JPH02231526A - Encoder - Google Patents
EncoderInfo
- Publication number
- JPH02231526A JPH02231526A JP5165789A JP5165789A JPH02231526A JP H02231526 A JPH02231526 A JP H02231526A JP 5165789 A JP5165789 A JP 5165789A JP 5165789 A JP5165789 A JP 5165789A JP H02231526 A JPH02231526 A JP H02231526A
- Authority
- JP
- Japan
- Prior art keywords
- diffraction
- light
- grating
- pitch
- diffraction grating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000001514 detection method Methods 0.000 claims abstract description 8
- 239000011295 pitch Substances 0.000 claims description 32
- 238000010030 laminating Methods 0.000 claims description 4
- 239000000758 substrate Substances 0.000 claims 1
- 230000010287 polarization Effects 0.000 abstract description 13
- 230000004907 flux Effects 0.000 abstract description 3
- 101100298998 Caenorhabditis elegans pbs-3 gene Proteins 0.000 abstract 1
- 230000003287 optical effect Effects 0.000 description 14
- 238000010586 diagram Methods 0.000 description 8
- 230000000737 periodic effect Effects 0.000 description 4
- 230000010363 phase shift Effects 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 230000001427 coherent effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000002452 interceptive effect Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000003111 delayed effect Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000000609 electron-beam lithography Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000001093 holography Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
Landscapes
- Optical Transform (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明はエンコーダに関し,特に移動物体に取付けた回
折格子にレーザ光等の可干渉性光束を入射させ該回折格
子からの所定次数の回折光を互いに干渉させて干渉縞を
形成し,該干渉縞の明暗の縞を計数することによって回
折格子の移動量、即ち移動物体の移動量を測定するロー
タリーエンコーダやリニアエンコーダ等のエンコーダに
関するものである.
(従来の技術)
従来より移動物体の移動量や移動方向を高精度に、例え
ばサブミクロンの単位で測定することのできる測定器と
してエンコーダがあり、各方面で使用されている.
特にレーザー等の可干渉性光束を移動物体に設けた回折
格子に入射させ該回折格子から生ずる所定次数の回折光
を互いに干渉させ、該干渉縞の明暗を計数することによ
り該移動物体の移動量や移動方向等の移動状態を求めた
エンコーダーが良く知られている.
本出願人はこのようなエンコーダーを例えば特開昭62
−163926号公報、特開昭62−163924号公
報、そして特開昭62−200225号公報で提案して
いる.
(発明が解決しようとする問題点)
このようなエンコーダにおいて使用波長が可視領や赤外
領域である場合、測定精度を向上させる一方法として格
子ピッチの細かな回折格子を用いる方法がある.
しかしながら格子ピッチの細かな回折格子を形成するの
は一般に大変困難であり、例えば電子線描画装置を用い
た場合、線幅を1μm以下にすると安定した線幅が得ら
れないという問題点があった.
又ホログラフィーを利用すれば線幅lμm以下の格子ピ
ッチが比較的容易に得られるが格子ピッチを精度良く形
成するのが難しいという問題点があった.
特ニロータリーエンコーダ等において円板上に放射上の
微細な回折格子を精度良く形成することは非常に難しい
という問題点があった.本発明は所定の格子ピッチを有
する回折格子を複数個積層した回折手段を利用すること
により回折格子の格子ピッチをあまり細かくしなくても
高い分解能が容易に得られ高精度な検出が可能なエンコ
ーダの提供を目的とする.
(問題点を解決するための手段)
本発明に係るエンコーダは光束を移動物体に連結した回
折手段に入射させ、該回折手段からの所定次数の回折光
より干渉光を形成し、該干渉光の明暗を検出手段で検出
することにより、該移動物体の移動状態を検出する際、
該回折手段を所定の格子ピッチの回折格子を複数個積層
して構成したことを特徴としている.
(実施例)
第1図(A)は本発明をリニアエンコーダに適用したと
きの第1実施例の要゛部概略図である.同図において1
はレーザ、2はコリメーターレンズであり,レーザlか
らの光束を平行光束にしている.3は偏光ビームスブリ
ッターでありコリメーターレンズ2からの平行光束をP
偏光とS偏光の2つの光束に分割している.
+00は回折手段であり不図示の移動物体に連結されて
いる.回折手段100は所定の格子ピッチの回折格子1
02a.l02bを形成した複数の回折スケール板、同
図では2枚の回折スケール板+01a、IOlbを積層
して構成されており、移動物体と共に例えば矢印の方向
に速度Vで移動している.本実施例では2つの回折スケ
ール仮+01a.lolbに形成した回折格子の格子ビ
ッチ4は等しいものを用いている.
4+.4mは1/4波長板であり直線偏光を円偏光又は
その逆に変換している.
5..5.は反射部材でありl/4波長板4=.4tか
らの光束を元の光路に戻している.
