JP2012067347A - Method for posttreatment of thermally sprayed film, and posttreatment agent - Google Patents

Method for posttreatment of thermally sprayed film, and posttreatment agent Download PDF

Info

Publication number
JP2012067347A
JP2012067347A JP2010212494A JP2010212494A JP2012067347A JP 2012067347 A JP2012067347 A JP 2012067347A JP 2010212494 A JP2010212494 A JP 2010212494A JP 2010212494 A JP2010212494 A JP 2010212494A JP 2012067347 A JP2012067347 A JP 2012067347A
Authority
JP
Japan
Prior art keywords
thermal spray
spray coating
aqueous
aluminum
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010212494A
Other languages
Japanese (ja)
Other versions
JP5554194B2 (en
Inventor
Kenichi Yamada
謙一 山田
Keisuke Fujikawa
圭介 藤川
正信 ▲杉▼本
Masanobu Sugimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YAMADA KINZOKU BOSHOKU KK
Fuji Engineering Co Ltd
West Nippon Expressway Co Ltd
Original Assignee
YAMADA KINZOKU BOSHOKU KK
Fuji Engineering Co Ltd
West Nippon Expressway Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YAMADA KINZOKU BOSHOKU KK, Fuji Engineering Co Ltd, West Nippon Expressway Co Ltd filed Critical YAMADA KINZOKU BOSHOKU KK
Priority to JP2010212494A priority Critical patent/JP5554194B2/en
Publication of JP2012067347A publication Critical patent/JP2012067347A/en
Application granted granted Critical
Publication of JP5554194B2 publication Critical patent/JP5554194B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method for posttreatment of a thermally sprayed film, capable of preventing the occurrence of spot rust and early wastage of an aluminum-based thermally sprayed film without enhancing film-thickness control or the time control until sealing treatment, or without conducting excess sealing or coating treatment, and to provide a posttreatment agent.SOLUTION: After the formation of an aluminum-based thermally sprayed film, an aqueous electrolyte solution or a water-based coating material including the aqueous electrolyte solution is applied to the thermally sprayed film to impregnate. The applied electrolyte solution or that contained in the water-based coating material is impregnated through voids 4 of the thermally sprayed film 2, reaches an interface between a steel substrate 1 and the film 2 to form a battery. Since a film 3 comprising magnesium hydroxide as a main component is formed on the surface of the substrate 1 in the case where the electrolyte solution is an aqueous solution of a magnesium compound, a value of electric current flowing between the substrate 1 and the film 2 lessens. Therefore, since oxygen hardly reaches the substrate 1, the occurrences of spot rust and early wastage are prevented.

Description

本発明は、橋梁、港湾設備、プラント、配管、広告塔、表示灯、車両や船舶などの屋外において使用される鉄を主成分とする炭素鋼、ニッケルクロム鋼やステンレス鋼などの鉄鋼基材表面の防錆を目的として施工されるアルミニウム系溶射皮膜の後処理方法および後処理剤に関する。   The present invention is a steel substrate surface such as bridges, harbor facilities, plants, pipes, advertising towers, indicator lights, carbon steel, iron-based carbon steel, nickel chrome steel and stainless steel used outdoors such as vehicles and ships. TECHNICAL FIELD The present invention relates to a post-treatment method and a post-treatment agent for an aluminum-based thermal spray coating applied for the purpose of preventing rust.

橋梁、港湾設備、プラント、配管、広告塔、表示灯、車両や船舶などの屋外において使用される鉄鋼の防食を目的とした防食溶射法は、日本工業規格(JIS H8300)に記されているように、亜鉛、アルミニウムおよびそれらの合金の溶射が規格化されている。その中で、特に純亜鉛、純アルミニウム、亜鉛アルミニウム合金およびアルミニウム・マグネシウム合金の溶射材料が推奨されている。   The anticorrosion spraying method for the anticorrosion of steel used outdoors such as bridges, harbor facilities, plants, piping, advertising towers, indicator lights, vehicles and ships seems to be described in Japanese Industrial Standard (JIS H8300). In addition, the spraying of zinc, aluminum and their alloys is standardized. Among them, spray materials of pure zinc, pure aluminum, zinc aluminum alloy and aluminum / magnesium alloy are particularly recommended.

中でも純アルミニウムは、酸に強く、耐熱性もあるため、屋外環境ばかりでなく、プラント、タンクや化学機器などの防食にも広い範囲で採用されている。しかし、往々にして溶射後の初期段階、特に溶射後一週間以内に溶射皮膜に点状赤錆(点錆)が生じることがある。   Among them, pure aluminum is resistant to acids and has heat resistance, so that it is widely used not only for outdoor environments but also for corrosion protection of plants, tanks and chemical equipment. However, spotted red rust (spot rust) sometimes occurs in the sprayed coating within the initial stage after spraying, particularly within one week after spraying.

ここで点錆とは、水や水蒸気が鉄鋼基材と溶射皮膜の界面に達し、電池を形成した際、鉄鋼基材より鉄イオンが生じ、溶射皮膜の貫通気孔を通って溶射皮膜の表面に達し、空気によって酸化して、溶射皮膜の表面に斑点状の赤錆が生じる現象である。通常、NiCr鋼やステンレス鋼等のように、鉄より溶射皮膜の自然電位が高い時に生じる現象であるが、本来、自然電位が鉄より低いはずのアルミニウム系合金溶射皮膜でも、様々な環境条件により極性の逆転現象が起こり、点錆が生じることがある。一旦、点錆が生じると皮膜の消耗が加速され、寿命が短くなる傾向がある。また、点錆が生じた皮膜の上から溶射を重ねても密着性や耐食性が低下するため、補修には溶射皮膜をすべて剥がして再溶射するしかなく、工期面でも費用面でも大きなロスになる。   Here, spot rust means that when water or water vapor reaches the interface between the steel substrate and the thermal spray coating and forms a battery, iron ions are generated from the steel substrate and pass through the through-holes of the thermal spray coating to the surface of the thermal spray coating. It is a phenomenon in which spotted red rust is generated on the surface of the sprayed coating by being oxidized by air. Normally, this phenomenon occurs when the thermal potential of the thermal spray coating is higher than that of iron, such as NiCr steel and stainless steel. Polarity reversal occurs and spot rusting may occur. Once spot rust is generated, the wear of the film is accelerated and the life tends to be shortened. In addition, even if thermal spraying is repeated on the film where spot rust has occurred, the adhesion and corrosion resistance will deteriorate, so the only way to repair is to remove the thermal spraying film and re-spray it, resulting in a significant loss in terms of construction and costs. .

これは、皮膜厚さが薄かったり、溶射から封孔処理までに時間が掛かったり、封孔処理が不十分であった場合、特に屋外環境ではよくある現象である。そのため、純アルミニウム溶射皮膜では、皮膜厚さや封孔処理までの時間管理を強化したり、封孔処理や塗装を必要以上に行ったりすることが欠かせない。   This is a common phenomenon particularly in outdoor environments when the film thickness is thin, it takes time from spraying to sealing treatment, or the sealing treatment is insufficient. Therefore, in the pure aluminum sprayed coating, it is indispensable to reinforce the coating thickness and the time management until the sealing treatment, or to perform the sealing treatment and coating more than necessary.

