JPH02231702A - Supporting apparatus for magnetic field coil - Google Patents

Supporting apparatus for magnetic field coil

Info

Publication number
JPH02231702A
JPH02231702A JP1051703A JP5170389A JPH02231702A JP H02231702 A JPH02231702 A JP H02231702A JP 1051703 A JP1051703 A JP 1051703A JP 5170389 A JP5170389 A JP 5170389A JP H02231702 A JPH02231702 A JP H02231702A
Authority
JP
Japan
Prior art keywords
magnetic field
field coil
supporting structure
support structure
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1051703A
Other languages
Japanese (ja)
Inventor
Kiyohiko Kitagawa
希代彦 北川
Kuniaki Wakabayashi
若林 邦朗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP1051703A priority Critical patent/JPH02231702A/en
Publication of JPH02231702A publication Critical patent/JPH02231702A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Landscapes

  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

PURPOSE:To decrease reinforcement for a supporting structure by providing a constitution wherein a magnetic field coil can be moved in the radial direction under the state wherein the magnetic field coil is contained in the supporting structure, and bringing the upper and lower surfaces of the magnetic field coil into contact with the inner surface of the supporting structure. CONSTITUTION:A magnetic field coil 1 whose cross section in the axial direction is rectangular and a supporting structure 2 whose cross section in the axial direction is rectangular are provided. Gaps g1 and g2 are formed between the inner surface of the supporting structure 2 and the upper surface, the lower surface and the inner and outer surfaces of the magnetic field coil 2. An upper low-friction plate 3a and a lower low-friction plate 36 comprising a low-friction material whose surface is very smooth are contained in the gap g1. The upper low-friction plate 3a and the lower low-friction plate 3b are arranged between the upper surface of the magnetic field coil 1 and the inner surface of the supporting structure and between the lower surface of the magnetic field coil 1 and the inner surface of the supporting structure 2 in the surface contact state. Therefore, the electromagnetic force in the vertical direction generated in the magnetic field coil and the dead weight can be securely supported. Even if the displacing force in the radial direction is generated, reaction to the supporting structure can be reduced. Thus, reinforcement to the supporting structure can be decreased.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は強磁場発生を目的とした磁場コイル例えば核融
合装置のポロイダル磁場コイ゛ル等を収納支持する支持
装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a support device for housing and supporting a magnetic field coil for the purpose of generating a strong magnetic field, such as a poloidal magnetic field coil of a nuclear fusion device.

(従来の技術) 従来強磁場発生を目的とする磁場コイルとして核融合装
置のボロイダル磁場コイルがあるが、これはトーラス状
となっており、大電流を流すために、磁場コイルを構成
している導体自体に鉛直方向(垂直方向)電磁力FZお
よび半径方向電磁力FRが働く。
(Prior technology) Conventionally, there is a voloidal magnetic field coil for nuclear fusion devices as a magnetic field coil for the purpose of generating a strong magnetic field, but this has a torus shape and is configured as a magnetic field coil in order to flow a large current. A vertical electromagnetic force FZ and a radial electromagnetic force FR act on the conductor itself.

また、磁場コイルの通電時に導体自体の電気抵抗による
発熱(ジュール熱)が生じ、これにより導体自体が熱膨
脹することから半径方向に熱応力F}lが働く。
Further, when the magnetic field coil is energized, heat (Joule heat) is generated due to the electrical resistance of the conductor itself, and as a result, the conductor itself thermally expands, so that a thermal stress F}l acts in the radial direction.

このようことから従来磁場コイルの支持装置の一例とし
て、磁場コイルの鉛直方向電磁力FZと該磁場コイルの
自重を支持するために、磁場コイルとこれを収納支持す
る支持構造物を水平方向に対して機械的に拘束したもの
があるが、これは前記半径方向電磁力Fl?および熱応
力F I1による半径方向の変位力に対する対策につい
ては何等考慮されていない。
For this reason, as an example of a conventional magnetic field coil support device, in order to support the vertical electromagnetic force FZ of the magnetic field coil and the self-weight of the magnetic field coil, the magnetic field coil and the support structure that houses and supports the magnetic field coil are moved horizontally. There is a device that is mechanically restrained, but this is due to the radial electromagnetic force Fl? Also, no consideration is given to countermeasures against radial displacement force due to thermal stress FI1.