6は1/4波長板であり、直線偏光を円偏光に変換して
いる.7はビームスブリッターであり入射光束を2つの
光束に分割している.8..8.は偏光板、g,.9g
は受光素子である.本実施例ではレーザ1からの光束を
コリメーターレンズ2により略平行光束とし、偏光ビー
ムスブリッタ3によりP偏光を通過、S偏光を反射させ
て2つの光束に分割し、これらの各光束を所定の角度で
回折手段100に入射させてレ葛る.P偏光のうち回折
格子102aで+1次の回折をし、回折格子102bで
+1次の回折をした光束をl/4波長板48を通過させ
て円偏光として反射部材5,で反射させて元の光路に戻
し再び174波長板4.を通過させて最初の直線偏光状
態とは偏光方位が90度異なる直線偏光として、再度回
折格子102bで+1次の回折、回折格子102bで+
1次の回折をした(往復で全体として4回の+1次回折
をしたことになる.)光束を偏光ビームスブリッタ−3
に入射させている.そして今度は前と偏光方位が90度
異っている為に偏光ビームスブリッター3で反射させて
174波長仮6に導光している.
一方偏光ビームスブリッタ−3を反射し、回折手段10
0に入射させたS偏光のうち回折格子102aでー1次
の回折,回折格子102bで更にー1次の回折をした光
束を前述のP偏光の場合と同様にl/4波長扱4,、反
射部材51を介し、元の光路に戻し、再度回折格子10
2b、102aで各々−1次の回折を行なった後、最初
の直線偏光状態とは偏光方位が90度異なる直線偏光に
変換させて今度は偏光ビームスブリツタ3を通過させて
l/4波長板.6に導光している.
そして1/4波長板6に導光した2光束は各々1次の回
折を4回行っているから回折格子の1ピッチ分の回折手
段lOOの移動に対して2冗×4ラジアンの波面の位相
がずれる.即ち+1次の回折を4回行った光束は+2π
×4=+81となり8冗の位相が進む.一方、一!次の
回折を4回行った光束は−2πX4=−8πとなり8π
の位相が遅れる.従って、2光束の位相差は回折手段1
00の移動lビッチ当り16?Cとなる.同図において
は1/4波長板6に導光された2光束は互いに直交した
直線偏光であるので、このままでは干渉せず明暗信号が
得られない.そこで1/4波長板6を介し互いに逆回転
する円偏光にして重ね合わせ、2光束の位相差で直線偏
光方位が変わる直線偏光にしている.
そして偏光板8+.8mを介して、この重なった2光東
の干渉に基づく明暗信号を受光素子9−・9冨で検出し
てLl旭る.
本実施例では2光束の位相差が167tになる間に8周
期の明暗信号が得られる.
このように本実施例では検出手段からの出力信号を利用
して回折手段l00の移動状態を検出している.
尚、本実施例において2枚の回折スケール板を用いる代
わりに1枚の回折スケール板101aの表裏に第1図(
B)に示すように各々回折格子102a.l02bを形
成したものを用いても同様の効果が得られる.
本実施例では回折スケール板を2枚用いた場合を示した
が回折スケール板を多く用いればそれに応じて回折手段
+00の1ピッチ当りの移動に対する2光束間の位相差
が増大するので検出精度が向」ニする.
第2図は第l図の回折手段l00として回折格子を5枚
積層して構成した場合の第2實施例の要部概略図である
.
リニアエンコーダとしての測定原理は第1図の場合と同
様である.又第1図に示す要素と同一要素には同符番を
付している.
一般に回折格子をn枚重ねて第1図と同様な光?装置を
用いた場合、回折スケール板の移動に伴う2光束間の位
相のずれは、lビッチ当り8πX 2 I+ − 1
ラジアンとなり、回折格子の1ピッチ当り4 x 2m
− 1 =2 M − 1周期の明暗信号が現われる
.例久ばlビッチl2,8μmの回折格子を5枚重ねる
と、1ビッチ12.8μm当り2”’=64周期の明暗
信号が得られる.従って1周期当りの回折格子の移動置
は12.8/64=0.05μmとなる.尚、回折回数
を増やすと一般に光量が低下してくる.この為には例え
ば回折格子の断面形状を矩形又は三角形等にした位相格
子又はホログラフィー格子にすれば所定次数の回折光を
効率よく得ることができるので好ましい.
第3図は本発明をロータリーエンコーダに適用したとき
の第3実施例の要部概略図である.同図において第1図
の要素と同一要素には同符番を付している.
図中300は回折手段であり不図示の回転物体に連結さ
れており、円板上の周囲に所定の格子ピッチより成る回
折格子をその面上に形成した2つの回折スケール板30
1a.30lbより成っている.
本実施例では回折スケールf< 3 0 1 a、30
lb上の回折格子の格子ピッチは等しいものを用いてい
る.
33は2個の台形プリズム33..331を貼り合わせ
てなる光学部品、34は光分割面であり光学部品33の
貼合わせ面より成り、偏光ビームスプリツタと同機能の
光分割を行っている.35及び37は各々プリズム反射
鏡で光束を所定方向に反射させている.
M I. M 虚は回折スケール板301aの周囲に設
けた回折格子への光束の入射点を示す.本実施例では光
源lより放射される光束をコリメータレンズ2によって
平行光束とし,光学部品33をなす台形プリズム33.