一方、もう一つの推奨材料であるアルミニウム・マグネシウム(95:5)合金は、特に北海油田の石油掘削プラントの防食に多用され、優秀な防食性能を示しているという歴史があり、国際規格(ISO)2063でも推奨されている。しかし、実際に屋外環境で使用すると環境条件や溶射法により早く消耗したり、溶射後の初期段階、特に溶射後一週間以内に点錆が発生したりと安定性に欠く傾向がある。そのため、純アルミニウム溶射と同様に、皮膜厚さや封孔処理までの時間管理を強化したり、封孔処理や塗装を必要以上に行ったりすることで対処している。   On the other hand, aluminum-magnesium (95: 5) alloy, which is another recommended material, has been used extensively for anticorrosion of oil drilling plants in the North Sea oil field, and has a history of showing excellent anticorrosion performance. ) 2063 is also recommended. However, when it is actually used in an outdoor environment, it tends to lack stability due to early consumption due to environmental conditions and thermal spraying, or spot rusting within an initial stage after thermal spraying, particularly within one week after thermal spraying. For this reason, as with pure aluminum spraying, measures are taken by strengthening the film thickness and time management until sealing treatment, or performing sealing treatment and coating more than necessary.

なお、従来の封孔処理として、例えば特許文献1〜5に記載の方法が知られている。特許文献1に記載の方法は、高温腐食環境における耐食性向上のため、融点が高い硫酸塩を主成分とする高粘度または高分子材料を塗布し、溶射皮膜の空隙部を埋めるものである。特許文献2に記載の方法は、熱水処理や水蒸気処理に対する高温耐食性を有する皮膜材料によりアルミニウム素地上に溶射皮膜を形成し、熱水処理または水蒸気処理により溶射皮膜の空隙部から露出するアルミニウム素地を反応させてアルミニウム水和物を生成させて封孔するものである。   In addition, as a conventional sealing process, the method of patent documents 1-5 is known, for example. In the method described in Patent Document 1, in order to improve the corrosion resistance in a high-temperature corrosive environment, a high-viscosity or high-molecular material mainly composed of a sulfate having a high melting point is applied to fill the voids of the sprayed coating. In the method described in Patent Document 2, a thermal spray coating is formed on an aluminum substrate with a coating material having high-temperature corrosion resistance against hot water treatment or steam treatment, and the aluminum substrate exposed from the voids of the thermal spray coating by hot water treatment or steam treatment. To form aluminum hydrate and seal it.

特許文献3に記載の方法は、亜鉛、アルミニウム、亜鉛/アルミニウム擬合金の溶射皮膜に対してケイ酸アルカリ水溶液を塗布し、不溶性の錯塩を作るものである。特許文献4に記載の方法は、溶射皮膜の表面に、水性ポリマーエマルジョンにコロイダルシリカと反応型シリコン撥水剤を混合してなる水系封孔処理剤からなる封孔皮膜を形成するものである。特許文献5に記載の方法は、高温環境における耐熱性および耐食性向上のため、溶射皮膜の表面に酢硝酸塩や酢酸塩を塗布し、熱処理により焼結させて金属酸化物を形成するものである。   In the method described in Patent Document 3, an alkali silicate aqueous solution is applied to a sprayed coating of zinc, aluminum, or a zinc / aluminum pseudoalloy to form an insoluble complex salt. In the method described in Patent Document 4, a sealing film made of an aqueous sealing agent obtained by mixing colloidal silica and a reactive silicon water repellent in an aqueous polymer emulsion is formed on the surface of a sprayed coating. In the method described in Patent Document 5, in order to improve heat resistance and corrosion resistance in a high temperature environment, vinegar nitrate or acetate is applied to the surface of the sprayed coating and sintered by heat treatment to form a metal oxide.

特開平11−302820号公報Japanese Patent Laid-Open No. 11-302820 再公表2005−35829号公報No. 2005-35829 特開2005−15835号公報JP-A-2005-15835 特開2007−291440号公報JP 2007-291440 A 特開2009−46765号公報JP 2009-46765 A

上記のようなアルミニウム系溶射皮膜の点錆や早期消耗への対処法には、次のような問題がある。溶射皮膜を厚くすることは単に資源の無駄遣いに留まらず、すなわち工期を長くし、溶射工事のコストをアップさせ、競争力を低下させる。一方、封孔・塗装を必要以上に行うことは、同じく資源の無駄であり、工事コストをアップするばかりでなく、塗装重量の半分を占めるVOC(揮発性有機溶剤)を大量に使うことになる。これは地球温暖化の原因物質と言われており、環境への悪影響が懸念される。   There are the following problems in the countermeasures against spot rust and premature wear of the aluminum-based sprayed coating as described above. Increasing the thickness of the thermal spray coating is not only a waste of resources, that is, lengthening the construction period, increasing the cost of thermal spraying work, and reducing the competitiveness. On the other hand, performing sealing and painting more than necessary is also a waste of resources, which not only increases construction costs, but also uses a large amount of VOC (volatile organic solvent), which accounts for half of the coating weight. . This is said to be a causative agent of global warming, and there are concerns about adverse environmental effects.

また、防食目的の溶射は、それぞれの環境において求められる寿命に応じて皮膜厚さが決められ、一般的に皮膜厚さが大きい程、その寿命が長くなる。日本工業規格(JIS H8300)において、亜鉛系材料の純亜鉛、および亜鉛・アルミニウム合金は、皮膜厚さが50μm以上とすることが推奨されているのに対し、アルミニウム系材料である純アルミニウム、およびアルミニウム・マグネシウム合金の推奨皮膜厚さは100μm以上である。これは、アルミニウム系材料は点錆が生じやすいのが理由と考えられる。この点錆を防ぐことができれば、必要寿命に応じた皮膜厚さを採用できるようになる。すなわち、期待寿命が少ない場合は、皮膜厚さを薄くして、施工コストを小さくすることができるようになる。   Further, the thermal spraying for anticorrosion purposes has a film thickness determined according to the life required in each environment. Generally, the larger the film thickness, the longer the life. In the Japanese Industrial Standard (JIS H8300), it is recommended that the zinc-based material pure zinc and zinc-aluminum alloy have a coating thickness of 50 μm or more, whereas the aluminum-based material pure aluminum, and The recommended film thickness of aluminum / magnesium alloy is 100 μm or more. This is considered to be because the aluminum-based material is likely to cause spot rust. If this point rust can be prevented, the film thickness corresponding to the required life can be adopted. That is, when the expected life is short, the coating thickness can be reduced to reduce the construction cost.

そこで、本発明においては、皮膜厚さや封孔処理までの時間管理を強化したり、過剰な封孔処理および塗装処理を行ったりすることなく、アルミニウム系溶射皮膜の点錆および早期消耗を防止することが可能な溶射皮膜の後処理方法および後処理剤を提供することを目的とする。   Therefore, in the present invention, it is possible to prevent spot rust and premature wear of the aluminum-based sprayed coating without strengthening the film thickness and time management until the sealing treatment, or performing excessive sealing treatment and coating treatment. It is an object of the present invention to provide a post-treatment method and a post-treatment agent capable of being sprayed.

