、皮膜寿命を著
しく短くする.そして密着力が低いと、前記腐食の発生
時はもとより、皮膜に機械的,熱的衝撃が負荷された場
合、容易に剥離するため、溶射皮膜に対する信頼性を低
下させる原因となっている。
In general, the thermal spraying method involves introducing a powder material into a high-temperature environment such as combustion gas or plasma spray, and then melting or softening the material and spraying it onto the object to be treated to form a film. For this reason, it is possible to use various metals, alloys, and ceramics such as carbides, oxides, nitrides, and borides as powder materials, and it occupies an important position as a surface modification technology. There is. However, since thermal sprayed coatings formed in the atmosphere are aggregates of fine particles that have been partially oxidized by oxygen in the air during thermal spraying, the particles do not fuse with each other, and they do not form a metallurgical bond with the object to be treated. It is in a state where it relies on mechanical bonding force. Therefore, the film is always dotted with pores of several percent to several percent, and the film has a disadvantage of relatively low adhesion. Furthermore, if there are many pores, the heat-insulating effect of the sprayed coating of oxide ceramics will be improved, but in a humid environment, the object to be treated will be corroded by moisture that has entered through the pores, significantly shortening the life of the coating. If the adhesion is low, it will easily peel off not only when corrosion occurs, but also when mechanical or thermal shock is applied to the coating, which causes a decrease in the reliability of the thermal spray coating.

この対策として、溶射皮膜面に油脂,塗料などを大気中
または真空中で塗布して気孔を封入する方法、溶射皮膜
そのものを加熱したり圧力を負荷して気孔を消滅させよ
うとする方法等が試みられているが、何れも十分その効
果を挙げていないのが実情である。特に、セラミックス
や、セラミックスと金属の混合物であるサーメフト材料
を溶射した皮膜では、溶射後に熱的処理を施しても気孔
を消滅させることはできず、大きな問題となっている. すなわち、耐食,断熱,耐熱,耐摩耗および耐電気絶縁
などの渚性質に優れたセラミックスやサーメット等の溶
射材料を使用して成膜しても、水分,酸,アルカリをは
じめSo!, MCIおよびNO.などの腐食性ガス環
境で使用すると、皮膜の気孔を通してこれらの腐食成分
が内部へ浸入し、母材(被処理体)を腐食する。この結
果、溶射皮膜はその根底から損傷を受けることになり、
皮膜は剥離し、溶射皮膜としての機能を十分発揮するこ
とができない. そこで塗料や高分子材料を皮膜面上に塗布する方法が採
用されているが、従来の方法では皮膜の気孔入口を塞ぐ
だけにとどまり、腐食成分の浸入速度を多少緩慢にする
ことはできても浸入を阻止するには至らず、塗布操作を
真空中で行ったとしても完全な対策とはなり得ない。
As a countermeasure to this problem, there are methods to seal the pores by applying oil, paint, etc. to the surface of the thermal sprayed coating in the air or in a vacuum, and methods to eliminate the pores by heating or applying pressure to the thermal sprayed coating itself. Although many attempts have been made, the reality is that none of them have been sufficiently effective. In particular, pores cannot be eliminated in coatings sprayed with ceramics or thermeft material, which is a mixture of ceramics and metals, even if thermally treated after spraying, which is a major problem. In other words, even if a film is formed using a thermal spray material such as ceramics or cermet, which has excellent properties such as corrosion resistance, heat insulation, heat resistance, abrasion resistance, and electrical insulation resistance, it is free from water, acids, alkalis, and other substances. , MCI and NO. When used in a corrosive gas environment such as, these corrosive components penetrate into the interior through the pores of the film and corrode the base material (object to be treated). As a result, the sprayed coating will be damaged from its fundamentals.
The coating will peel off and will not be able to fully perform its function as a thermal spray coating. Therefore, methods of applying paints or polymeric materials onto the coating surface have been adopted, but conventional methods only block the pore entrances of the coating, and although they can somewhat slow down the infiltration rate of corrosive components, Even if the coating operation is performed in a vacuum, it cannot be a complete countermeasure because it does not prevent the infiltration.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明の目的は、前述の多孔質な溶射皮膜の特性を積極
的に利用し、電気化学的手法によって、合成樹脂を微細
な気孔中に充填させ、その後充填した樹脂を硬化させて
溶射皮膜の耐食性や耐絶縁性等を向上させ、溶射皮膜本
来の特゜性を発揮させようとすることにある. 〔課題を解決するための手段〕 本発明者らは、溶射皮膜中の気孔、さらには割れ(セラ
ミックス溶射皮膜ではセラミックス粒子の融着凝固時に
よく発生する現象)の大きさが1μ1〜lB程度である
ことに着目し、気孔等へ充填剤を含む電解液を用いて電
気エネルギーによって充填剤を積極的に気孔や割れ目(
以下気孔と総称する)内へ移動させ得ることを知見した
The purpose of the present invention is to proactively utilize the above-mentioned characteristics of the porous thermal spray coating, fill the fine pores with synthetic resin using an electrochemical method, and then harden the filled resin to form the thermal spray coating. The purpose is to improve corrosion resistance, insulation resistance, etc., and to bring out the original characteristics of thermal spray coatings. [Means for Solving the Problems] The present inventors have discovered that the size of pores and even cracks in a thermal sprayed coating (a phenomenon that often occurs when ceramic particles are fused and solidified in a ceramic thermal sprayed coating) is approximately 1μ1 to 1B. Focusing on this, we use an electrolytic solution containing a filler to fill the pores, cracks, etc. using electrical energy.
The inventors have discovered that it is possible for the cells to move into the pores (hereinafter collectively referred to as stomata).

すなわちこの発明は、被処理体に溶射によって皮膜を形
成し、次いでこの溶射皮膜付の被処理体を水溶性樹脂も
しくはエマルジョン形態の高分子物質を含む電解液中に
浸漬し溶射皮膜の気孔内に電解液を含浸させた後、引続
き溶射皮膜を電極として通電処理を施し、水溶性樹脂も
しくはエマルジョン形態の高分子物質を溶射皮膜の気孔
内で不溶性化し、その後溶射皮膜を加熱焼成することに
よって、気孔を硬化した樹脂や高分子物質によって充填
することを特徴とする複合溶射皮膜の形成方法である。
That is, in this invention, a coating is formed on an object to be treated by thermal spraying, and then the object to be treated with the sprayed coating is immersed in an electrolytic solution containing a water-soluble resin or a polymer substance in the form of an emulsion, so that the coating is deposited into the pores of the thermal sprayed coating. After impregnating the electrolytic solution, the thermal sprayed coating is subsequently subjected to an electrical current treatment using it as an electrode to make the water-soluble resin or emulsion-form polymer substance insoluble within the pores of the thermal sprayed coating, and then the thermal sprayed coating is heated and baked to close the pores. This is a method for forming a composite thermal sprayed coating, which is characterized by filling with a hardened resin or polymeric substance.