の斜面で反射させた後、光分割面34へ所定の角度で入
射するように指向する.光分割面34に入射した光束は
略I・1の比率で反射光束と透過光束の2つの直線偏光
光束に分割される.尚、光源lの光束は光分割面34の
直交偏波面に対し、所定の方向(通常45′″)の直線
偏光に設定されている.分割された2光束は台形プリズ
ム331、331内で各々2度反射し、光学部品33を
出射しプリズム反射fJ135又は37により回折スケ
ール仮301aの所定の位m M l及びM.へ所定の
入射角で入射する.回折格子302aで回折した透過回
折光のうち特定次数の回折光を、更に回折格子302b
で回折させた後、特定次数の回折光を174波長板4l
又は4,を介して反射千段5l又は58により反射させ
、同一光路を逆行させる.そして、回折格子302b、
302aで順次回折させた特定次数の回折光をプリズム
反射鏡35、又は37で反射させ同一光路を逆行させ、
光宇部品33で内面反射を繰り返し,光分割而34へ導
光している.ここでの光束は反射手段51又は5倉で反
射される前後で2度174波長板を通過する為、偏光方
位は回折手段300へ入射する前とは各々90゜異なっ
ている.従って、光分割面34で先に反射側であった光
束が今度は透過し、透過側であった光束が今度は反射し
て重なり合い干渉縞を形成し光学部品33で内面反射し
てl/4波長板6へ入射される.1/4波長板6を通過
した光束は同偏光となる.
そして第1図の第1実施例と同様にl/4波長仮6を通
過した光束は光分割″a7で2分割され各々偏光方位を
異ならせて配置した偏光板8又は8攻を介し直線偏光と
して受光素子9.,又は9tにて2光束による干渉編の
強度を受光し、偏光板8I及び8寡の方位に応じた位相
差をもった2相信号を得ている.
本実施例においては第1図の第1実施例と同様に被測定
回転物体が回折格子の格子ピッチの1ピッチ分だけ回転
するとm次の回折光の位相は8mπだけ変化する.同様
に−m次の回折光の位相は−8mπだけ変化する.これ
により全体として受光素子9..9.からは8m個の正
弦波形が得られる.本実施例ではこのときの正弦波形を
検出することにより回折手段300の回転遣を測定して
いる.
本実施例では光分割器7により光束を2分割し各々の光
束間に90度の位相差をつけることにより回転物体の回
転方向も判別出来るようにしている.
本発明において回折手段に用いるn枚の回折スケール板
に設ける回折格子のとッチPはすべて等しければ前記の
通り1ピッチpi92″1周期の周期信号がとり出され
るが,各回折格子のピッチを各々異なるものより構成し
てもよい.例えば2つの回折スケール板を用い光束が最
初に入射する回折スケール板101aの回折格子102
aのビウチをP+,次に入射する回折スケール板10l
bの回折格子102bのピッチを22とする回折手役の
移動量を又とすると.第1の回折格子1 02aによっ
て1次回折光は位相が2π×文/ p +だけ変動(片
道の場合)する.第2の回折格子102bでは、更に、
2π×文/ P 2たけ変動(片道の場合)する.これ
を往復すれば各々2倍になるから合計4πχ文/ (
1/p+ +1 / p s )だけ位相が変化する.
−1次回折光は第1の回折格子】02aによって−2π
X l / p +たけ位相が変動し、tJ42の回折
格子102bで更に−2πX l / p tたけ位相
か変動するから,これらを往復すれば−4π×2/ (
1/p+ + 1/pt )だけ位相か変化する.よ
って土l次回折光同志の干t!)信号は回折スケール板
(回折手段)の移動閂交に対し
周期の明暗信号が得られる.
例えばピッチp,=4#Lm.p* −2ルmの回折格
子を用いれば1周期当りの回折手段の移動量又は
となり小数で表示できないピッチの周期信号を得ること
ができる.
一般に回折スケール板の枚数をn枚とし各回折格子のピ
ッチをP+.Pオ....p.とすれば回折手段の移動
i文に対し
,文(二。二や.,.や二)
1’+ 9m I’
+1周期の正弦岐状信号が得られる.
かかる複数の回折スケール板を組合せた回折手段はガラ
ス板の両面に各種の格子ピッチの回折格子を形成したり
、又は格子ピッチが異なる複数の回折格子より成る回折
スケール板を組合せて一体にして得ることができる.
また、本発明は光束が回折格子を複数回通過する間に各
々の回折格子で回折される際に生ずる位相ずれを累積さ
せて合計の位相ずれを多く得ることを原理とするから、
回折格子を複数枚通過させて得られた回折光のうち2種
の光(例えば±1次回折光)を干渉させて信号を得る光
学構成とすれば本発明の目的とするエンコーダを達成す
ることができる.