本発明の溶射皮膜の後処理方法は、アルミニウム系材料を鉄鋼基材表面に溶射して溶射皮膜を形成した後、溶射皮膜に電解質水溶液、または、電解質水溶液を含む水性塗料を塗布し、含浸させることを特徴とする。また、本発明の溶射皮膜の後処理剤は、アルミニウム系材料を鉄鋼基材表面に溶射して溶射皮膜を形成した後、塗布し、含浸させる封孔処理剤であって、電解質水溶液、または、電解質水溶液を含む水性塗料からなることを特徴とする。   In the post-treatment method of the thermal spray coating of the present invention, an aluminum-based material is sprayed on the surface of a steel substrate to form a thermal spray coating, and then an aqueous electrolyte solution or an aqueous paint containing the aqueous electrolyte solution is applied to the thermal spray coating and impregnated. It is characterized by that. Further, the post-treatment agent of the thermal spray coating of the present invention is a sealing treatment agent that is applied and impregnated after a thermal spray coating is formed by spraying an aluminum-based material on the surface of a steel substrate, and an aqueous electrolyte solution, or It is characterized by comprising an aqueous paint containing an aqueous electrolyte solution.

鉄鋼基材の防食のためには、鉄鋼基材と溶射皮膜との間で一定以上の電流が流れる必要があるが、鉄鋼基材表面への酸素の供給量で防食に必要な電流が変動する。本発明の溶射皮膜の後処理方法および溶射皮膜の後処理剤では、塗布された電解質水溶液または水性塗料に含まれる電解質水溶液が、溶射皮膜の空隙部を通じて含浸し、鉄鋼基材と溶射皮膜の界面に到達し、電池を形成する。   In order to prevent corrosion of steel substrates, it is necessary for a current of a certain level or more to flow between the steel substrate and the thermal spray coating. However, the current necessary for corrosion protection varies depending on the amount of oxygen supplied to the surface of the steel substrate. . In the thermal spray coating post-treatment method and the thermal spray coating post-treatment agent of the present invention, the applied electrolyte aqueous solution or the aqueous electrolyte solution contained in the aqueous coating is impregnated through the voids of the thermal spray coating, and the interface between the steel substrate and the thermal spray coating. To form a battery.

ここで、電解質水溶液がマグネシウム化合物水溶液の場合には、このマグネシウム化合物水溶液中のマグネシウムイオンが鉄鋼基材表面に析出し、水酸化マグネシウムを主成分とする皮膜を形成する。これにより、鉄鋼基材と溶射皮膜との間で流れる電流値が小さくなり、酸素が鉄鋼基材に到達しにくくなるため、点錆の発生が防止され、早期消耗が防止される。なお、マグネシウム化合物水溶液としては、硫酸マグネシウム、硝酸マグネシウムや塩化マグネシウムなどの水溶液を用いることができる。   Here, when the electrolyte aqueous solution is a magnesium compound aqueous solution, magnesium ions in the magnesium compound aqueous solution are deposited on the surface of the steel substrate to form a film mainly composed of magnesium hydroxide. As a result, the value of current flowing between the steel substrate and the thermal spray coating becomes small, and oxygen hardly reaches the steel substrate, so that the occurrence of spot rust is prevented and early consumption is prevented. In addition, as a magnesium compound aqueous solution, aqueous solutions, such as magnesium sulfate, magnesium nitrate, and magnesium chloride, can be used.

また、電解質水溶液が塩化物水溶液の場合には、この塩化物水溶液中の塩化物イオンにより電池反応が活性化し、溶射皮膜のアルミニウムが不動態皮膜を作りにくくなる。これにより、溶射皮膜の電位を低く保つことができ、点錆の発生が防止され、早期消耗が防止される。なお、塩化物水溶液としては、塩化ナトリウム、塩化アンモニウムや塩化マグネシウムなどの水溶液を用いることができる。   When the electrolyte aqueous solution is a chloride aqueous solution, the battery reaction is activated by chloride ions in the chloride aqueous solution, and the aluminum in the thermal spray coating hardly forms a passive film. Thereby, the electric potential of a thermal spray coating can be kept low, generation | occurrence | production of spot rust is prevented, and early consumption is prevented. In addition, as a chloride aqueous solution, aqueous solutions, such as sodium chloride, ammonium chloride, and magnesium chloride, can be used.

特に、溶射皮膜がアルミニウム・マグネシウム合金である場合には、上記に加えて、電解質水溶液に含まれる塩化物イオン、硫酸イオンや硝酸イオン等によって、溶射皮膜からのマグネシウムイオンの溶出や鉄鋼基材への析出などの反応が活性化し、鉄鋼基材を覆うマグネシウム化合物の皮膜が厚くなるため、点錆の発生および早期消耗がさらに防止される。   In particular, when the sprayed coating is an aluminum / magnesium alloy, in addition to the above, elution of magnesium ions from the sprayed coating or to the steel substrate due to chloride ions, sulfate ions, nitrate ions, etc. contained in the electrolyte aqueous solution. Since the reaction such as precipitation is activated and the film of the magnesium compound covering the steel substrate becomes thick, the occurrence of spot rust and early consumption are further prevented.

さらにこの場合、溶射皮膜から溶出するマグネシウムイオンにマグネシウム化合物水溶液を含浸させると必然的にマグネシウムイオンの量が増えるため、析出する水酸化マグネシウムの量が増し、鉄鋼基材を覆うマグネシウム化合物の皮膜がさらに厚くなる。そのため、さらに点錆の発生および早期消耗が防止される。   Furthermore, in this case, since the amount of magnesium ions inevitably increases when the magnesium ions eluted from the thermal spray coating are impregnated with the magnesium compound aqueous solution, the amount of magnesium hydroxide precipitated increases, and the magnesium compound coating covering the steel substrate It gets thicker. Therefore, the occurrence of spot rust and early consumption are prevented.

また、本発明の溶射皮膜の後処理方法は、アルミニウム系材料を鉄鋼基材表面に溶射して溶射皮膜を形成した後、溶射皮膜に電解質水溶液を塗布し、含浸させ、乾燥後、水性塗料を塗布することを特徴とする。上述のように、アルミニウム系材料を鉄鋼基材表面に溶射して溶射皮膜を形成した後、溶射皮膜に電解質水溶液を塗布し、含浸させることで、点錆の発生が防止されるので、水性塗料を重防食目的で使用することが可能となる。   Further, the post-treatment method of the thermal spray coating of the present invention is the method of spraying an aluminum-based material onto the surface of a steel substrate to form a thermal spray coating, and then applying an aqueous electrolyte solution to the thermal spray coating, impregnating, drying, and then applying an aqueous paint. It is characterized by applying. As mentioned above, after spraying an aluminum-based material on the surface of a steel substrate to form a sprayed coating, an aqueous electrolyte solution is applied to the sprayed coating and impregnated to prevent the occurrence of spot rust. Can be used for heavy anticorrosion purposes.