また溶射皮膜は、金属,セラミックスおよびサーメット
材料から構成されていることおよび水溶性樹脂もしくは
エマルジョン形態の高分子物質は、水に溶解するか、も
しくはエマルジョン状態となって電解液中に懸濁・分散
して正もし《は負に帯電し、電解によって溶射皮膜電極
の気孔内へ移動して不溶性化し、その後の加熱・焼成に
よって強く固化するもの、例えば、エボキシ樹脂,アク
リル樹脂,ポリエステル樹脂.ポリブタジェン重合体お
よびマレイン化油系高分子からなること、がそれぞれ有
利に適合する。
Additionally, thermal spray coatings are composed of metals, ceramics, and cermet materials, and water-soluble resins or emulsion-form polymer substances are either dissolved in water or suspended/dispersed in an emulsion state in an electrolyte. If it is positive, 《 is negatively charged, moves into the pores of the sprayed coating electrode by electrolysis, becomes insoluble, and is strongly solidified by subsequent heating and baking, such as epoxy resin, acrylic resin, polyester resin. Polybutadiene polymers and maleated oil-based polymers are each advantageously suited.

さて、気孔への充填剤として親木基を付加した水溶性樹
脂を用い、これを溶質とした電解液中で溶射皮膜を電極
として通電すると、イオン化した水溶性樹脂は水ととも
に気孔や割れ目内へ移動する。その結果、後述するよう
な電極反応によって樹脂が不溶性化し、最終的には気孔
や割れ目を溶射皮膜の内部から充填して行くこととなる
。次いで電解処理後の溶射皮膜を150〜190℃に加
熱すると、親水基を放出して水に対して完全に不溶な樹
脂に変化するとともに硬質化する。
Now, if we use a water-soluble resin to which a parent wood group has been added as a filler for the pores and apply electricity to the sprayed coating as an electrode in an electrolytic solution containing this as a solute, the ionized water-soluble resin will flow into the pores and cracks together with water. Moving. As a result, the resin becomes insoluble due to the electrode reaction described below, and eventually fills the pores and cracks from the inside of the sprayed coating. Next, when the electrolytically treated thermally sprayed coating is heated to 150 to 190°C, hydrophilic groups are released and the resin becomes completely insoluble in water, and at the same time becomes hard.

以上の処理によって、電解液(水分)が浸入できる溶射
皮膜の気孔はすべて樹脂によって充填され、しかも電解
反応によるため、皮膜の内部から充填される。したがっ
て、 (1)腐食成分の浸入が回避され、気孔に起因した腐食
による損傷の発生を完全に抑制することができる。
By the above treatment, all the pores of the sprayed coating into which the electrolytic solution (moisture) can penetrate are filled with resin, and because of the electrolytic reaction, the resin is filled from the inside of the coating. Therefore, (1) Infiltration of corrosive components is avoided, and damage caused by corrosion caused by pores can be completely suppressed.

(2)  すなわち、得られる溶射皮膜は溶射材料に関
係なく耐食性が確保されるので、皮膜は溶射材料本来の
性能を発揮することになり、溶射材料は使用目的に合致
したものを選択すればよい。
(2) In other words, the resulting thermal sprayed coating will have corrosion resistance regardless of the sprayed material, so the coating will exhibit the inherent performance of the thermal sprayed material, and the thermal sprayed material should be selected to match the intended use. .

また、 (3)皮膜気孔中に充填された樹脂によって、皮膜その
ものの破壊強度が向上する。
Furthermore, (3) the resin filled in the pores of the film improves the breaking strength of the film itself.

(4)気孔内に充填された樹脂の一部は母材(被処理体
)とも接触してこれと固着するため、溶射皮膜全体の母
材への密着性も向上する。
(4) A portion of the resin filled in the pores also comes into contact with the base material (object to be treated) and adheres thereto, thus improving the adhesion of the entire thermal spray coating to the base material.

(5)水溶性樹脂は容易に着色できるので、本発明に従
う処理を施した溶射皮膜は従来の単調かつ沈静な色合い
に対し、極めて多様な色彩を示すので、装飾的価値が向
上する。
(5) Since water-soluble resins can be easily colored, thermal sprayed coatings treated according to the present invention exhibit extremely diverse colors, as opposed to conventional monotonous and subdued hues, thus improving their decorative value.

(6)以上の諸効果により、溶射皮膜としての寿命が長
くなり、工業的ならびに商業的価値が一段と向上する。
(6) Due to the above-mentioned effects, the life of the thermal spray coating is extended, and its industrial and commercial value is further improved.

なお、本発明の一般的な処理工程は次のとおりである。Note that the general processing steps of the present invention are as follows.

■ 溶射皮膜形成(必要に応じ表面研削・研磨)■水洗 ■ 電解槽中で電解処理 (例えば 25〜30℃ 30秒〜5分)■水洗 ■ 乾 燥  (例えば 50〜60℃の熱風)■ 焼
付・乾燥(例えば150〜190℃の電気炉中でlO〜
30分) 〔作 用〕 本発明で使用する水溶性樹脂には、アニオン型(例えば
ポリエステル系,アクリル系,ポリブタジエン系など)
とカチオン型(例えばエボキシ系,アクリル系,ポリブ
タジエン系など)があり、それぞれ次のような方法によ
って製造される。
■ Thermal spray coating formation (surface grinding/polishing as necessary) ■ Washing with water ■ Electrolytic treatment in an electrolytic bath (e.g. 25-30℃ for 30 seconds to 5 minutes) ■ Washing with water ■ Drying (e.g. hot air at 50-60℃) ■ Baking・Drying (for example, in an electric furnace at 150 to 190°C)
30 minutes) [Function] The water-soluble resin used in the present invention includes anionic resins (for example, polyester-based, acrylic-based, polybutadiene-based, etc.).
and cationic types (e.g., epoxy, acrylic, polybutadiene, etc.), and each type is manufactured by the following methods.

すなわち、電解時にアニオン系として使用する樹脂には
、カルボキシル基(COOH)を導入し、これをアミン
(一NHZ)また苛性カリ(KOH)で中和して塩の形
とし、さらに水酸基(−oH)を導入することによって
水溶性またはエマルジョン的形態で分散する性能を付与
する。
In other words, a carboxyl group (COOH) is introduced into the resin used as an anionic resin during electrolysis, and this is neutralized with an amine (-NHZ) or caustic potash (KOH) to form a salt, and then a hydroxyl group (-oH) is introduced into the resin. The ability to be dispersed in water-soluble or emulsion-like form is imparted by introducing

一方、カチオン系樹脂にはアミノ基(−NH.)を導入
し、これを有機酸(蓚酸)で中和して塩とし、水溶性と
する。
On the other hand, an amino group (-NH.) is introduced into the cationic resin, which is neutralized with an organic acid (oxalic acid) to form a salt, thereby making it water-soluble.