(発明が解決しようとする課題) このため、磁場コイルに大電流を流すと、前述のように
半径方向の電磁力FRおよび半径方向に熱応力FHが働
き、これらの半径方向の変位力が支持構造物の反力とし
て支持構造物に作用し、支持構造物を転倒させる転倒力
となる。この転倒力を防止するには、支持構造物を補強
するための補強材を設ければよいが、この場合には前記
転倒力に対向し得る頑強な補強材を必要とするばかりで
なく、かつ該補強材を設置するために大きなスペースを
必要とするという問題があった。
(Problem to be Solved by the Invention) Therefore, when a large current is passed through the magnetic field coil, electromagnetic force FR in the radial direction and thermal stress FH in the radial direction act as described above, and these radial displacement forces support This acts on the support structure as a reaction force of the structure, resulting in a toppling force that causes the support structure to fall. In order to prevent this overturning force, it is sufficient to provide a reinforcing material to reinforce the supporting structure, but in this case, not only is a strong reinforcing material capable of resisting the above-mentioned overturning force required, but also There was a problem in that a large space was required to install the reinforcing material.

本発明は磁場コイルに生ずる鉛直方向の電磁力および該
自重を確実に支持でき、半径方向変位力が生じても支持
構造物に対する反力を大幅に縮小でき、支持構造物の補
強を大幅に削減できる磁場コイルの支持装置を提供する
ことを目的とする。
The present invention can reliably support the vertical electromagnetic force generated in the magnetic field coil and its own weight, and even if a radial displacement force occurs, the reaction force against the support structure can be significantly reduced, and the reinforcement of the support structure can be significantly reduced. It is an object of the present invention to provide a supporting device for a magnetic field coil that can be used.

[発明の構成] (課題を解決するための手段) 本発明は、前記目的を達成するため、トーラス状の磁場
コイルを、支持構造物により収納するとともに固定部位
に支持するための支持装置において、前記支持構造物と
磁場コイルとの間に存在する隙間において表面の摩擦係
数が小さい低摩擦部材を、前記磁場コイルの外周面であ
って該下面および上面にそれぞれ配置固定し、かつ前記
低摩擦部材を前記支持構造物の内周面に面接触させたも
のである。
[Structure of the Invention] (Means for Solving the Problems) In order to achieve the above-mentioned object, the present invention provides a support device for housing a toroidal magnetic field coil in a support structure and supporting it at a fixed site. A low friction member having a small surface friction coefficient in a gap existing between the support structure and the magnetic field coil is arranged and fixed on the lower surface and the upper surface of the outer peripheral surface of the magnetic field coil, and the low friction member is brought into surface contact with the inner circumferential surface of the support structure.

(作用) 本発明によれば、磁場コイルを支持構造物内に収納した
状態で磁場コイルが半径方向に移動可能な構成とし、か
つ磁場コイルの上下面は前記支持構造物の内周面と面接
触させたので、磁場コイルに生ずる鉛直方向の電磁力お
よび該自重を支持できるとともに、支持構造物と磁場コ
イルの間に半径方向の変位力が生じた場合には、磁場コ
イルが支持構造物内の半径方向に移動することから、支
持構造物と磁場コイルの間に生ずる半径方向の摩擦力を
減少でき、従って、支持構造物に対する反力すなわち転
倒力を大幅に縮小でき、このため支持構造物に対する補
強が最少限ですむ。また、前記のように構成することに
より、磁場コイルに半径方向変位力が生じたとき磁場コ
イルの移動がスムーズに行われ、これにより支持構造物
の転倒力の問題がほとんどなくなり、補強材の設置を必
要とする場合でもその設置スペースがきわめて少なくて
すむ。
(Function) According to the present invention, the magnetic field coil is configured to be movable in the radial direction with the magnetic field coil housed in the support structure, and the upper and lower surfaces of the magnetic field coil are in plane with the inner peripheral surface of the support structure. Because they are in contact with each other, the vertical electromagnetic force generated in the magnetic field coil and its own weight can be supported, and if a radial displacement force is generated between the support structure and the magnetic field coil, the magnetic field coil will not move inside the support structure. Due to the radial movement of the support structure, the radial frictional force generated between the support structure and the magnetic field coil can be reduced, and therefore the reaction force or overturning force on the support structure can be significantly reduced, and thus the support structure Reinforcement is required to a minimum. In addition, with the above configuration, when a radial displacement force is generated on the magnetic field coil, the movement of the magnetic field coil is performed smoothly, which almost eliminates the problem of overturning force of the support structure, and the installation of reinforcing material Even if it is required, the installation space is extremely small.

(実施例) 以下、本発明の実施例について図面を参照して説明する
。第1図は本発明の一実施例を示す縦断面図であり、第
2図は本発明の一実施例を示す側断面図である。軸方向
断面がが矩形のトーラス状の磁場コイル1と、これを収
納支持し、軸方向断面が矩形の支持構造物2とを備え、
この支持構造物2の内周面と磁場コイル1の上面および
下面ならびに内外周面との間にそれぞれ隙間g1,g2
が形成され、このうちの一方の隙間glが次のように構
成されている。すなわち、隙間glに表面が非常に滑ら
かな低摩擦部材例えば弗化樹詣からなる上側低摩擦プレ
ート3a,下側低摩擦プレート3bを収納し、磁場コイ
ル1の上面と支持構造物2の内面との間および磁場コイ
ル1の下面と支持構造物2の内面との間にそれぞれ前記
上側低摩擦プレート3a,前記下側低摩擦プレート3b
が面接触 するように配設されている。しかして、低摩擦プレート
3aの上面および低摩擦プレート3bの下面には、ガラ
スローブ等のプレート固定帯4が通せる程度の切り欠き
溝3al,3blがそれぞれ形成され、この切り欠き溝
3al,3blにはプレート固定帯4を設けるとともに
、低摩擦プレート3a,3bを強固に縛りつけて磁場コ
イル1に固定されている。
(Example) Hereinafter, an example of the present invention will be described with reference to the drawings. FIG. 1 is a longitudinal cross-sectional view showing one embodiment of the present invention, and FIG. 2 is a side cross-sectional view showing one embodiment of the present invention. A toroidal magnetic field coil 1 having a rectangular axial cross section, and a support structure 2 housing and supporting the magnetic field coil 1 having a rectangular axial cross section,
Gaps g1 and g2 between the inner circumferential surface of this support structure 2 and the upper and lower surfaces and inner and outer circumferential surfaces of the magnetic field coil 1, respectively.
are formed, and one of the gaps gl is configured as follows. That is, an upper low-friction plate 3a and a lower low-friction plate 3b made of extremely smooth surfaces, such as fluoride resin, are housed in the gap GL, and the upper surface of the magnetic field coil 1 and the inner surface of the support structure 2 are connected to each other. and between the lower surface of the magnetic field coil 1 and the inner surface of the support structure 2, the upper low friction plate 3a and the lower low friction plate 3b, respectively.
are arranged so that they are in surface contact. Thus, cutout grooves 3al and 3bl are formed on the upper surface of the low friction plate 3a and the lower surface of the low friction plate 3b, respectively, through which the plate fixing band 4 such as a glass lobe can pass. is provided with a plate fixing band 4, and the low friction plates 3a, 3b are firmly tied and fixed to the magnetic field coil 1.

しかして、低摩擦プレート3a,3bは、支持構造物2
との間に滑り抵抗が生じないように、水平面を出すため
の切削加工が施されている。
Therefore, the low friction plates 3a and 3b are attached to the support structure 2.
A cutting process has been applied to create a horizontal surface so that no slip resistance occurs between the two.

さらに、支持構造物2の内面と、低摩擦プレート3a,
3bとの接触面は、研磨加工を施し、この研磨された研
磨面5にボロンナイトライド、二硫化モリブデン等の潤
滑剤が塗布されている。
Furthermore, the inner surface of the support structure 2 and the low friction plate 3a,
The contact surface with 3b is polished, and this polished surface 5 is coated with a lubricant such as boron nitride or molybdenum disulfide.

このように、支持構造物2の内周面との磁場コイル1の
上下面間の隙間glに、低摩擦プレー}3a,3bを面
接触するように配置固定したので、磁場コイル1に生ず
る鉛直方向の電磁力および該自重を支持できる。この状
態で、磁場コイル1に大電流を流すことにより、磁場コ
イル1の半径方向の電磁力FRが生じたり、磁場コイル
1の通電時導体抵抗による発熱にともなう熱膨脹で半径
方向の熱応力FHが生じた場合には、磁場コイル1と、
この磁場コイル1にプレート固定帯4により固定されて
いる低摩擦プレート3a.3bがともに磁場コイル1の
内外周面に形成されている隙間g2の範囲内で、半径方
向に移動する。これは、支持構造物2と磁場コイル1と
の間に存在する隙間glにおいて磁場コイル1の外周面
であって該上下面に、低摩擦プレート3a,3bをそれ
ぞれ配置固定し、この低摩擦プレート3a,3b接触す
る支持構造物2の内周面を研磨加工するとともに、この
加工面5にボロンナイトライド等の潤滑剤が塗布されて
いるからである。この場合、磁場コイル1等の移動量は
半径方向の変位力の大きさによって決まる。
In this way, the low-friction plates 3a and 3b are arranged and fixed in surface contact in the gap gl between the inner peripheral surface of the support structure 2 and the upper and lower surfaces of the magnetic field coil 1, so that the vertical It can support the electromagnetic force in the direction and its own weight. In this state, by passing a large current through the magnetic field coil 1, an electromagnetic force FR is generated in the radial direction of the magnetic field coil 1, and a radial thermal stress FH is generated due to thermal expansion due to heat generation due to conductor resistance when the magnetic field coil 1 is energized. If this occurs, the magnetic field coil 1 and
A low friction plate 3a fixed to this magnetic field coil 1 by a plate fixing band 4. 3b both move in the radial direction within the range of the gap g2 formed on the inner and outer peripheral surfaces of the magnetic field coil 1. This is the outer peripheral surface of the magnetic field coil 1 in the gap gl existing between the support structure 2 and the magnetic field coil 1, and low friction plates 3a and 3b are arranged and fixed on the upper and lower surfaces, respectively. This is because the inner circumferential surface of the support structure 2 that contacts 3a and 3b is polished, and this processed surface 5 is coated with a lubricant such as boron nitride. In this case, the amount of movement of the magnetic field coil 1 etc. is determined by the magnitude of the displacement force in the radial direction.

このようなことから、支持構造物2側の接触面の摩擦係
数を小さくでき、これにより従来半径方向の変位力が生
ずることによって支持構造物2に対する反力を大幅に縮
小でき、支持構造物2に働く転倒力の問題が少なく、用
途によっては転倒力に対する対策のための補強材を設け
る必要もなく、また補強材の設置を必要とする場合でも
その設置スペースがきわめて少なくてすむ。
For this reason, the friction coefficient of the contact surface on the support structure 2 side can be reduced, and as a result, the reaction force against the support structure 2, which is caused by the conventional radial displacement force, can be significantly reduced, and the reaction force against the support structure 2 can be reduced. There are fewer problems with the overturning force exerted on the vehicle, and depending on the application, there is no need to provide any reinforcing material to take measures against the overturning force, and even if the reinforcing material is required to be installed, the installation space can be extremely small.

なお、本発明は以上述べた実施例に限定されず、支持構
造物2の内周面の該下面および上面をそれぞれ研磨加工
せず、この両面にそれぞれ低摩擦部材を設けるようにし
てもよい。
Note that the present invention is not limited to the embodiments described above, and the lower and upper surfaces of the inner circumferential surface of the support structure 2 may not be polished, but low-friction members may be provided on both surfaces.

[発明の効果] 以上述べた本発明によれば、磁場コイルに生ずる鉛直方
向の電磁力および該自重を確実に支持でき、半径方向変
位力が生じても支持構造物に対する反力を大幅に縮小で
き、支持構造物の補強を大幅に削減できる磁場コイルの
支持装置を提供することができる。
[Effects of the Invention] According to the present invention described above, the vertical electromagnetic force generated in the magnetic field coil and its own weight can be reliably supported, and even if a radial displacement force occurs, the reaction force against the support structure can be significantly reduced. Therefore, it is possible to provide a magnetic field coil support device that can significantly reduce the reinforcement of the support structure.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図はそれぞれ本発明の一実施例を示す
縦断面図および側断面図である。 1・・・磁場コイル、2・・・支持構造物、3a,3b
・・・低摩擦プレート、4・・・プレート固定帯、5・
・・研磨面。 jIIl  医
1 and 2 are a longitudinal sectional view and a side sectional view, respectively, showing an embodiment of the present invention. 1... Magnetic field coil, 2... Support structure, 3a, 3b
...Low friction plate, 4...Plate fixing band, 5.
...Polished surface. jIIl Medicine

Claims (1)

【特許請求の範囲】 トーラス状の磁場コイルを、支持構造物により収納する
とともに固定部位に支持するための支持装置において、 前記支持構造物と磁場コイルとの間に存在する隙間にお
いて表面の摩擦係数が小さい低摩擦部材を、前記磁場コ
イルの外周面であって該下面および上面にそれぞれ配置
固定し、かつ前記低摩擦部材を前記支持構造物の内周面
に面接触させて前記磁場コイルが半径方向に移動可能な
構成としたことを特徴とする磁場コイルの支持装置。
[Scope of Claim] A support device for housing a toroidal magnetic field coil by a support structure and supporting it at a fixed site, comprising: a surface friction coefficient in a gap existing between the support structure and the magnetic field coil; A low-friction member having a small radius is arranged and fixed on the lower and upper surfaces of the outer circumferential surface of the magnetic field coil, respectively, and the low-friction member is brought into surface contact with the inner circumferential surface of the support structure so that the magnetic field coil has a radius 1. A support device for a magnetic field coil, characterized in that the device is configured to be movable in a direction.
JP1051703A 1989-03-03 1989-03-03 Supporting apparatus for magnetic field coil Pending JPH02231702A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1051703A JPH02231702A (en) 1989-03-03 1989-03-03 Supporting apparatus for magnetic field coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1051703A JPH02231702A (en) 1989-03-03 1989-03-03 Supporting apparatus for magnetic field coil

Publications (1)

Publication Number Publication Date
JPH02231702A true JPH02231702A (en) 1990-09-13

Family

ID=12894254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1051703A Pending JPH02231702A (en) 1989-03-03 1989-03-03 Supporting apparatus for magnetic field coil

Country Status (1)

Country Link
JP (1) JPH02231702A (en)

Similar Documents

Publication Publication Date Title
US4530478A (en) Insulating pipe support apparatus
KR19990022095A (en) Rotor with permanent magnet for electric motor
JP2011171731A (en) Superconducting magnet with improved support structure
US4596689A (en) Lateral restraint assembly for reactor core
JPH02231702A (en) Supporting apparatus for magnetic field coil
Bucciarelli Jr et al. Effect of initial imperfections on the instability of a ring confined in an imperfect rigid boundary
US3119746A (en) Devices for supporting at least the solid moderator of a nuclear reactor having vertical channels
US6210067B1 (en) Clip flexure slider washer bearing
JP2633876B2 (en) Nuclear fusion device
JP2023501961A (en) Transformer Coil Block Design for Seismic Applications
JPS566994A (en) Membrane support structure for low-temperature tank
KR20040060079A (en) Multiple friction pot bearing for bridge
KR100683165B1 (en) Poloidal field coil structure of bending type of tangent direction for superconducting tokamak
JP3457344B2 (en) Gas insulated bus support device
JP2874921B2 (en) Superconducting ring coil support device
JPH09242375A (en) Vibration isolating device for light load
JPH02288275A (en) Superconducting coil device
Jingquan et al. Thin mirrors for large optical telescopes
JPS6332276Y2 (en)
SU1390071A1 (en) Heated forging member
JPS6319752B2 (en)
JPH11329824A (en) Superconducting coil load support
CA2029286A1 (en) Means for vertically supporting a segmented high-temperature internal conduit
SU928531A1 (en) Electric machine stator
SU1236223A1 (en) Vibration isolator