(1)本発明によれば、塗布された電解質水溶液または水性塗料に含まれる電解質水溶液が、溶射皮膜の空隙部を通じて含浸し、鉄鋼基材と溶射皮膜の界面に到達し、電池を形成することにより、電解質水溶液がマグネシウム化合物水溶液の場合には、鉄鋼基材表面に水酸化マグネシウムを主成分とする皮膜が形成されるので、鉄鋼基材と溶射皮膜との間で流れる電流値が小さくなり、酸素が鉄鋼基材に到達しにくくなるため、点錆の発生が防止され、早期消耗が防止される。これにより、必要寿命に応じた溶射皮膜厚さを採用できるようになり、期待寿命が少ない場合は、溶射皮膜厚さを薄くして、施工コストを小さくすることが可能となる。また、水性塗料に電解質水溶液が含まれるものを使用することで、環境対策に優れる水性塗料を重防食目的で使用することが可能となる。 (1) According to the present invention, the applied electrolyte aqueous solution or the electrolyte aqueous solution contained in the aqueous paint is impregnated through the voids of the thermal spray coating, reaches the interface between the steel substrate and the thermal spray coating, and forms a battery. Thus, when the electrolyte aqueous solution is a magnesium compound aqueous solution, a film mainly composed of magnesium hydroxide is formed on the surface of the steel substrate, so that the current value flowing between the steel substrate and the sprayed coating is reduced, Oxygen is difficult to reach the steel substrate, so that the occurrence of spot rust is prevented and early consumption is prevented. Thereby, it becomes possible to employ a sprayed coating thickness according to the required life. When the expected life is short, it is possible to reduce the coating cost by reducing the thickness of the sprayed coating. In addition, by using an aqueous paint containing an aqueous electrolyte solution, it is possible to use an aqueous paint excellent in environmental measures for the purpose of heavy corrosion protection.

(2)また、電解質水溶液が塩化物水溶液の場合には、この塩化物水溶液中の塩化物イオンにより電池反応が活性化し、溶射皮膜のアルミニウムが不動態皮膜を作りにくくなるので、溶射皮膜の電位を低く保つことができ、点錆の発生が防止され、早期消耗が防止される。 (2) Also, when the aqueous electrolyte solution is a chloride aqueous solution, the cell reaction is activated by chloride ions in the chloride aqueous solution, and it becomes difficult for aluminum in the sprayed coating to form a passive coating. Can be kept low, the occurrence of spot rust is prevented, and premature wear is prevented.

(3)特に、溶射皮膜がアルミニウム・マグネシウム合金である場合には、上記に加えて、電解質水溶液に含まれる塩化物イオン、硫酸イオンや硝酸イオン等によって、溶射皮膜からのマグネシウムイオンの溶出や鉄鋼基材への析出などの反応が活性化し、鉄鋼基材を覆うマグネシウム化合物の皮膜が厚くなるため、点錆の発生および早期消耗がさらに防止される。さらにこの場合、溶射皮膜から溶出するマグネシウムイオンにマグネシウム化合物水溶液を含浸させると必然的にマグネシウムイオンの量が増えるため、析出する水酸化マグネシウムの量が増し、鉄鋼基材を覆うマグネシウム化合物の皮膜がさらに厚くなる。そのため、さらに点錆の発生および早期消耗が防止される。 (3) In particular, when the sprayed coating is an aluminum / magnesium alloy, in addition to the above, elution of magnesium ions from the sprayed coating or steel by the chloride ions, sulfate ions, nitrate ions, etc. contained in the electrolyte aqueous solution. Reactions such as precipitation on the base material are activated, and the magnesium compound film covering the steel base material becomes thick, so that the occurrence of spot rust and early consumption are further prevented. Furthermore, in this case, since the amount of magnesium ions inevitably increases when the magnesium ions eluted from the thermal spray coating are impregnated with the magnesium compound aqueous solution, the amount of magnesium hydroxide precipitated increases, and the magnesium compound coating covering the steel substrate It gets thicker. Therefore, the occurrence of spot rust and early consumption are prevented.

(4)アルミニウム系材料を鉄鋼基材表面に溶射して溶射皮膜を形成した後、溶射皮膜に電解質水溶液を塗布し、含浸させ、乾燥後、水性塗料を塗布することにより、環境対策に優れる水性塗料を重防食目的で使用することが可能となる。 (4) After spraying an aluminum-based material on the surface of a steel substrate to form a sprayed coating, an aqueous electrolyte solution is applied to the sprayed coating, impregnated, dried, and then applied with an aqueous paint to provide an excellent aqueous solution. The paint can be used for heavy corrosion prevention purposes.

本発明の第1実施形態における防錆処理のフロー図である。It is a flowchart of the antirust process in 1st Embodiment of this invention. 本発明の第1実施形態における防錆処理を施した鉄鋼基材表面の拡大断面図である。It is an expanded sectional view of the steel base material surface which gave the antirust process in 1st Embodiment of this invention. 本発明の第2実施形態における防錆処理のフロー図である。It is a flowchart of the antirust process in 2nd Embodiment of this invention.

(実施の形態1)
本発明の第1実施形態における防錆処理について説明する。図1は本発明の第1実施形態における防錆処理のフロー図、図2は本発明の第1実施形態における防錆処理を施した鉄鋼基材表面の拡大断面図である。
(Embodiment 1)
The rust prevention process in 1st Embodiment of this invention is demonstrated. FIG. 1 is a flow chart of rust prevention treatment in the first embodiment of the present invention, and FIG. 2 is an enlarged cross-sectional view of the steel base surface subjected to rust prevention treatment in the first embodiment of the present invention.

図1に示すように、本発明の第1実施形態における防錆処理は、まず鉄鋼素材の鉄鋼基材にブラスト処理を施し(S1)、アルミニウム系溶射皮膜を形成する(S2)。ブラスト処理はSa2〜Sa3とし、溶射皮膜の膜厚は50μm〜500μm、好ましくは日本工業規格(JIS H8300)で推奨されている100μm〜200μmとする。また、アルミニウム系溶射皮膜の形成は、純アルミニウム、亜鉛アルミニウム合金やアルミニウム・マグネシウム合金などの溶射材料のプラズマ溶射、ガスフレーム溶射やアーク溶射などにより行う。   As shown in FIG. 1, in the rust prevention treatment according to the first embodiment of the present invention, first, a steel base of a steel material is blasted (S1) to form an aluminum-based sprayed coating (S2). The blast treatment is Sa2 to Sa3, and the film thickness of the sprayed coating is 50 μm to 500 μm, preferably 100 μm to 200 μm recommended by the Japanese Industrial Standard (JIS H8300). The aluminum-based thermal spray coating is formed by plasma spraying of a thermal spray material such as pure aluminum, zinc aluminum alloy or aluminum / magnesium alloy, gas flame spraying or arc spraying.