前者の水溶液のpHを8.0〜9.5は弱アルカリ性、
後者の樹脂のpHは6.0〜6.7はほぼ中性溶液とし
て使用することが好ましい。
If the pH of the former aqueous solution is 8.0 to 9.5, it is weakly alkaline;
The pH of the latter resin is preferably 6.0 to 6.7 and is preferably used as a substantially neutral solution.

また、アニオン系樹脂を使用して電解する場合には、溶
射皮膜付の被処理体をアノードとし、一方同様にカチオ
ン系樹脂の場合は被処理体をカソードとして電流を通す
Further, when electrolyzing using an anionic resin, the object to be treated with the sprayed coating is used as an anode, while in the case of a cationic resin, the object to be treated is used as a cathode to conduct current.

次に、電解による溶射皮膜中の気孔シール機構について
詳しく述べる。
Next, the pore sealing mechanism in the electrolytically sprayed coating will be described in detail.

電解液中の水溶性樹脂は、前述したようにアニオン型は
負に帯電し、カチオン型は正に帯電する。
As described above, the anion type water-soluble resin in the electrolyte is negatively charged, and the cation type is positively charged.

前者について述べれば、電解液中に多孔質な溶射皮膜を
アノードとして浸漬して電圧を印加すると、負の電荷を
もった樹脂はアノードの溶射皮膜へ移動する。ここで次
のような反応がおこる。
Regarding the former, when a porous sprayed coating is immersed in an electrolytic solution as an anode and a voltage is applied, the negatively charged resin moves to the sprayed coating on the anode. Here, the following reaction occurs.

■ アノードでは水の電解によるPHの低下が起こり、
これに伴って水溶性樹脂が不溶性化することによってア
ノードに付着する。
■ At the anode, the pH decreases due to water electrolysis,
Along with this, the water-soluble resin becomes insoluble and adheres to the anode.

■ 電気エネルギーの作用によって水溶性樹脂の重合が
起こり、すなわち樹脂の高分子化によって不溶性化し、
アノードに付着する。
■ Polymerization of water-soluble resin occurs due to the action of electrical energy, which means that the resin becomes insoluble due to polymerization.
Adheres to the anode.

■ 上記の■および■の反応によって電解初期に付着し
た樹脂膜から、電気浸透,電気透析作用によって膜内の
水分が系外へ排出され、ゲル化反応が促進されてアノー
ドに対する樹脂の付着力が向上し、樹脂は強固なものと
なる。
■ Water inside the membrane is discharged from the resin membrane that adheres at the initial stage of electrolysis due to the reactions of ■ and ■ above through electroosmosis and electrodialysis, promoting gelation reaction and reducing the adhesion of the resin to the anode. and the resin becomes stronger.

以上の反応が、溶射皮膜の気孔内で優先的に起こり、そ
の後皮膜全体に及ぶこととなり、気孔は完全に樹脂によ
って充填された状態となる.il解後これを引き上げ、
水分を切った後熱風で乾燥、さらに電気炉中で付着した
樹脂を焼成することによって、溶射皮膜中の気孔は水に
不溶性の樹脂によって完全にシールされた状態となる。
The above reaction occurs preferentially within the pores of the sprayed coating, and then extends throughout the coating, resulting in the pores being completely filled with resin. After solving il, pull this up,
After removing the moisture, the coating is dried with hot air and the adhering resin is fired in an electric furnace, so that the pores in the sprayed coating are completely sealed with the water-insoluble resin.

第1図は、上記した本発明の方法に従って、水溶性樹脂
を用いて多孔質な溶射皮膜の気孔を電気化学的に充填し
た状態を模式で示したものである。
FIG. 1 schematically shows the state in which the pores of a porous thermal spray coating are electrochemically filled with a water-soluble resin according to the method of the present invention described above.

なお図中1は母材(被処理体)、2は溶射粒子、3は溶
射粒子の割れおよび4は樹脂である。
In the figure, 1 is a base material (object to be treated), 2 is a sprayed particle, 3 is a crack in the sprayed particle, and 4 is a resin.

溶射皮膜は多孔質であるため、水溶性樹脂を含む電解液
中に浸漬するだけで、電解液が皮膜の気孔内に浸入する
。しかし、浸漬後引上げるだけでは気孔内に浸入した電
解液とともに水溶性樹脂が気孔外へ流出するため、気孔
のシールは達成できない。
Since thermal sprayed coatings are porous, simply by immersing them in an electrolytic solution containing a water-soluble resin, the electrolytic solution will penetrate into the pores of the coating. However, the water-soluble resin flows out of the pores together with the electrolytic solution that has entered the pores, and sealing of the pores cannot be achieved by simply pulling up the pores after dipping.

前述のように多孔質溶射皮膜を電極として通電すること
によって、気孔内で水溶性樹脂の不溶性化が起こり、こ
れが時間の経過に伴って気孔外へ達し、最終的には溶射
皮膜の全面積に至ったときに始めて、気孔内が完全に樹
脂によって充填される. これに対し、従来の合成樹脂や塗料の塗布法では、その
粘度や表面張力の関係から、微細な気孔内へは浸入でき
ないため、気孔の入口を単に閉塞するだけとなる。第2
図は、この状態を示したもので、使用環境の温度変化に
よって気孔内の空気が膨張、収縮するにともなって塗布
膜が破れ、また水分の浸入が容易となるため、本発明の
含浸方法を経た皮膜に比べるとその寿命ははるかに短い
.なお図中5は気孔である。
As mentioned above, by applying electricity to the porous sprayed coating as an electrode, the water-soluble resin becomes insoluble within the pores, which reaches the outside of the pores over time, and eventually covers the entire area of the sprayed coating. Only then will the pores be completely filled with resin. On the other hand, in conventional methods of applying synthetic resins and paints, they cannot penetrate into minute pores due to their viscosity and surface tension, so they simply block the entrances of the pores. Second
The figure shows this state. As the air in the pores expands and contracts due to temperature changes in the usage environment, the coating film is torn and moisture can easily enter. Therefore, the impregnation method of the present invention is Its lifespan is much shorter than that of an aged film. Note that 5 in the figure is a pore.