第4図〜第7図は各々本発明をリニアエンコーダに適用
しhときの第4〜第7実施例の要部概略図である。Detailed Description of the Invention (Field of Industrial Application) The present invention relates to an encoder, and in particular to an encoder, in which a coherent light beam such as a laser beam is incident on a diffraction grating attached to a moving object, and diffracted light of a predetermined order is emitted from the diffraction grating. This relates to encoders such as rotary encoders and linear encoders that measure the amount of movement of a diffraction grating, that is, the amount of movement of a moving object, by interfering with each other to form interference fringes and counting the bright and dark fringes of the interference fringes. .. (Prior Art) Encoders have long been used as measuring instruments that can measure the amount and direction of movement of moving objects with high precision, for example in submicron units, and are used in various fields. In particular, a coherent beam of light such as a laser is incident on a diffraction grating provided on a moving object, the diffracted lights of a predetermined order generated from the diffraction grating are made to interfere with each other, and the brightness and darkness of the interference fringes are counted to determine the amount of movement of the moving object. Encoders that determine the state of movement, such as direction and movement direction, are well known. The present applicant has proposed such an encoder, for example, in Japanese Patent Application Laid-open No. 62
This method has been proposed in Japanese Patent Application Laid-Open No. 163926, Japanese Patent Application Laid-Open No. 163924-1982, and Japanese Patent Application Laid-Open No. 200225-1982. (Problems to be Solved by the Invention) When the wavelength used in such an encoder is in the visible or infrared region, one way to improve measurement accuracy is to use a diffraction grating with a fine grating pitch. However, it is generally very difficult to form a diffraction grating with a fine grating pitch, and for example, when using an electron beam lithography system, there is a problem that a stable line width cannot be obtained if the line width is set to 1 μm or less. .. Furthermore, if holography is used, it is relatively easy to obtain a grating pitch with a line width of 1 μm or less, but there is a problem in that it is difficult to form the grating pitch with high precision. In particular, there was a problem in that it was extremely difficult to form a fine radial diffraction grating on a disc with high precision in rotary encoders and the like. The present invention provides an encoder that uses a diffraction means in which a plurality of diffraction gratings having a predetermined grating pitch are laminated, whereby high resolution can be easily obtained without making the grating pitch of the diffraction gratings too fine, and high-precision detection can be performed. The purpose is to provide. (Means for Solving the Problems) The encoder according to the present invention makes a light beam incident on a diffraction means connected to a moving object, forms an interference light from diffracted light of a predetermined order from the diffraction means, and forms an interference light of the interference light. When detecting the moving state of the moving object by detecting brightness and darkness with a detection means,
The diffraction means is characterized by being constructed by laminating a plurality of diffraction gratings with a predetermined grating pitch. (Embodiment) FIG. 1(A) is a schematic diagram of the main part of a first embodiment when the present invention is applied to a linear encoder. In the same figure, 1
is a laser, and 2 is a collimator lens, which converts the light beam from laser 1 into a parallel light beam. 3 is a polarizing beam splitter which converts the parallel light beam from the collimator lens 2 into P
It is split into two beams: polarized light and S-polarized light. +00 is a diffraction means connected to a moving object (not shown). The diffraction means 100 includes a diffraction grating 1 having a predetermined grating pitch.
02a. A plurality of diffraction scale plates forming 102b are constructed by laminating two diffraction scale plates +01a and IOlb in the figure, and are moving together with a moving object at a speed V in the direction of the arrow, for example. In this example, there are two diffraction scales tentatively +01a. The grating bit 4 of the diffraction grating formed in lolb is the same. 4+. 4m is a 1/4 wavelength plate that converts linearly polarized light into circularly polarized light or vice versa. 5. .. 5. is a reflective member, and 1/4 wavelength plate 4=. The light flux from 4t is returned to its original optical path. 6 is a quarter-wave plate, which converts linearly polarized light into circularly polarized light. 7 is a beam splitter that splits the incident light beam into two light beams. 8. .. 8. are polarizing plates, g, . 9g
is the photodetector. In this embodiment, the light beam from the laser 1 is made into a substantially parallel light beam by the collimator lens 2, the P-polarized light is passed through the polarizing beam splitter 3, and the S-polarized light is reflected to be split into two light beams, and each of these light beams is divided into two light beams. The beam is made incident on the diffraction means 100 at an angle. The +1st-order diffraction of the P-polarized light is performed by the diffraction grating 102a, and the +1st-order diffraction is performed by the diffraction grating 102b.The light beam is passed through the 1/4 wavelength plate 48 and reflected by the reflection member 5 as circularly polarized light to return the original light. Return to the optical path and return to the 174 wavelength plate 4. As a linearly polarized light whose polarization direction is 90 degrees different from the initial linearly polarized state, +1st order diffraction is performed again by the diffraction grating 102b, and +1st order is diffracted by the diffraction grating 102b.
The light beam that has undergone first-order diffraction (this means that it has undergone +1st-order diffraction four times in total during the round trip) is sent to polarizing beam splitter 3.
It is input to. This time, since the polarization direction is 90 degrees different from before, it is reflected by the polarizing beam splitter 3 and guided into a 174-wavelength beam 6. On the other hand, the polarized beam splitter 3 is reflected, and the diffraction means 10
Of the S-polarized light incident on the zero beam, the -1st order diffracted by the diffraction grating 102a and the -1st order diffracted by the diffraction grating 102b are treated as 1/4 wavelength in the same way as in the case of the P-polarized light described above4. Return to the original optical path via the reflection member 51 and redirect to the diffraction grating 10
2b and 102a, the polarized light is converted into linearly polarized light whose polarization direction is 90 degrees different from the initial linearly polarized state, and then passed through the polarization beam splitter 3 to be transferred to the 1/4 wavelength plate. .. The light is guided to 6. Since each of the two beams guided to the quarter-wave plate 6 undergoes first-order diffraction four times, the phase of the wavefront of 2 x 4 radians corresponds to the movement of the diffraction means lOO by one pitch of the diffraction grating. is shifted. In other words, the light beam that undergoes +1st-order diffraction four times is +2π
×4=+81, and the phase advances by 8 times. On the other hand, one! The light beam that undergoes the next diffraction four times becomes -2πX4=-8π and becomes 8π
The phase of is delayed. Therefore, the phase difference between the two beams is determined by the diffraction means 1
16 per 00 move l bitch? It becomes C. In the figure, since the two beams guided to the quarter-wave plate 6 are linearly polarized beams that are perpendicular to each other, they do not interfere with each other and no bright/dark signal can be obtained. Therefore, circularly polarized light that rotates in opposite directions is superimposed on each other via a quarter-wave plate 6, resulting in linearly polarized light whose linear polarization direction changes depending on the phase difference between the two light beams. And polarizing plate 8+. The light and dark signals based on the interference of the two overlapping lights are detected by the light receiving elements 9- and 9-9 through the 8m distance, and the light and dark signals are detected by the light receiving elements 9- and 9-9. In this embodiment, eight cycles of brightness and darkness signals are obtained while the phase difference between the two beams is 167t. In this way, in this embodiment, the moving state of the diffraction means l00 is detected using the output signal from the detection means. In this embodiment, instead of using two diffraction scale plates, marks shown in FIG.