そして、この溶射皮膜に対して、溶射皮膜の後処理を行う(S3)。溶射皮膜の後処理は、溶射して間もない溶射皮膜に対して溶射皮膜の後処理剤としての電解質水溶液を塗布し、含浸させることにより行う。ここで塗布する電解質水溶液は、塩化物またはマグネシウム化合物の水溶液を用いる。塩化物は、塩化ナトリウム、塩化アンモニウムや塩化マグネシウムなどを用いる。マグネシウム化合物は、硫酸マグネシウム、硝酸マグネシウムや塩化マグネシウムなどを用いる。電解質水溶液の濃度は、0.1mol/L〜水に対する溶解度の範囲とする。0.1mol/L以下でもそれなりの効果はあると考えられるが、0.1mol/L以上で電位的に安定する。また、水溶液の温度が下がった際に再結晶しないように0℃の最大溶解度以下とすることが望ましい。また、電解質水溶液の塗布の方法は、刷毛やローラなどによる塗布の他、ウォータージェットやスプレーでも良い。   Then, a post-treatment of the thermal spray coating is performed on the thermal spray coating (S3). The post-treatment of the thermal spray coating is performed by applying and impregnating an aqueous electrolyte solution as a post-treatment agent for the thermal spray coating on the thermal spray coating shortly after spraying. As the aqueous electrolyte solution applied here, an aqueous solution of chloride or magnesium compound is used. As the chloride, sodium chloride, ammonium chloride, magnesium chloride or the like is used. As the magnesium compound, magnesium sulfate, magnesium nitrate, magnesium chloride or the like is used. The concentration of the aqueous electrolyte solution is in the range of 0.1 mol / L to solubility in water. Even if it is 0.1 mol / L or less, it is considered that there is a certain effect, but if it is 0.1 mol / L or more, the potential is stabilized. Moreover, it is desirable to make it below the maximum solubility of 0 ° C. so as not to recrystallize when the temperature of the aqueous solution decreases. Further, the method for applying the electrolyte aqueous solution may be water jet or spray, in addition to application with a brush or a roller.

これらの水または電解質水溶液の塗布の後、乾燥養生させる。乾燥時間は、指触乾燥まででよい。また、乾燥方法は、自然乾燥で充分であるが、熱風等による強制乾燥により行うことも可能である。このままでも充分な防錆性を発揮するが、一般的には乾燥後、封孔処理を行う(S4)。封孔処理には、例えば水系や溶剤系の塗料を使用することができる。   After application of these water or aqueous electrolyte solution, it is dried and cured. The drying time may be up to finger touch drying. As the drying method, natural drying is sufficient, but forced drying with hot air or the like is also possible. Even if it remains as it is, sufficient rust prevention is exhibited, but generally, after drying, a sealing treatment is performed (S4). For the sealing treatment, for example, water-based or solvent-based paints can be used.

このような防錆処理によれば、溶射皮膜の後処理(S3)において塗布された電解質水溶液が、図2に示す溶射皮膜2の構成粒子2a間の空隙部4を通じて含浸し、鉄鋼基材1と溶射皮膜2の界面に到達し、電池を形成する。   According to such a rust prevention treatment, the aqueous electrolyte solution applied in the post-treatment (S3) of the thermal spray coating is impregnated through the gaps 4 between the constituent particles 2a of the thermal spray coating 2 shown in FIG. And reaches the interface of the thermal spray coating 2 to form a battery.

このとき、電解質水溶液がマグネシウム化合物水溶液の場合には、化学反応によりpHが13程度まで上昇する。すると、電解質水溶液中のマグネシウムイオンが鉄鋼基材1表面に析出し、アルカリに難溶性の水酸化マグネシウムを主成分とする皮膜3を形成する。この皮膜3により、鉄鋼基材1と溶射皮膜2との間に流れる電流値が小さくなり、さらに酸素が鉄鋼基材1に到達しにくくなるため、点錆の発生が防止され、早期消耗が防止される。   At this time, when the electrolyte aqueous solution is a magnesium compound aqueous solution, the pH rises to about 13 by a chemical reaction. Then, magnesium ions in the aqueous electrolyte solution are deposited on the surface of the steel substrate 1 to form a film 3 containing magnesium hydroxide, which is hardly soluble in alkali, as a main component. This coating 3 reduces the value of the current flowing between the steel substrate 1 and the thermal spray coating 2, and makes it difficult for oxygen to reach the steel substrate 1, thereby preventing the occurrence of spot rust and preventing premature wear. Is done.

一方、電解質水溶液が塩化物水溶液の場合には、塩化物イオンが介在することになるため、電池反応が活性化し、溶射皮膜2のアルミニウムが不動態皮膜を作りにくくなり、溶射皮膜2の電位を低く保つようになる。そのため、マグネシウム化合物水溶液の場合と同様に、点錆の発生が防止され、早期消耗が防止される。   On the other hand, when the electrolyte aqueous solution is a chloride aqueous solution, since chloride ions are present, the battery reaction is activated, and it becomes difficult for the aluminum of the thermal spray coating 2 to form a passive coating, and the potential of the thermal spray coating 2 is increased. To keep it low. Therefore, as in the case of the magnesium compound aqueous solution, the occurrence of spot rust is prevented and early consumption is prevented.

特に、溶射皮膜2がアルミニウム・マグネシウム合金の場合には、上記の効果に加えて、電解質水溶液に含まれる塩化物イオン、硫酸イオンや硝酸イオン等によって、溶射皮膜2からのマグネシウムイオンの溶出や鉄鋼基材1への析出などの反応を活性化する効果もあり、鉄鋼基材1を覆うマグネシウム化合物の皮膜が厚くなるため、点錆の発生および早期消耗がさらに防止される。   In particular, in the case where the sprayed coating 2 is an aluminum / magnesium alloy, in addition to the above-described effects, elution of magnesium ions from the sprayed coating 2 or steel due to chloride ions, sulfate ions, nitrate ions, etc. contained in the aqueous electrolyte solution. There is also an effect of activating reactions such as precipitation on the base material 1, and since the magnesium compound film covering the steel base material 1 becomes thick, the occurrence of spot rust and early consumption are further prevented.

また、溶射皮膜2から溶出するマグネシウムイオンにマグネシウム化合物水溶液を含浸させると必然的にマグネシウムイオンの量が増えるため、析出する水酸化マグネシウムの量を増し、やはり鉄鋼基材1を覆うマグネシウム化合物の皮膜が厚くなる。そのため、さらに点錆の発生および早期消耗が防止される。なお、この反応の際、溶射皮膜2のアルミニウムもイオン化するが、水酸化アルミニウムを主とするアルミニウム化合物はpHの高い環境では水に溶けるため、鉄鋼基材1表面に析出はしない。   Further, when magnesium ions eluted from the thermal spray coating 2 are impregnated with a magnesium compound aqueous solution, the amount of magnesium ions inevitably increases, so the amount of precipitated magnesium hydroxide is increased and the magnesium compound coating covering the steel substrate 1 is also produced. Becomes thicker. Therefore, the occurrence of spot rust and early consumption are prevented. In this reaction, the aluminum of the sprayed coating 2 is also ionized, but the aluminum compound mainly composed of aluminum hydroxide is dissolved in water in an environment having a high pH, so that it does not precipitate on the surface of the steel substrate 1.

(実施の形態2)
次に、本発明の第2実施形態における防錆処理について説明する。図3は本発明の第2実施形態における防錆処理のフロー図である。
(Embodiment 2)
Next, the rust prevention process in 2nd Embodiment of this invention is demonstrated. FIG. 3 is a flowchart of the antirust treatment in the second embodiment of the present invention.