〔実施例〕〔Example〕

叉旌血土 下記に示す条件にて形成した溶射皮膜の気孔に、本発明
の方法に従ってエボキシ系水溶性樹脂を含浸させた後、
180℃×30分間の焼付けを施して得られた溶射皮膜
について、腐食試験,衝撃試験および皮膜の電気抵抗値
の変化を測定して、皮膜の性能を評価した。その評価結
果を第1表に示す。
After impregnating the pores of the sprayed coating formed under the conditions shown below with an epoxy-based water-soluble resin according to the method of the present invention,
The performance of the sprayed coating obtained by baking at 180° C. for 30 minutes was evaluated by conducting a corrosion test, an impact test, and measuring changes in the electrical resistance of the coating. The evaluation results are shown in Table 1.

記 l.供試母材:構造用鋼板(JIS 5541)幅50
×長100×厚5n 2.供試溶射材料一下層(アンダーコート)材料Ni 
−AI  (20wt%) 上層(トップコート)材料 AIzQi, AI201−TiOZ(2Wt%)Cr
zO,,, Zr02IZrS+043.溶射皮膜厚:
 下層 150μm 上層 150μm 但し、下N溶射,上層溶射のみ のものも供試した。
Note l. Test base material: Structural steel plate (JIS 5541) width 50
x Length 100 x Thickness 5n 2. Test thermal spray material: Lower layer (undercoat) material Ni
-AI (20wt%) Upper layer (top coat) material AIzQi, AI201-TiOZ (2wt%) Cr
zO,,, Zr02IZrS+043. Thermal spray coating thickness:
Lower layer: 150 μm Upper layer: 150 μm However, samples with only lower N thermal spraying and upper layer thermal spraying were also used.

4.溶射法  :大気中プラズマ溶射法5.溶射後の皮
膜の処理法: エボキシ系樹脂を用い、前述の本発明の方法と工程に従
って処理を行い皮膜の気孔を充填した。この場合の処理
条件は次の通りである。
4. Thermal spraying method: Atmospheric plasma spraying method 5. Processing method for the film after thermal spraying: The pores of the film were filled by processing using an epoxy resin according to the method and process of the present invention described above. The processing conditions in this case are as follows.

電解液組成: 水溶性化したエボキシ樹脂 30 g 水                900 yetエ
チルアルコール     100 ml電解条件; 200■の直流電源を用い、溶射皮膜を陰極、ステンレ
ス鋼を陽極とし、27℃の電解液中で5分間通電した。
Electrolyte composition: Water-soluble epoxy resin 30 g Water 900 yet Ethyl alcohol 100 ml Electrolytic conditions: Using a 200μ DC power supply, the thermal spray coating was used as a cathode and stainless steel was used as an anode, and the electrolyte was heated for 5 minutes at 27°C. The power was turned on.

なおこの際、溶射皮膜の表面にも樹脂コーティングされ
たが、その厚さは平均10μmであった。
At this time, the surface of the sprayed coating was also coated with a resin, and its thickness was 10 μm on average.

6,比較例の処理法: 同様の溶射皮膜上にエボキシ系樹脂層を、大気中で塗布
法によって、その厚さが10μmとなるように被成した
6. Processing method of comparative example: An epoxy resin layer was formed on the same thermal sprayed coating by a coating method in the air to a thickness of 10 μm.

7.皮膜の評価法 (11  塩水噴霧試験 JIS Z 2371(1976)の塩水噴霧試験方法
に準拠し、連続500時間の試験を行い、24時間放置
後、溶射皮膜表面のにおける鉄錆(母材の鋼板から発生
する錆)の発生面積によって評価した。
7. Coating evaluation method (11 Salt spray test) Based on the salt spray test method of JIS Z 2371 (1976), the test was conducted for 500 hours continuously, and after standing for 24 hours, iron rust on the surface of the sprayed coating (from the base steel plate Evaluation was made based on the area where rust occurred.

(2)乾湿交番試験 120゜Cの電気炉内で1時間加熱の後放冷して80℃
に達した後、20℃の水道水中に1時間浸漬する操作を
1サイクルとし、30サイクル後の溶射皮膜表面に発生
する錆の面積により評価した。
(2) Wet-dry alternation test: Heated in an electric furnace at 120°C for 1 hour, then allowed to cool to 80°C.
After reaching this temperature, one cycle consisted of immersing the sample in tap water at 20°C for 1 hour, and evaluation was made based on the area of rust generated on the surface of the sprayed coating after 30 cycles.

(3)衝撃試験 塩水噴霧試験後の試験片を用い、重さ500g ’の鋼
球を1mの高さから溶射皮膜面へ落下させ、鋼球落下回
数毎に皮膜の割れ発生状況を観察することによって評価
した。
(3) Impact test Using the test piece after the salt spray test, drop a steel ball weighing 500 g' from a height of 1 m onto the sprayed coating surface, and observe the occurrence of cracks in the coating each time the steel ball is dropped. Evaluated by.

(4)電気抵抗試験 乾湿交番試験後の試験片を用い、20℃の室温中に24
時間放置後、皮膜の電気抵抗値を測定し、乾湿交番試験
前の抵抗値と比較して評価した。
(4) Electrical resistance test Using the test piece after the dry-wet alternating test,
After standing for a period of time, the electrical resistance value of the film was measured and evaluated by comparing it with the resistance value before the dry-wet alternation test.

第1表 (1)  塩水噴霧、乾湿交番試験は、試験片に発生す
る鉄錆の面積によって、次のように評価した。
Table 1 (1) The salt spray and wet/dry alternating tests were evaluated as follows based on the area of iron rust generated on the test piece.

○:鯖発生なし  Δ:鯖発生1〜5%  ×:請発生
5%以上(2)衝撃試験は、皮膜に割れが発生する衝撃
回数により評価した。
○: No mackerel occurrence Δ: mackerel occurrence 1 to 5% ×: mackerel occurrence 5% or more (2) The impact test was evaluated by the number of impacts at which cracks occurred in the film.

O;衝撃回数10回でも割れの発生なし△:5〜9回の
衝撃で割れ発生 ×:衝撃回数5回未満で割れ発生 (3)電気抵抗試験は、乾湿交番試験前と試験後の皮膜
抵抗値の差により評価した。
O: No cracking occurred even after 10 impacts △: Cracking occurred after 5 to 9 impacts ×: Cracking occurred after less than 5 impacts Evaluation was based on the difference in values.