B), each of the diffraction gratings 102a. A similar effect can be obtained by using a material formed with l02b. In this example, the case where two diffraction scale plates are used is shown, but if more diffraction scale plates are used, the phase difference between the two light beams with respect to the movement of the diffraction means +00 per pitch will increase accordingly, so the detection accuracy will be improved. Towards. FIG. 2 is a schematic diagram of a main part of a second practical example in which the diffraction means 100 of FIG. 1 is constructed by laminating five diffraction gratings. The measurement principle as a linear encoder is the same as that shown in Figure 1. Elements that are the same as those shown in Figure 1 are given the same numbers. In general, is the light similar to that shown in Figure 1 obtained by stacking n diffraction gratings? When using this device, the phase shift between the two beams due to the movement of the diffraction scale plate is 8πX 2 I+ − 1 per l bit.
radian, 4 x 2 m per pitch of the diffraction grating
− 1 = 2 M − 1 cycle of bright and dark signals appears. For example, if you stack 5 diffraction gratings with 1 pitch 12.8 μm, you will get a bright/dark signal with 2"' = 64 periods per 1 pitch 12.8 μm. Therefore, the movement position of the diffraction grating per period is 12.8 /64=0.05μm.Increasing the number of diffraction cycles generally reduces the amount of light.For this purpose, for example, a phase grating or a holographic grating with a rectangular or triangular cross-sectional shape of the diffraction grating can be used to obtain the desired amount of light. This is preferable because the diffracted light of the order can be obtained efficiently. Figure 3 is a schematic diagram of the main parts of the third embodiment when the present invention is applied to a rotary encoder. In the same figure, the elements are the same as those in Figure 1. The elements are given the same reference numerals. In the figure, 300 is a diffraction means connected to a rotating object (not shown), and a diffraction grating with a predetermined grating pitch is placed around the disk on its surface. Two diffraction scale plates 30 formed
1a. It consists of 30lb. In this example, the diffraction scale f<301a, 30
The grating pitch of the diffraction grating on the lb is the same. 33 are two trapezoidal prisms 33. .. The optical component 331 is bonded together, and 34 is a light splitting surface, which is made up of the bonded surface of the optical component 33, and performs light splitting with the same function as a polarizing beam splitter. Reference numerals 35 and 37 each have a prism reflecting mirror that reflects the light beam in a predetermined direction. M.I. M imaginary indicates the point of incidence of the light beam onto the diffraction grating provided around the diffraction scale plate 301a. In this embodiment, the light beam emitted from the light source 1 is made into a parallel light beam by the collimator lens 2, and the trapezoidal prism 33.
After being reflected by the slope of the beam, the beam is directed so that it is incident on the beam splitting surface 34 at a predetermined angle. The light beam incident on the light splitting surface 34 is split into two linearly polarized light beams, a reflected light beam and a transmitted light beam, at a ratio of approximately I.1. The light beam from the light source 1 is set to be linearly polarized in a predetermined direction (usually 45''') with respect to the orthogonal polarization plane of the light splitting surface 34. It is reflected twice, exits the optical component 33, and enters the predetermined positions m and M of the temporary diffraction scale 301a at a predetermined angle of incidence by the prism reflection fJ135 or fJ37. Among them, the diffracted light of a specific order is further transmitted to the diffraction grating 302b.