図3に示すように、本発明の第2実施形態における防錆処理は、ブラスト処理(S1)および溶射皮膜形成(S2)は第1実施形態と同じである。そして、第2実施形態においては、溶射皮膜に対して溶射皮膜の後処理剤としての水性塗料を刷毛やローラなどにより塗布し、乾燥させる(S5)。   As shown in FIG. 3, the rust prevention treatment in the second embodiment of the present invention is the same as that in the first embodiment in the blast treatment (S1) and the thermal spray coating formation (S2). In the second embodiment, an aqueous paint as a post-treatment agent for the thermal spray coating is applied to the thermal spray coating with a brush or a roller and dried (S5).

なお、水性塗料は、塗りやすくするため、通常であれば10%程度の水道水を水性塗料に添加して塗布するが、本実施形態における水性塗料では、この水道水に代えて第1実施形態において説明した塩化物水溶液またはマグネシウム化合物水溶液を使用する。水性塗料と塩化物またはマグネシウム化合物の溶液との混合比は、質量比で水性塗料10に対して溶液1〜3とする。また、溶液の濃度は、0.1mol/L〜水に対する溶解度の範囲とする。   In order to make the water-based paint easy to apply, usually about 10% tap water is added to the water-based paint and applied. However, the water-based paint in the present embodiment is replaced with the tap water in the first embodiment. The aqueous chloride solution or aqueous magnesium compound described in 1) is used. The mixing ratio of the water-based paint and the chloride or magnesium compound solution is set to solutions 1 to 3 with respect to the water-based paint 10 in terms of mass ratio. Moreover, the density | concentration of a solution shall be the range of the solubility with respect to 0.1 mol / L-water.

なお、水性塗料は、地球温暖化原因物質のひとつであるVOC(揮発性有機化合物)を含まないため、環境対策に期待されているが、防食性が低いので、重防食目的としては従来使われていない。そこで、溶射皮膜と組合せて使用することが考えられていたが、実際には溶射皮膜に水性塗料を塗布すると、樹脂成分により完全乾燥が遅くなるため、点錆が出やすくなる。また、水性塗料だけでも鉄鋼基材1と溶射皮膜2の間で電池を形成するが、溶射皮膜2の電位を高くする作用があり鉄鋼基材1に対する防錆効果が小さい。   Water-based paints are expected to be environmentally friendly because they do not contain VOC (volatile organic compound), which is one of the substances that cause global warming, but they have been used for heavy anti-corrosion purposes because of their low anticorrosion properties. Not. Thus, it has been considered to be used in combination with a sprayed coating. However, when a water-based coating is actually applied to the sprayed coating, complete drying is delayed by the resin component, so that spot rust is likely to occur. Moreover, although a battery is formed between the steel base material 1 and the thermal spray coating 2 only with a water-based paint, there exists an effect | action which raises the electric potential of the thermal spray coating 2, and the antirust effect with respect to the steel base material 1 is small.

しかしながら、本実施形態における電解質水溶液を含む水性塗料では、塗布された水性塗料に含まれる電解質水溶液が、溶射皮膜2の構成粒子2a間の空隙部4を通じて含浸し、鉄鋼基材1と溶射皮膜2の界面に到達し、電池を形成するとともに溶射皮膜2の電位を低くするので、第1実施形態と同様の効果が得られ、環境対策に優れる水性塗料を重防食目的で使用することが可能となる。   However, in the aqueous paint containing the aqueous electrolyte solution in the present embodiment, the aqueous electrolyte solution contained in the applied aqueous paint is impregnated through the gaps 4 between the constituent particles 2a of the thermal spray coating 2, and the steel substrate 1 and the thermal spray coating 2 are impregnated. Since the potential of the thermal spray coating 2 is lowered while the battery is formed and the potential of the thermal spray coating 2 is lowered, the same effect as the first embodiment can be obtained, and the water-based paint excellent in environmental measures can be used for the purpose of heavy corrosion prevention. Become.

上記実施形態におけるアルミニウム系溶射皮膜の試験片を用いて屋外曝露による腐食試験を行った。促進腐食試験には通常、塩水噴霧試験や複合サイクル試験が行われるが、これらの試験に用いられる塩水は塩化物である塩化ナトリウムを主成分とするため、前述の理由でアルミニウム系溶射皮膜の促進腐食試験に用いると、むしろ寿命が長くする働きがあり、促進効果を得られない。そこで、事前の試験において、電気抵抗値の高い蒸留水、または淡水を使用することで、促進効果を得ることが確認できた。そこで、本実施例では、実環境に近づけるため雨水による促進腐食試験を行った。   A corrosion test by outdoor exposure was performed using the test piece of the aluminum-based sprayed coating in the above embodiment. The accelerated corrosion test is usually conducted by a salt spray test or a combined cycle test, but the salt water used in these tests is mainly composed of sodium chloride, which is a chloride. When used in a corrosion test, it has a function of prolonging the life, and an acceleration effect cannot be obtained. Therefore, it was confirmed in a prior test that an acceleration effect was obtained by using distilled water or fresh water having a high electric resistance value. Therefore, in this example, an accelerated corrosion test using rainwater was performed in order to approximate the actual environment.

表1に試験片の仕様一覧を示す。本実施例においては、表1に示すようにアルミニウム系溶射材料として、Al−5%Mgおよび99.7%Alを用いた。   Table 1 shows a list of test piece specifications. In this example, as shown in Table 1, Al-5% Mg and 99.7% Al were used as the aluminum-based spray material.

Figure 2012067347
Figure 2012067347

屋外曝露は、日当たりの良い場所(常温)で行った。屋外曝露開始から24時間おきに各試験片に対し、雨水を霧吹き散布して、目視判断で発錆するまでの屋外曝露経過日数を評価した。雨水とは、大気中の淡水環境として最も理想に近いと思われるものである。また、溶射皮膜厚さを通常施工膜厚の半分にすることで、早期での発錆の腐食試験とした。表2に屋外曝露での発錆状況を示す。表2から分かるように、封孔処理の前処理を行ったものは、前処理を行わないものと比較して飛躍的に発錆時期が延びていることが確認できた。また、水溶液の濃度は0.1mol/Lおよび1mol/Lとし、塩化マグネシウムは0℃での水への溶解度である2.5mol/Lでの試験も行った。   Outdoor exposure was performed in a sunny place (room temperature). Rain water was sprayed on each test piece every 24 hours from the start of outdoor exposure, and the number of days of outdoor exposure until it rusted by visual judgment was evaluated. Rainwater is considered to be the most ideal fresh air environment in the atmosphere. Moreover, the corrosion test of rusting at an early stage was made by making the sprayed coating thickness half of the normal construction film thickness. Table 2 shows the rusting situation in outdoor exposure. As can be seen from Table 2, it was confirmed that the sample subjected to the pretreatment of the sealing treatment was dramatically extended in rusting time as compared with the sample not subjected to the pretreatment. The concentration of the aqueous solution was 0.1 mol / L and 1 mol / L, and magnesium chloride was also tested at 2.5 mol / L, which is the solubility in water at 0 ° C.