O:変化値100倍以内 △:変化値1000倍以内 ×:変化値1000倍以上 第1表から、本発明に従って得られた皮膜は気孔内に硬
化したエボキシ樹脂が充填されているため、塩水はもと
より水道水の内部への浸入をも完全に防ぎ、母材の腐食
発注が完全に抑制されたことがわかる。この傾向は、金
属のみ(Nll)、AIzOtのみ(患2)の試験片に
も認められ、また鋼球の落下衝撃にも耐え、強い密着力
を示すとともに、皮膜の電気抵抗値の変化が少ないなど
優れた性能が確認できた。
O: Change value 100 times or less △: Change value 1000 times or less It can be seen that it completely prevents tap water from entering the interior and completely suppresses corrosion of the base metal. This tendency was observed in the metal-only (Nll) and AIzOt-only (affected 2) specimens, which also withstood the impact of falling steel balls, showed strong adhesion, and showed little change in the electrical resistance value of the film. Excellent performance was confirmed.

これに対し、大気中でエボキシ樹脂を塗布した比較例は
、塩水,水道水の浸入によって鉄錆の発生が顕著である
。また錆の発生によって溶射皮膜の母材との密着力が低
下し、鋼球の落下によって容易に皮膜に割れが発生した
。電気抵抗試験においても、皮膜砥抗値の低下が大きく
、すべての試験片において試験前の抵抗値のiooo倍
以上にまで低下した。この原因は、気孔内に浸入した水
分(塩分)の影響によるものと考えられる。
On the other hand, in the comparative example in which the epoxy resin was applied in the atmosphere, iron rust was noticeable due to the infiltration of salt water and tap water. In addition, the adhesion of the sprayed coating to the base metal decreased due to the occurrence of rust, and the coating easily cracked when the steel ball fell. In the electrical resistance test as well, the film abrasion resistance value decreased significantly, and in all test pieces, the resistance value decreased to more than iooo times the resistance value before the test. This is thought to be due to the influence of moisture (salt) that has entered the pores.

去施拠I 溶射材料として非酸化物系セラミソクスとこれに金属を
混合したサーメットを用いて成膜した溶射皮膜について
調査した。本発明の処理方法、性能評価方法および比較
例などは下記のとおりであ机 1.供試母材: 実施例1と同じ 2.供試溶射材料:下層(アンダーコート)材料Ni 
−AI (20) 上N(トップコート)材料 WC−Co(12), WC−Cr(20)−Ni(7
),Cr,C., Cr,C,−Cr(20)−Ni(
7),WTiC−Ni (10) (なお()内の数字は何れもwt%を示す)3.溶射皮
膜厚: 下層 150μm : 上層 150μm 但し、下層溶射なしの上層溶射の みのものも供試した。
Application I Thermal sprayed coatings formed using non-oxide ceramic ceramics and cermet, which is a mixture of non-oxide ceramics and metals, were investigated. The processing method, performance evaluation method, comparative example, etc. of the present invention are as follows. Test base material: Same as Example 1 2. Test thermal spray material: Lower layer (undercoat) material Ni
-AI (20) Upper N (top coat) material WC-Co (12), WC-Cr (20) -Ni (7
), Cr, C. , Cr,C,-Cr(20)-Ni(
7), WTiC-Ni (10) (All numbers in parentheses indicate wt%)3. Thermal spray coating thickness: Lower layer: 150 μm: Upper layer: 150 μm However, a coating with only the upper layer sprayed without the lower layer sprayed was also tested.

4.溶射法  :大気中プラズマ溶射法5,溶射後の皮
膜の処理法および比較例の処理法:実施例1と同じ 6.評価法  :実施例1と同じ 第2表は上記の試験結果を示したものである。
4. Thermal spraying method: Atmospheric plasma spraying method 5, treatment method of coating after thermal spraying and treatment method of comparative example: same as Example 16. Evaluation method: Table 2, which is the same as Example 1, shows the above test results.

この結果においても明らかなように、本発明の処理を施
した溶射皮膜は卓越した性能を有することがわかる。
As is clear from these results, it can be seen that the thermal sprayed coating treated according to the present invention has excellent performance.

第2表 ?屓ピ1走 比処理体(母材)をアルミニウムとし、これを電解液中
でエマルジョンとなるマレイン化油系の高分子を含む電
解液にて、本発明の処理を施して複合溶射皮膜を形成し
、得られた皮膜について調査した。なお、溶射材料およ
び評価試験方法は下記のとおりであり、本実施例におい
ても比較例として大気溶射皮膜を用い、その表面にマレ
イン化油系の高分子材料を厚さ10μ履となるように塗
布したものを用いた。各評価結果を第3表に示す。
Table 2? The first running ratio treated body (base material) is aluminum, and this is subjected to the treatment of the present invention in an electrolytic solution containing a maleated oil-based polymer that becomes an emulsion in the electrolytic solution to form a composite thermal sprayed coating. The obtained film was then investigated. The thermal spraying materials and evaluation test methods are as follows. In this example as well, an atmospheric thermal spray coating was used as a comparative example, and a maleated oil-based polymeric material was applied to the surface to a thickness of 10 μm. I used the one I made. The results of each evaluation are shown in Table 3.

記 1,供試母材: アルミニウム板(JIS AIIOO
)幅50×長100 X厚5l■ 2.供試溶射材料:下層(アンダーコ一ト)材料Nt 
−Cr (20wt%) 上層(トツブコート)材料 Aha3, AI■0.3−TiO■(5ilIL%)
,CrzOs,  ZrOz, ZrSi043.溶射
皮膜厚: 下層 i50μm 二 上層 150μm 表中のO,xの評価基準は、第1表に準ずる。
Note 1. Test base material: Aluminum plate (JIS AIIOO
) Width 50 x Length 100 x Thickness 5l ■ 2. Test thermal spray material: Lower layer (undercoat) material Nt
-Cr (20wt%) Upper layer (Totsubu coat) material Aha3, AI■0.3-TiO■ (5ilIL%)
, CrzOs, ZrOz, ZrSi043. Thermal spray coating thickness: Lower layer i50 μm 2 Upper layer 150 μm The evaluation criteria for O and x in the table are in accordance with Table 1.

但し、下層溶射,上層溶射のみの ものも供試した。However, only lower layer thermal spraying and upper layer thermal spraying I also tried some things.

4.溶射法  二大気中プラズマ溶射法5.皮膜の処理
法:ポリウレタン系水溶性樹脂を電解法により処理 電解液組成: 水溶性ポリエステル 40 g水   
         900  艷エチルアルコール  
100 nti 電解条件:  200V直流電源を用い、溶射皮膜を陽
極、ステンレス鋼を陽極とし、 27゜Cの電解液中で5分間通電した。
4. Thermal spray method Two-atmospheric plasma spray method 5. Film treatment method: Polyurethane water-soluble resin is treated by electrolytic method Electrolyte composition: Water-soluble polyester 40 g water
900 Ethyl alcohol
100 nti Electrolysis conditions: Using a 200V DC power supply, the sprayed coating was used as an anode, stainless steel was used as an anode, and electricity was applied for 5 minutes in an electrolytic solution at 27°C.