After diffracting the light of a specific order, a 174-wavelength plate 4l
or 4, the light is reflected by the reflection stage 5l or 58, and the same optical path is made to travel backwards. And a diffraction grating 302b,
The diffracted light of a specific order that has been sequentially diffracted by 302a is reflected by a prism reflecting mirror 35 or 37 to reverse the same optical path,
The light is repeatedly internally reflected by the light component 33 and guided to the light splitter 34. Since the light flux here passes through the 174 wavelength plate twice before and after being reflected by the reflection means 51 or 5, the polarization direction differs by 90 degrees from that before entering the diffraction means 300. Therefore, the light beam that was previously on the reflection side is now transmitted through the light splitting surface 34, and the light beam that was on the transmission side is now reflected and overlapped to form interference fringes, which are internally reflected by the optical component 33 and reflected at 1/4 The light is incident on the wave plate 6. The light beams passing through the quarter-wave plate 6 have the same polarization. Then, as in the first embodiment shown in FIG. 1, the light beam passing through the 1/4 wavelength temporary 6 is divided into two parts by the light splitter "a7", and is linearly polarized through the polarizing plates 8 or 8, each of which is arranged with a different polarization direction. As a result, the light receiving element 9. or 9t receives the intensity of the interference of the two light beams, and obtains a two-phase signal having a phase difference according to the orientation of the polarizing plates 8I and 8. As in the first embodiment shown in Fig. 1, when the rotating object to be measured rotates by one pitch of the grating pitch of the diffraction grating, the phase of the m-th order diffracted light changes by 8mπ.Similarly, the phase of the -m-th order diffracted light changes by 8mπ. The phase changes by -8mπ.As a result, 8m sine waveforms are obtained as a whole from the light receiving elements 9..9.In this embodiment, the rotational speed of the diffraction means 300 is determined by detecting the sine waveforms at this time. In this embodiment, the light beam is divided into two by the light splitter 7, and a phase difference of 90 degrees is created between each beam, so that the direction of rotation of the rotating object can also be determined.In the present invention If the pitches P of the diffraction gratings provided on the n diffraction scale plates used in the diffraction means are all equal, a periodic signal of 1 pitch pi92'' and 1 period will be extracted as described above, but if the pitch of each diffraction grating is different. It may be configured more. For example, using two diffraction scale plates, the diffraction grating 102 of the diffraction scale plate 101a on which the light beam first enters
P+, then input diffraction scale plate 10l
If the pitch of the diffraction grating 102b in b is 22, the amount of movement of the diffraction hand is . The first diffraction grating 102a causes the phase of the first-order diffracted light to fluctuate by 2π x sentence/p + (in the case of one-way transmission). In the second diffraction grating 102b, further:
2π×sentence/P Changes by 2 (in case of one-way trip). If you go back and forth, each will be doubled, so a total of 4πχ sentences / (
The phase changes by 1/p+ +1/ps).
-1st order diffraction light is -2π by the first diffraction grating]02a
The phase fluctuates by X l / p + t, and the phase further fluctuates by -2π
The phase changes by 1/p+ + 1/pt). Therefore, the difference between the 1st order diffracted light and the comrades! ) The signal is a periodic brightness signal obtained by the moving intersecting of the diffraction scale plate (diffraction means). For example, pitch p,=4#Lm. If a diffraction grating of p* -2 m is used, it is possible to obtain a periodic signal with a pitch that cannot be expressed as a decimal number or the amount of movement of the diffraction means per period. Generally, the number of diffraction scale plates is n and the pitch of each diffraction grating is P+. P.O. .. .. .. p. Then, for the movement i sentence of the diffraction means, the sentence (2.2ya.,.ya2) 1'+ 9m I'
A sinusoidal signal with +1 period is obtained. Such a diffraction means combining a plurality of diffraction scale plates can be obtained by forming diffraction gratings with various grating pitches on both sides of a glass plate, or by combining diffraction scale plates consisting of a plurality of diffraction gratings with different grating pitches into one piece. be able to. Furthermore, the present invention is based on the principle of accumulating the phase shifts that occur when a light beam passes through a diffraction grating multiple times and being diffracted by each diffraction grating to obtain a large total phase shift.
If the optical configuration is such that a signal is obtained by interfering with two types of light (for example, ±1st-order diffracted light) among the diffracted lights obtained by passing through a plurality of diffraction gratings, the encoder that is the object of the present invention can be achieved. can. FIGS. 4 to 7 are schematic diagrams of main parts of fourth to seventh embodiments when the present invention is applied to a linear encoder, respectively.
これらの各実施例において第1〜第3図に示す要素と同
一要素には同符番を付しており、又リニアエンコーダと
しての移動物体の検出方法は第1図の第1実施例と基本
的に同じである.第4図に示す第4実施例ではレーザ1
からの光束をコリメーターレンズ2,光学部品33の光
分割而34を利用して2つの光束に分割し174波長板
4,.4,を通過させて回折手段400の回折スケール
板401aの表裏に形成した回折格子402a、402
bに順次入射させている.そして回折千段400で回折
された±1次の回折先が回折手段400から垂直にかつ
重なり合って射出し、共通の反射部材5で反射し、元の
光路を戻り、再度回折格子402b.402aで回折し
た後1/4波長板4,.4..光学部品33を介し17
4波長板6に導光している.そして第1図の実施例と同
様に光分割手段7で2光束に分割し、これらの干渉光を
各々偏光板81.8mを介し受光素子9,.’lで受光
している.そして受光素子9+.9麓からの出力信号を
用いて回折手段400の移動攬を検出している.
第5図に示す第5実施例では第4図の実施例に比べて回
折手段500を所定の格子ピッチの回折格子を有する5
つの回折スケール板501a〜501eを積層して構成
し、回折手段500からの所定次数の2つの回折光を各
々専用の174波長板41 . 4ffiと反射部材5
+.5gを介して元の光路に戻している点が異なり、そ
の他の構成は同じである.