Figure 2012067347
Figure 2012067347

上記腐食試験は、短期間での外観変化を評価するために溶射皮膜厚さが通常より薄い試験片で行ったものであるため、さらに通常の施工膜厚で上記と同様の屋外曝露経過時の自然電位を測定し、鉄素材と溶射皮膜との電位差を評価した。表3に試験片一覧を示す。   The above corrosion test was performed with a test piece having a sprayed coating thickness thinner than usual in order to evaluate the appearance change in a short period of time. The natural potential was measured, and the potential difference between the iron material and the sprayed coating was evaluated. Table 3 shows a list of test pieces.

Figure 2012067347
Figure 2012067347

まず、比較例として雨水および塩水環境での鉄素材とAl−5%Mg溶射皮膜(含浸溶液なし)の電位差を表4に、鉄素材と99.7%Al溶射皮膜(含浸溶液なし)の電位差を表5にそれぞれ示す。なお、以下の表中の鉄素材との電位差は、−101mV以下を◎、−100mV〜−51mVを○、−50mV〜−1mVを△、0mV以上(極性逆転)を×で表している。表4および表5から分かるように、前処理を行わない従来方法では、塩水に対しては良好な電位差を維持できるが、雨水に対しては不安定となり、極性が逆転することもあった。極性が逆転するとアルミニウム系溶射皮膜より鉄鋼基材の方が溶出し易くなり、溶出した鉄イオンが溶射皮膜表面に達し、酸化するため、点錆を生じる大きな原因の1つである。   First, as a comparative example, the potential difference between an iron material and an Al-5% Mg sprayed coating (without impregnating solution) in rainwater and salt water environments is shown in Table 4, and the potential difference between the iron material and 99.7% Al sprayed coating (without impregnating solution). Are shown in Table 5, respectively. In the table below, the potential difference from the iron material is represented by ◎ for −101 mV or less, ◯ for -100 mV to −51 mV, Δ for -50 mV to −1 mV, and × for 0 mV or more (polarity reversal). As can be seen from Tables 4 and 5, in the conventional method in which no pretreatment is performed, a good potential difference can be maintained with respect to salt water, but it becomes unstable with respect to rainwater and the polarity may be reversed. When the polarity is reversed, the steel substrate is more easily eluted than the aluminum-based spray coating, and the eluted iron ions reach the surface of the spray coating and oxidize, which is one of the major causes of spot rust.

Figure 2012067347
Figure 2012067347

Figure 2012067347
Figure 2012067347

次に、実施例として各種溶液を含浸させたAl−5%Mg皮膜と鉄素材との雨水環境での電位差および各種溶液を含浸させた99.7%Al皮膜と鉄素材との雨水環境での電位差を表6に示す。表6から分かるように封孔処理の前処理を行ったものは、雨水に対しても良好な電位差を維持することができており、雨水に対する溶射皮膜の寿命が長くなることが確認できた。   Next, as an example, the potential difference between the Al-5% Mg film impregnated with various solutions and the iron material in the rainwater environment and the 99.7% Al film impregnated with various solutions and the iron material in the rainwater environment. The potential difference is shown in Table 6. As can be seen from Table 6, those subjected to the pretreatment of the sealing treatment were able to maintain a good potential difference against rainwater, and it was confirmed that the life of the sprayed coating against rainwater was prolonged.

Figure 2012067347
Figure 2012067347

次に、Al−5%Mg皮膜に対し、各薬剤の電解質水溶液を混合させた水性塗料を塗布して、屋外曝露による腐食試験を行った。表7に試験片の仕様一覧を示す。   Next, a water-based paint in which an electrolyte aqueous solution of each drug was mixed was applied to the Al-5% Mg coating, and a corrosion test by outdoor exposure was performed. Table 7 shows the specifications of the test piece.

Figure 2012067347
Figure 2012067347

屋外曝露は、日当たりの良い場所(常温)で行った。屋外曝露開始から14時間おきに各試験片に対し、雨水を霧吹き散布して、目視判断で発錆するまでの屋外曝露経過日数を評価した。雨水は、大気中の淡水環境として最も理想に近いと思われるものである。また、溶射皮膜厚さを通常施工膜厚の半分にすることで、早期での発錆の腐食試験とした。表8に屋外曝露での発錆状況を示す。表8から分かるように、封孔処理の前処理を行ったものは、前処理を行わないものと比較して飛躍的に発錆時期が延びていることが確認できた。   Outdoor exposure was performed in a sunny place (room temperature). Rain water was sprayed on each test piece every 14 hours from the start of outdoor exposure, and the number of days of outdoor exposure until it rusted by visual judgment was evaluated. Rainwater seems to be the most ideal fresh air environment in the atmosphere. Moreover, the corrosion test of rusting at an early stage was made by making the sprayed coating thickness half of the normal construction film thickness. Table 8 shows the rusting situation after outdoor exposure. As can be seen from Table 8, it was confirmed that the sample subjected to the pretreatment of the sealing treatment was dramatically extended in rusting time as compared with the sample not subjected to the pretreatment.

Figure 2012067347
Figure 2012067347

本発明は、橋梁、港湾設備、プラント、配管、広告塔、表示灯、車両や船舶などの屋外において使用される鉄を主成分とする炭素鋼、ニッケルクロム鋼やステンレス鋼などの鉄鋼などの鉄鋼基材表面の防錆を目的として施工されるアルミニウム系溶射皮膜の溶射皮膜の後処理方法および後処理剤として有用である。特に、本発明の溶射皮膜の後処理方法および後処理剤は、雨水等に曝される屋外環境で使用されるものに好適である。   The present invention relates to steels such as bridges, harbor facilities, plants, piping, advertising towers, indicator lamps, carbon steels mainly composed of iron used outdoors such as vehicles and ships, steels such as nickel chrome steels and stainless steels. It is useful as a post-treatment method and a post-treatment agent for a thermal spray coating of an aluminum-based thermal spray coating applied for the purpose of preventing rust on the substrate surface. In particular, the post-treatment method and post-treatment agent of the thermal spray coating of the present invention are suitable for those used in an outdoor environment exposed to rainwater or the like.