6.皮膜の評価法 (1)塩水噴霧試験:実施例1と同じ (2)衝撃試験  :実施例1と同じ (3)電気抵抗試験: 塩水噴霧試験後の試験片を水道水中に5時間浸漬して塩
分を溶出し、その後引上げ50℃で3時間乾燥したもの
の電気抵抗値を測定し、試験前(塩水噴霧試験)の値と
比較した。
6. Film evaluation method (1) Salt spray test: Same as Example 1 (2) Impact test: Same as Example 1 (3) Electrical resistance test: The test piece after the salt spray test was immersed in tap water for 5 hours. After salt was eluted, the sample was pulled up and dried at 50°C for 3 hours, and its electrical resistance was measured and compared with the value before the test (salt spray test).

(4)砂摩耗試験: 塩水試験後の試験片を用い、角度30”に保持した試験
片上へ、高さ1mの高さから粒度100〜300μmの
アランダムlkgを直径25■■の鋼管を通して落下さ
せた。この操作を20回繰返して、アランダム落下部の
皮膜の状態を観察した。
(4) Sand abrasion test: Using the test piece after the salt water test, 1 kg of alundum with a grain size of 100 to 300 μm was dropped from a height of 1 m through a steel pipe with a diameter of 25 mm onto the test piece held at an angle of 30”. This operation was repeated 20 times and the state of the film on the Alundum falling part was observed.

第3表 fl+  塩水噴霧試験は、試験片に発生する白錆およ
び皮膜のふくれ現象の面積によって、次のように評価し
た. ○:請発生なし  Δ:錆及びふくれの発生1〜5%×
:請及びふくれの発生5%以上 (2)衝撃試験は、皮膜に割れが発生する衝撃回数によ
り評価した。
Table 3 fl+ The salt spray test was evaluated as follows based on the area of white rust and film blistering that occurred on the test piece. ○: No complaints Δ: Rust and blistering 1-5%×
: Occurrence of cracking and blistering of 5% or more (2) The impact test was evaluated by the number of impacts at which cracks occurred in the film.

○:衝撃回数10回でも割れの発生なし△:5〜9回の
衝撃で割れ発 ×:衝撃回数5回未満で割れ発生 (3)電気抵抗試験は、試験前後の皮膜抵抗値の差によ
り評価した。
○: No cracking occurs even after 10 impacts △: Cracking occurs after 5 to 9 impacts ×: Cracking occurs after less than 5 impacts (3) Electrical resistance test is evaluated by the difference in film resistance before and after the test. did.

O:変化値1/100以内  △:変化値1/1000
以内(4)砂摩耗試験は、試験片の試験前後の重量差か
ら評価した。
O: Change value within 1/100 △: Change value 1/1000
(4) The sand abrasion test was evaluated from the difference in weight of the test piece before and after the test.

○:変化値1/1000以内  △:変化値1/100
0〜1/100の範囲第3表からわかるように、この実
施例では被処理体にアルミニウムを使用したため、実施
例12のような赤い鉄錆の発生は認められないが、アル
ミニウムの白錆が発生する。また、白錆の発生時に水素
ガスの発生を伴うため、比較例のマレイン化油高分子膜
にいわゆるふくれ現象が認められ、この部分を通して塩
水が内部へ浸入しやすくなって溶射皮膜全体を破壊する
プロセスが認められる。
○: Change value within 1/1000 △: Change value 1/100
Range of 0 to 1/100 As can be seen from Table 3, since aluminum was used as the object to be treated in this example, the occurrence of red iron rust as in Example 12 was not observed, but white rust of aluminum was observed. Occur. In addition, since hydrogen gas is generated when white rust occurs, a so-called blistering phenomenon was observed in the maleated oil polymer film of the comparative example, and salt water easily penetrates into the interior through this part, destroying the entire thermal sprayed film. The process is recognized.

したがって、このような皮膜の破壊現象が起こると、衝
窄,電気抵抗,砂摩耗などの各試験成債が低下し、溶射
皮膜本来の性能が発揮できない。
Therefore, when such a coating breakdown phenomenon occurs, various test properties such as collision, electrical resistance, and sand abrasion deteriorate, and the thermal spray coating cannot exhibit its original performance.

これに対し、本発明に従う処理を施した皮膜は、皮膜の
気孔を完全に充填しているため、塩水の浸入を防ぎ、塩
水の腐食作用に起因する皮膜の性能低下を未然に防止す
る効果が認められた。
On the other hand, the coating treated according to the present invention completely fills the pores of the coating, so it is effective in preventing the infiltration of salt water and preventing the performance deterioration of the coating due to the corrosive action of salt water. Admitted.

去立桝互 前述の実施例1〜3と異なる水溶性樹脂と高分子材料を
用いて本発明に従う処理を行い、その効果を調査した。
A treatment according to the present invention was carried out using a water-soluble resin and a polymer material different from those in Examples 1 to 3 described above, and the effects thereof were investigated.

比較例としては従来同様、同質の合成樹脂を塗布法によ
って溶射皮膜の表面を被覆したものを供試した。試験項
目および試験結果の評価法は下記のとおりである。
As a comparative example, the surface of the thermally sprayed coating was coated with a synthetic resin of the same quality by a coating method, as in the conventional case. The test items and evaluation method of test results are as follows.

記 1.供試母材:構造用鋼板(5541)幅50X長10
0 X厚5l 2.供試溶射材料:下層(アンダーコート)材料Ni 
−Cr (20wt%) 上層(トノブコート)材料 AIzOi. ZrS+l:L 3.溶射皮膜厚: 下層 1.50Atm上層 150
μm 4.溶射法  二大気中プラズマ溶射法5.溶質に用い
た合成樹脂: アクリル樹脂、ポリブタジエン 重合体、ポリエステル樹脂 6.皮膜の処理:実施例1と同じく皮膜表面における合
成樹脂,重合体の厚さは 10μI11) 7.比較例:  上記合成樹脂および重合体を塗布法に
よりlOμffl厚に塗布 8,試験項目と評価基準:実施例1と同し第4表はこの
試験結果を示したものである。この結果から明らかなよ
うに、本発明に従う処理を行ったアクリル樹脂.ポリブ
タジェン重合体およびポリエステル樹脂含浸の溶射皮膜
は、各種の試験において優れた性能を発揮した。これに
対し、比較例は鉄錆の発生が激しく、また衝撃に対して
も弱く、皮膜の電気砥抗が甚だしく低下するなど溶射皮
膜としての性能が極端に低下していることが認められた
Note 1. Test base material: Structural steel plate (5541) width 50 x length 10
0 x thickness 5l 2. Test thermal spray material: Lower layer (undercoat) material Ni
-Cr (20wt%) Upper layer (tonob coat) material AIzOi. ZrS+l:L 3. Thermal spray coating thickness: Lower layer 1.50 Atm Upper layer 150
μm 4. Thermal spray method Two-atmospheric plasma spray method 5. Synthetic resin used as solute: acrylic resin, polybutadiene polymer, polyester resin6. Film treatment: Same as Example 1, the thickness of the synthetic resin and polymer on the film surface was 10μI11) 7. Comparative Example: The above synthetic resin and polymer were coated to a thickness of 10 μffl by a coating method.Test items and evaluation criteria: Same as Example 1. Table 4 shows the test results. As is clear from these results, the acrylic resin treated according to the present invention. Thermal sprayed coatings impregnated with polybutadiene polymer and polyester resin showed excellent performance in various tests. On the other hand, the Comparative Example exhibited severe iron rust, was weak against impact, and was found to have extremely poor performance as a thermal spray coating, such as a significant decrease in the electrical abrasion resistance of the coating.

第  4 表 表中の○,×の評価基準は、第1表に同じ以上の実施例
1〜4の結果から明らかなように、本発明の皮膜は溶射
材料の種類(例えば金属1セラミックス,サーメット)
に関係なく、気孔を有する皮膜であればすべてに適用で
き、また被処理体の母材材質にも影響を受けない利点が
ある。また、本発明に使用する水溶性樹脂およびエマル
ジョンの形で電解液中に分散する高分子(重合体)で、
直流の電圧を付加することによって電極へ移動するもの
であれば、本実施例の合成樹脂,高分子に限定されない
ことも明らかで、その適用範囲は極めて大きいものと確
信できる。
As is clear from the results of Examples 1 to 4 shown in Table 1, the evaluation criteria for ○ and )
It has the advantage that it can be applied to any film that has pores, regardless of the size of the film, and is not affected by the material of the base material of the object to be treated. In addition, the water-soluble resin used in the present invention and the polymer dispersed in the electrolyte in the form of an emulsion,
It is clear that the material is not limited to the synthetic resins and polymers of this example as long as it moves to the electrode by applying a direct current voltage, and we are confident that the range of application is extremely wide.

〔発明の効果〕〔Effect of the invention〕

この発明によれば、溶射皮膜の気孔中に水溶性樹脂また
は高分子物質を電気化学的に充填した後、これを焼成固
化することによって、■皮膜の気孔から浸入する水分,
腐食成分に起因する母材の腐食損傷を防ぐことができ、
■気孔内に充填された樹脂の一部は母材とも強力に付着
して溶射皮膜の密着力を向上し、■さらに樹脂の一部は
溶射粒子の相互結合力を補強するなどの機能を発揮し得
る。
According to this invention, by electrochemically filling the pores of a thermally sprayed coating with a water-soluble resin or a polymeric substance, and then firing and solidifying this, 1.
It can prevent corrosion damage to the base material caused by corrosive components,
■A portion of the resin filled in the pores strongly adheres to the base material, improving the adhesion of the sprayed coating.■Additionally, a portion of the resin also exerts functions such as reinforcing the mutual bonding force of the sprayed particles. It is possible.

したがって、溶射材料そのものが保有する化学的(耐食
性),機械的(耐衝撃,耐摩耗など)および電気的(絶
縁性)特性を損なうことのない皮膜化を提供でき、かつ
その寿命を著しく延長することができる。
Therefore, it is possible to provide a coating that does not impair the chemical (corrosion resistance), mechanical (impact resistance, wear resistance, etc.) and electrical (insulation) properties of the thermal sprayed material itself, and significantly extends its life. be able to.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明に従う処理を経た溶射皮膜の断面図、 第2図は、従来の塗布法を行った溶射皮膜の断面図であ
る。 1・・・被処理体(母材)、2・・・溶射粒子、3・・
・溶射粒子の割れ、4・・・樹脂、5・・・気孔。
FIG. 1 is a sectional view of a thermal sprayed coating treated according to the present invention, and FIG. 2 is a sectional view of a thermal sprayed coating subjected to a conventional coating method. 1... Object to be treated (base material), 2... Thermal spray particles, 3...
- Cracks in thermal spray particles, 4... resin, 5... pores.

Claims (1)

【特許請求の範囲】 1、被処理体に溶射によって皮膜を形成し、次いでこの
溶射皮膜付の被処理体を水溶性樹脂もしくはエマルジョ
ン形態の高分子物質を含む電解液中に浸漬し溶射皮膜の
気孔内に電解液を含浸させた後、引続き溶射皮膜を電極
として通電処理を施し、水溶性樹脂もしくはエマルジョ
ン形態の高分子物質を溶射皮膜の気孔内で不溶性化し、
その後溶射皮膜を加熱焼成することによって、気孔を硬
化した樹脂や高分子物質によって充填することを特徴と
する複合溶射皮膜の形成方法。 2、溶射皮膜は、金属、セラミックスおよびサーメット
材料から構成されている請求項1に記載の複合溶射皮膜
の形成方法。 3、水溶性樹脂もしくはエマルジョン形態の高分子物質
は、水に溶解するか、もしくはエマルジョン状態となっ
て電解液中に懸濁・分散して正もしくは負に帯電し、電
解によって溶射皮膜電極の気孔内へ移動して不溶性化し
、その後の加熱・焼成によって強く固化するものである
請求項1に記載の複合溶射皮膜の形成方法。 4、水溶性樹脂もしくはエマルジョン形態の高分子物質
は、エポキシ樹脂、アクリル樹脂、ポリエステル樹脂、
ポリプタジエン重合体およびマレイン化油系高分子の少
なくとも1種からなる請求項3に記載の複合溶射皮膜の
形成方法。
[Claims] 1. A coating is formed on the object to be treated by thermal spraying, and then the object to be treated with the sprayed coating is immersed in an electrolytic solution containing a water-soluble resin or a polymeric substance in the form of an emulsion to remove the thermal sprayed coating. After impregnating the electrolyte into the pores, the thermal sprayed coating is subsequently subjected to an electrical current treatment using the electrode as an electrode to make the water-soluble resin or emulsion-form polymeric substance insoluble within the pores of the thermal sprayed coating.
A method for forming a composite thermal sprayed coating, characterized in that the thermal sprayed coating is then heated and baked to fill the pores with a hardened resin or polymeric substance. 2. The method for forming a composite thermal sprayed coating according to claim 1, wherein the thermal sprayed coating is composed of metal, ceramic, and cermet materials. 3. A water-soluble resin or emulsion-form polymer substance is dissolved in water or becomes an emulsion and suspended/dispersed in an electrolytic solution to be positively or negatively charged, and the pores of the sprayed coating electrode are charged by electrolysis. 2. The method for forming a composite thermal sprayed coating according to claim 1, wherein the composite thermal sprayed coating is made insoluble by moving into the interior, and is strongly solidified by subsequent heating and baking. 4. Water-soluble resins or emulsion-form polymer substances include epoxy resins, acrylic resins, polyester resins,
4. The method for forming a composite thermal spray coating according to claim 3, comprising at least one of a polyptadiene polymer and a maleated oil-based polymer.
JP5279489A 1989-03-07 1989-03-07 Formation of combined thermal-sprayed film Pending JPH02232352A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5279489A JPH02232352A (en) 1989-03-07 1989-03-07 Formation of combined thermal-sprayed film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5279489A JPH02232352A (en) 1989-03-07 1989-03-07 Formation of combined thermal-sprayed film

Publications (1)

Publication Number Publication Date
JPH02232352A true JPH02232352A (en) 1990-09-14

Family

ID=12924744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5279489A Pending JPH02232352A (en) 1989-03-07 1989-03-07 Formation of combined thermal-sprayed film

Country Status (1)

Country Link
JP (1) JPH02232352A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06212391A (en) * 1993-01-18 1994-08-02 Nippon Alum Co Ltd Method for sealing thermal-sprayed coating
JPH06212392A (en) * 1993-01-18 1994-08-02 Nippon Alum Co Ltd Method for sealing thermal-sprayed coating
JP2006316793A (en) * 1995-09-20 2006-11-24 Hitachi Ltd Pump and its manufacturing method
JP2011021220A (en) * 2009-07-14 2011-02-03 Toyama Univ Method of generating film on metal surface
JP2012067347A (en) * 2010-09-22 2012-04-05 Yamada Kinzoku Boshoku Kk Method for posttreatment of thermally sprayed film, and posttreatment agent
US20140170323A1 (en) * 2012-12-17 2014-06-19 Fujigiken Co., Ltd. Method of carrying out post-treatment to sprayed coating and agent used for the same
JP2014167172A (en) * 2014-05-01 2014-09-11 Fuji Giken:Kk Method of post-treating sprayed coating composed of aluminum-magnesium alloy and post-treatment agent

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5554596A (en) * 1978-10-14 1980-04-21 Sankyo Alum Ind Co Ltd Ac electrodeposition coating method of aluminum
JPS56142885A (en) * 1980-04-08 1981-11-07 Nippon Steel Corp Steel material with plural plating layers
JPS63266097A (en) * 1987-04-24 1988-11-02 Kansai Paint Co Ltd Coating method by electrodeposition
JPS63317695A (en) * 1987-06-18 1988-12-26 Kansai Paint Co Ltd Coating method
JPS6417895A (en) * 1987-07-10 1989-01-20 Kansai Paint Co Ltd Coating method by electrodeposition

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5554596A (en) * 1978-10-14 1980-04-21 Sankyo Alum Ind Co Ltd Ac electrodeposition coating method of aluminum
JPS56142885A (en) * 1980-04-08 1981-11-07 Nippon Steel Corp Steel material with plural plating layers
JPS63266097A (en) * 1987-04-24 1988-11-02 Kansai Paint Co Ltd Coating method by electrodeposition
JPS63317695A (en) * 1987-06-18 1988-12-26 Kansai Paint Co Ltd Coating method
JPS6417895A (en) * 1987-07-10 1989-01-20 Kansai Paint Co Ltd Coating method by electrodeposition

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06212391A (en) * 1993-01-18 1994-08-02 Nippon Alum Co Ltd Method for sealing thermal-sprayed coating
JPH06212392A (en) * 1993-01-18 1994-08-02 Nippon Alum Co Ltd Method for sealing thermal-sprayed coating
JP2006316793A (en) * 1995-09-20 2006-11-24 Hitachi Ltd Pump and its manufacturing method
JP2011021220A (en) * 2009-07-14 2011-02-03 Toyama Univ Method of generating film on metal surface
JP2012067347A (en) * 2010-09-22 2012-04-05 Yamada Kinzoku Boshoku Kk Method for posttreatment of thermally sprayed film, and posttreatment agent
US20140170323A1 (en) * 2012-12-17 2014-06-19 Fujigiken Co., Ltd. Method of carrying out post-treatment to sprayed coating and agent used for the same
US9238860B2 (en) 2012-12-17 2016-01-19 Fujigiken Co., Ltd. Method of carrying out post-treatment to sprayed coating and agent used for the same
JP2014167172A (en) * 2014-05-01 2014-09-11 Fuji Giken:Kk Method of post-treating sprayed coating composed of aluminum-magnesium alloy and post-treatment agent

Similar Documents

Publication Publication Date Title
Knuuttila et al. Sealing of thermal spray coatings by impregnation
US6966133B2 (en) Iron and sole plate for an iron
US4225398A (en) Method of improving the corrosion resistance of an anodically oxidized surface film on aluminum articles
CN105408431B (en) A kind of coating composition for metal surface with enhanced corrosion resistance energy
JP6461136B2 (en) Method for coating a metal surface of a substrate and articles coated by this method
US4185000A (en) Method of producing polyvinylidene fluoride coatings
CN106661369B (en) method for coating a metal surface of a substrate and article coated according to said method
JPH02232352A (en) Formation of combined thermal-sprayed film
RU2106916C1 (en) Methods of treatment of article, method of treatment of article surface and article having protective material
EP2233534A1 (en) Method for producing a protective coating for a component of a turbomachine, the component itself and the respective machine
US4537837A (en) Corrosion resistant metal composite with metallic undercoat and chromium topcoat
US20050159087A1 (en) Method for the creation of highly lustrous surfaceson aluminum workpieces
RU2569259C1 (en) Method for obtaining protective polymer-containing coatings on metals and alloys
Reddy et al. Improved Corrosion Protection of Aluminum Alloys by System Approach Interface Engineering: Part 1—Alclad 2024-T3
CN101914743A (en) Magnesium alloy surface treatment method
CN108716016A (en) A kind of surface treatment method of auto parts machinery
CN108300996B (en) A kind of metal surface coloring process substituting die casting aluminium anodes
KR940011008B1 (en) Organic composite coated steel strip having improved corrosion resistance and spot weldability
CN107058992B (en) A kind of coating and application method preparing composite coating for cast aluminium alloy gold surface
KR100780280B1 (en) Method for treating the surface of Metals
US4479891A (en) Process for manufacturing an anti-corrosion paint and the paint resulting from that process
JP3095668B2 (en) Anticorrosion structure and method of manufacturing the same
RU2704344C1 (en) Method of forming composite coatings on magnesium
Fedrizzi et al. Corrosion protection of sintered metal parts by coating deposition. Part I: Microstructural characterization
US3783035A (en) Coating ferrous metals