第6図に示す第6実施例では第1図の実施例において回
折手段の回折スケール板の表裏に形成した2つの回折格
子102a.l02bで回折した±1次の回折光束をプ
リズム型の光分割器67のハーフミラー面67aを利用
して重ね合わせ、方の重なり合った光束は45゜方位に
偏光面を持つ偏光板88を介して干渉信号になり,受光
素子9・,に入射し、もう一方の重なり合った光束は1
/4波長板6によってその中の一方の光束の波面をl/
4λだけずらした後に45゜方位に偏光面を持つ偏光板
8.を介して干渉信号になり受光素子9lに入射する.
本実施例では回折格子の1ピッチの移動に対して受光素
子で検出される2光束の位相差は8πとなる.
第7図はレーザlからの光束をコリメーターレンズ2を
介し3つの回折スケール板101a、10lb.101
cを積層した回折手段700に垂直に入射させ、回折手
段700の各回折格子で回折した±1次の回折光をその
まま取り出し,互いに偏光面が直交するように配置した
偏光板10a.lobを介した後光分割器77のハーフ
ミラー面77aを利用して2光束を重ね合わして干渉光
を得ている.
そして第6図の実施例と同様にして偏光仮8+ .81
.1/4波長板6を介して受光素子91.9mにより
干渉信号を検出している.(発明の効果)
本発明によれば而述の如く同一又は異った格子ピッチの
回折格子を複数個積層した回折手段を利用することによ
り、細かな格子ピッチの回折格子を用いなくても移動物
体の僅かな変位に対しても効果的に良好なる周期信号が
得られ、高い分解能が容易に得られるエンコーダを達成
することができる.In each of these embodiments, the same elements as those shown in FIGS. 1 to 3 are given the same reference numerals, and the method of detecting a moving object as a linear encoder is basically the same as the first embodiment shown in FIG. are essentially the same. In the fourth embodiment shown in FIG.
The light beam from the 174-wave plate 4, . Diffraction gratings 402a, 402 formed on the front and back surfaces of the diffraction scale plate 401a of the diffraction means 400 by passing through the diffraction gratings 402a, 402
The beams are sequentially incident on b. Then, the ±1st order diffraction points diffracted by the 1,000 diffraction stages 400 are emitted vertically and overlappingly from the diffraction means 400, are reflected by the common reflection member 5, return to the original optical path, and return to the diffraction grating 402b. After diffraction at 402a, quarter wavelength plates 4, . 4. .. 17 via optical component 33
The light is guided to a four-wavelength plate 6. Then, as in the embodiment shown in FIG. 1, the beam splitting means 7 divides the beam into two beams, and these interference beams are sent to the light receiving elements 9, . The light is being received by 'l. and light receiving element 9+. The movement of the diffraction means 400 is detected using the output signal from the 9th foot. In the fifth embodiment shown in FIG. 5, compared to the embodiment shown in FIG.
It is constructed by stacking two diffraction scale plates 501a to 501e, and transmits two diffracted lights of a predetermined order from the diffraction means 500 to a dedicated 174-wavelength plate 41. 4ffi and reflective member 5
+. The difference is that the optical path is returned to the original optical path via 5g, but the other configurations are the same. In the sixth embodiment shown in FIG. 6, two diffraction gratings 102a. The ±1st-order diffracted light beams diffracted by L02b are superimposed using the half mirror surface 67a of the prism-type light splitter 67, and the overlapping light beams are passed through a polarizing plate 88 having a polarization plane in the 45° direction. It becomes an interference signal and enters the light receiving element 9, and the other overlapping beam becomes 1
/4 wavelength plate 6 changes the wavefront of one of the light beams to l/
8. A polarizing plate with a polarization plane in the 45° direction after being shifted by 4λ. The signal becomes an interference signal and enters the light receiving element 9l. In this example, the phase difference between the two beams detected by the light receiving element is 8π for one pitch movement of the diffraction grating. In FIG. 7, a beam from a laser I is passed through a collimator lens 2 to three diffraction scale plates 101a, 10lb. 101
10a. Interference light is obtained by superimposing two beams using the half mirror surface 77a of the rear beam splitter 77 via the lob. Then, in the same manner as in the embodiment shown in FIG. 6, polarization provisional 8+. 81
.. The interference signal is detected by the light receiving element 91.9m via the 1/4 wavelength plate 6. (Effects of the Invention) According to the present invention, by using a diffraction means in which a plurality of diffraction gratings with the same or different grating pitches are laminated as described above, movement can be made without using a diffraction grating with a fine grating pitch. An encoder that can effectively obtain a good periodic signal even for small displacements of an object and easily obtain high resolution can be achieved.
第1図(A)、第2図は本発明をリニアエンコーダに適
用したときの第1、第2実施例の要部概略図、第1図(
B)は第1図(A)の一部分の変形例の説明図、第3図
は本発明をロータリーエンコーダに適用したときの第3
実施例の要部概略図,第4図〜第7図は各々本発明をリ
ニアエンコーダに適用したときの第4〜第7実施例の要
部概略図である.図中1はレーザ、2はコリメーターレ
ンズ,3は偏光ビームスブリッタ+00.300、40
0.500、700は回折手段、4、4,.4..6は
1/4波長板25,5+.5mは反射部材、7はビーム
スブリッタ−(光分割器).8..8.は偏光板、9+
.9mは受光素子、である.FIG. 1(A) and FIG. 2 are schematic diagrams of the main parts of the first and second embodiments when the present invention is applied to a linear encoder, and FIG.
B) is an explanatory diagram of a partial modification of FIG. 1(A), and FIG. 3 is a third diagram when the present invention is applied to a rotary encoder.
FIGS. 4 to 7 are schematic diagrams of the main parts of the fourth to seventh embodiments, respectively, when the present invention is applied to a linear encoder. In the figure, 1 is a laser, 2 is a collimator lens, 3 is a polarizing beam splitter +00.300, 40
0.500, 700 are diffraction means, 4, 4, . 4. .. 6 is a quarter wavelength plate 25, 5+. 5m is a reflecting member, 7 is a beam splitter (light splitter). 8. .. 8. is a polarizing plate, 9+
.. 9m is a light receiving element.
Claims (4)
該回折手段からの所定次数の回折光より干渉光を形成し
、該干渉光の明暗を検出手段で検出することにより、該
移動物体の移動状態を検出する際、該回折手段を所定の
格子ピッチの回折格子を複数個積層したもので構成した
ことを特徴とするエンコーダ。(1) Make the light beam incident on a diffraction means connected to a moving object,
When detecting the moving state of the moving object by forming interference light from diffracted light of a predetermined order from the diffraction means and detecting the brightness and darkness of the interference light with the detection means, the diffraction means is arranged at a predetermined grating pitch. An encoder characterized by comprising a plurality of laminated diffraction gratings.
ていることを特徴とする請求項1記載のエンコーダ。(2) The encoder according to claim 1, wherein the plurality of diffraction gratings have different grating pitches.
を積層して構成した回折手段に光束を入射させ、該回折
手段の複数の回折格子を介した際に得られる所定次数の
回折光より干渉光を形成し、該干渉光の明暗の数を検出
手段により検出することにより該回折手段に連結した移
動物体の移動状態を検出したことを特徴とするエンコー
ダ。(3) A light beam is made incident on a diffraction means constructed by laminating a plurality of diffraction gratings with different grating pitches, and interference occurs from the diffracted light of a predetermined order obtained when passing through the plurality of diffraction gratings of the diffraction means. An encoder characterized in that a moving state of a moving object connected to the diffraction means is detected by forming light and detecting the number of brightness and darkness of the interference light by a detection means.
設けた回折スケール板を少なくとも1枚有していること
を特徴とする請求項1又は請求項3記載のエンコーダ。(4) The encoder according to claim 1 or 3, wherein the diffraction means has at least one diffraction scale plate having a diffraction grating on each of the front and back sides of a transparent substrate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5165789A JP2600888B2 (en) | 1989-03-03 | 1989-03-03 | Encoder |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5165789A JP2600888B2 (en) | 1989-03-03 | 1989-03-03 | Encoder |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02231526A true JPH02231526A (en) | 1990-09-13 |
JP2600888B2 JP2600888B2 (en) | 1997-04-16 |
Family
ID=12892951
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5165789A Expired - Fee Related JP2600888B2 (en) | 1989-03-03 | 1989-03-03 | Encoder |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2600888B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002023130A1 (en) * | 2000-09-13 | 2002-03-21 | Mitsubishi Denki Kabushiki Kaisha | Optical encoder |
JP2009156862A (en) * | 2007-11-01 | 2009-07-16 | Asml Netherlands Bv | Position measurement system and lithographic apparatus |
-
1989
- 1989-03-03 JP JP5165789A patent/JP2600888B2/en not_active Expired - Fee Related
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002023130A1 (en) * | 2000-09-13 | 2002-03-21 | Mitsubishi Denki Kabushiki Kaisha | Optical encoder |
JP2009156862A (en) * | 2007-11-01 | 2009-07-16 | Asml Netherlands Bv | Position measurement system and lithographic apparatus |
US8319940B2 (en) | 2007-11-01 | 2012-11-27 | Asml Netherlands B.V. | Position measurement system and lithographic apparatus |
Also Published As
Publication number | Publication date |
---|---|
JP2600888B2 (en) | 1997-04-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2603305B2 (en) | Displacement measuring device | |
JP2586120B2 (en) | encoder | |
JP3158878B2 (en) | Optical encoder | |
JPH07101181B2 (en) | Position detector and position measuring method | |
JPH073344B2 (en) | Encoder | |
JPH03148015A (en) | Position measuring apparatus | |
JPH02231525A (en) | Encoder | |
US5000542A (en) | Optical type encoder | |
JP3495783B2 (en) | Encoder | |
JPH0231111A (en) | Rotary encoder | |
JP2683117B2 (en) | encoder | |
US5017777A (en) | Diffracted beam encoder | |
US6570660B2 (en) | Measuring instrument | |
JPH046884B2 (en) | ||
JPH02231526A (en) | Encoder | |
JPS62200225A (en) | Rotary encoder | |
JPH0416177Y2 (en) | ||
JP2683098B2 (en) | encoder | |
JP2675317B2 (en) | Moving amount measuring method and moving amount measuring device | |
JPH02298804A (en) | Interferometer | |
JP2517027B2 (en) | Moving amount measuring method and moving amount measuring device | |
JP2600783B2 (en) | Optical device | |
JPS6375518A (en) | Movement quantity detector | |
JP2629606B2 (en) | encoder | |
JPS62163921A (en) | Rotary encoder |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090129 Year of fee payment: 12 |
|
LAPS | Cancellation because of no payment of annual fees |