1 鉄鋼基材
2 溶射皮膜
2a 構成粒子
3 金属化合物
4 空隙部
DESCRIPTION OF SYMBOLS 1 Steel base material 2 Thermal spray coating 2a Constituent particle 3 Metal compound 4 Cavity

Claims (7)

アルミニウム系材料を鉄鋼基材表面に溶射して溶射皮膜を形成した後、前記溶射皮膜に電解質水溶液、または、電解質水溶液を含む水性塗料を塗布し、含浸させることを特徴とする溶射皮膜の後処理方法。   After thermal spraying an aluminum-based material on the surface of a steel substrate to form a thermal spray coating, an aqueous electrolyte solution or an aqueous paint containing an aqueous electrolyte solution is applied to the thermal spray coating and impregnated with the thermal spray coating. Method. 前記電解質水溶液は、前記溶射皮膜の空隙部を通じて前記鉄鋼基材表面に到達し、前記鉄鋼基材と前記溶射皮膜との間に電池を形成することを特徴とする請求項1記載の溶射皮膜の後処理方法。   2. The thermal spray coating according to claim 1, wherein the electrolyte aqueous solution reaches the surface of the steel substrate through a void portion of the thermal spray coating and forms a battery between the steel substrate and the thermal spray coating. Post-processing method. 前記電解質水溶液はマグネシウム化合物水溶液であり、このマグネシウム化合物水溶液中のマグネシウムイオンが前記鉄鋼基材表面に析出し、水酸化マグネシウムを主成分とする皮膜を形成することを特徴とする請求項1または2に記載の溶射皮膜の後処理方法。   3. The electrolyte aqueous solution is a magnesium compound aqueous solution, and magnesium ions in the magnesium compound aqueous solution are deposited on the surface of the steel base material to form a film mainly composed of magnesium hydroxide. The post-treatment method of the thermal spray coating as described in 2. 前記電解質水溶液は塩化物水溶液であり、この塩化物水溶液中の塩化物イオンにより電池反応を活性化させ、前記溶射皮膜のアルミニウムが不動態皮膜を作りにくくして、前記溶射皮膜の電位を低く保つことを特徴とする請求項1または2に記載の溶射皮膜の後処理方法。   The aqueous electrolyte solution is an aqueous chloride solution, and the cell reaction is activated by chloride ions in the aqueous chloride solution, so that the aluminum in the thermal spray coating makes it difficult to form a passive coating, and the potential of the thermal spray coating is kept low. The post-processing method of the thermal spray coating of Claim 1 or 2 characterized by the above-mentioned. 前記溶射皮膜はアルミニウム・マグネシウム合金である請求項1から4のいずれかに記載の溶射皮膜の後処理方法。   The post-treatment method according to claim 1, wherein the thermal spray coating is an aluminum-magnesium alloy. アルミニウム系材料を鉄鋼基材表面に溶射して溶射皮膜を形成した後、前記溶射皮膜に電解質水溶液を塗布し、含浸させ、乾燥後、水性塗料を塗布することを特徴とする溶射皮膜の後処理方法。   After spraying an aluminum-based material on the surface of a steel substrate to form a sprayed coating, an aqueous electrolyte solution is applied to the sprayed coating, impregnated, dried, and then coated with an aqueous paint. Method. アルミニウム系材料を鉄鋼基材表面に溶射して溶射皮膜を形成した後、塗布し、含浸させる封孔処理剤であって、電解質水溶液、または、電解質水溶液を含む水性塗料からなる溶射皮膜の後処理剤。   A sealing agent that is applied to and impregnated after a thermal spray coating is formed by spraying an aluminum-based material on the surface of a steel substrate, and is a post-treatment of a thermal spray coating comprising an aqueous electrolyte solution or an aqueous paint containing an aqueous electrolyte solution. Agent.
JP2010212494A 2010-09-22 2010-09-22 Post-treatment method and post-treatment agent for thermal spray coating Expired - Fee Related JP5554194B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010212494A JP5554194B2 (en) 2010-09-22 2010-09-22 Post-treatment method and post-treatment agent for thermal spray coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010212494A JP5554194B2 (en) 2010-09-22 2010-09-22 Post-treatment method and post-treatment agent for thermal spray coating

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2014094740A Division JP5784791B2 (en) 2014-05-01 2014-05-01 Post-treatment method and post-treatment agent for thermal spray coating comprising aluminum / magnesium alloy

Publications (2)

Publication Number Publication Date
JP2012067347A true JP2012067347A (en) 2012-04-05
JP5554194B2 JP5554194B2 (en) 2014-07-23

Family

ID=46164952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010212494A Expired - Fee Related JP5554194B2 (en) 2010-09-22 2010-09-22 Post-treatment method and post-treatment agent for thermal spray coating

Country Status (1)

Country Link
JP (1) JP5554194B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021192110A1 (en) * 2020-03-25 2021-09-30

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02232352A (en) * 1989-03-07 1990-09-14 Tocalo Co Ltd Formation of combined thermal-sprayed film
JPH11229162A (en) * 1998-02-19 1999-08-24 Kubota Corp Surface treatment of metallic thermally spray coating for corrosion protection

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02232352A (en) * 1989-03-07 1990-09-14 Tocalo Co Ltd Formation of combined thermal-sprayed film
JPH11229162A (en) * 1998-02-19 1999-08-24 Kubota Corp Surface treatment of metallic thermally spray coating for corrosion protection

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021192110A1 (en) * 2020-03-25 2021-09-30
WO2021192110A1 (en) * 2020-03-25 2021-09-30 日本電信電話株式会社 Aqueous solution and repair method
JP7324982B2 (en) 2020-03-25 2023-08-14 日本電信電話株式会社 Aqueous solution and repair method

Also Published As

Publication number Publication date
JP5554194B2 (en) 2014-07-23

Similar Documents

Publication Publication Date Title
JP5600992B2 (en) Surface-treated corrosion-resistant steel with excellent weather resistance
Zarras et al. Corrosion processes and strategies for prevention: an introduction
JP2014019908A (en) Anticorrosion coated steel material
JP3927167B2 (en) Molten Mg-containing zinc alloy plated steel sheet with excellent corrosion resistance and blackening resistance
JP3345023B2 (en) Surface treatment agent for steel and surface treated steel
JP5786650B2 (en) Painted steel with excellent laser cutting ability, primary rust prevention and visibility
O'Keefe et al. Cerium-based conversion coatings as alternatives to hex chrome: Rare-earth compounds provide resistance against corrosion for aluminum alloys in military applications
JP2005169765A (en) Coated zn-al alloy plated steel sheet excellent in corrosion resistance
JP5784791B2 (en) Post-treatment method and post-treatment agent for thermal spray coating comprising aluminum / magnesium alloy
JP5555131B2 (en) Anticorrosion paint for steel, anticorrosion method and anticorrosion repair method using anticorrosion paint for steel
JP5554194B2 (en) Post-treatment method and post-treatment agent for thermal spray coating
JP5262369B2 (en) Steel structure coated with Al alloy and its anticorrosion coating method
JP2014181349A (en) External surface spray coated pipe
JP6155006B2 (en) Aqueous chromium-free treatment solution
US9238860B2 (en) Method of carrying out post-treatment to sprayed coating and agent used for the same
Kahar et al. Thermal sprayed coating using zinc: A review
JP5267275B2 (en) Thick plate pre-coated steel for laser cutting
JP4992500B2 (en) Chrome-free painted steel plate with excellent red rust resistance
JP6646493B2 (en) Iron-based metal member having a metal spray coating layer
KR20120054239A (en) Coating material for preventing corrosion and manufacturing method thereof
JP2005336432A (en) Coating for steel material and steel material having excellent corrosion resistance and rust preventing property
CN211463768U (en) High salt spray resistant PCM composite board
JP2013166993A (en) Surface-treated steel material having excellent corrosion resistance and method for producing the same
US8802190B2 (en) Weldable corrosion resistant coating for steel and method of manufacture
JP2001247953A (en) Thermal spray coated member excellent in corrosion resistance, and its manufacturing method

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121005

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140304

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140501

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140520

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140528

R150 Certificate of patent or registration of utility model

Ref document number: 5554194

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees