JP2600783B2 - Optical device - Google Patents

Optical device

Info

Publication number
JP2600783B2
JP2600783B2 JP8458588A JP8458588A JP2600783B2 JP 2600783 B2 JP2600783 B2 JP 2600783B2 JP 8458588 A JP8458588 A JP 8458588A JP 8458588 A JP8458588 A JP 8458588A JP 2600783 B2 JP2600783 B2 JP 2600783B2
Authority
JP
Japan
Prior art keywords
light
reflected
polarization
component
polarized light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP8458588A
Other languages
Japanese (ja)
Other versions
JPH01257216A (en
Inventor
公 石塚
哲治 西村
正彰 築地
哲 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP8458588A priority Critical patent/JP2600783B2/en
Priority to US07/334,197 priority patent/US5067813A/en
Publication of JPH01257216A publication Critical patent/JPH01257216A/en
Application granted granted Critical
Publication of JP2600783B2 publication Critical patent/JP2600783B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は光学装置に関し、特に被測定物体の位置、回
転角度、密度等の物理量の変動を該被測定物体によって
位相の変動を加えられた可干渉性光束の重ね合わせによ
って直線偏光の方位の回転に変換し、偏光方位の回転量
及び方向を検出することにより該被測定物体の物理量の
変動量及びその変動方向を検出するようにした光学装置
に関するものである。
Description: BACKGROUND OF THE INVENTION (Industrial application field) The present invention relates to an optical device, and in particular, a phase variation is added to a variation of a physical quantity such as a position, a rotation angle, and a density of a measurement object by the measurement object. Optics that convert into a rotation of the azimuth of linearly polarized light by superposition of coherent light beams, and detect the amount of change of the physical quantity of the measured object and the direction of the change by detecting the rotation amount and direction of the polarization azimuth. It concerns the device.

(従来の技術) 従来より被測定物の位置、回転角度、等の物理量の変
動を被測定体に光を入射させ、該被測定物体から射出し
た2つの光束又は、1つの光束と他の参照光束を互いに
重ね合わせて2光束の位相差に応じて回転する直線偏光
を合成して、このときの偏光方位の回転量及び方向を検
出して求める方法がある。このうち干渉縞の明暗に変換
し、かつ偏光量の回転方向が検出できる方法としては従
来より例えば次の方法が提案されている。
(Prior Art) Conventionally, a change in a physical quantity such as a position, a rotation angle, and the like of an object to be measured is caused by irradiating light to the object to be measured, and two light beams emitted from the object to be measured or one light beam and another reference. There is a method of superimposing light beams on each other, synthesizing linearly polarized light that rotates according to the phase difference between the two light beams, and detecting and obtaining the rotation amount and direction of the polarization direction at this time. Among these methods, for example, the following method has been conventionally proposed as a method of converting the interference fringes into light and dark and detecting the rotation direction of the amount of polarization.

重ね合わせる2光束をその偏光面が互いに直交する直
線偏光とし、該2光束を両光束の偏光方位に対し45度傾
いた方位に異方性を有するように配置した位相板を透過
させた後、両光束を互いに反対方向に回転する円偏光に
変換せしめる。そして両光束を重ね合わせることにより
単一の直線偏光に変換する。このとき直線偏光の偏光方
位は最初の重ね合わせる2光束間の位相差に応じて回転
する。この直線偏光の偏光方位を適当な方位に偏光軸を
有する偏光板を透過させることにより明暗の正弦波状強
度信号に変換できる。
The two light beams to be superimposed are linearly polarized light whose polarization planes are orthogonal to each other, and the two light beams are transmitted through a phase plate arranged to have anisotropy in a direction inclined by 45 degrees with respect to the polarization direction of both light beams, Both light beams are converted into circularly polarized light rotating in opposite directions. Then, the two light beams are converted into a single linearly polarized light by overlapping. At this time, the polarization direction of the linearly polarized light rotates according to the phase difference between the first two light beams to be superimposed. By transmitting the polarization direction of the linearly polarized light through a polarizing plate having a polarization axis in an appropriate direction, it can be converted into a bright and dark sinusoidal intensity signal.

偏光板の偏光軸の方位を適当に選ぶことにより明暗の
変動の位相を任意に変えることができる。
By appropriately selecting the direction of the polarization axis of the polarizing plate, the phase of the change in brightness can be arbitrarily changed.

例えばこの光束を2分割して互いに偏光軸を45度ずら
した偏光板を介して各々検出すると明暗の位相は互いに
90度ずれる。従来より光を反射光と透過光の2つの光に
分割する光分割手段としてはビームスプリッタが用いら
れている。ビームスプリッタの光分割面には金属や誘電
体物質が波長オーダーの厚さで蒸着されており、又蒸着
物質の種類、厚さ、構成等により透過光と反射光の光量
を調整する。例えば透過光量をT、反射光量をR、偏光
成分を各々P、Sで添付すると非偏光ビームスプリッタ
では TP=αRP TS=αRS を満たし、透過光と反射光の偏光成分の光量比は常に1
となる。
For example, when this light beam is divided into two and detected through polarizing plates whose polarization axes are shifted from each other by 45 degrees, the light and dark phases are mutually different.
90 degrees off. Conventionally, a beam splitter has been used as a light splitting unit for splitting light into two lights, reflected light and transmitted light. A metal or dielectric substance is deposited on the light splitting surface of the beam splitter in a thickness on the order of wavelength, and the amount of transmitted light and reflected light is adjusted by the type, thickness, configuration, etc. of the deposited substance. For example, if the transmitted light amount is T, the reflected light amount is R, and the polarized light component is P and S, respectively, the non-polarized beam splitter satisfies T P = αR P T S = αR S , and the light intensity ratio between the transmitted light and the reflected light. Is always 1
Becomes

一方、光分割面で反射した反射光における光分割面か
ら見たP−S偏光成分間の位相差を0にすることは難し
く、多くの場合は波長や反射面への入射角度により敏感
に変動する。
On the other hand, it is difficult to reduce the phase difference between the PS polarization components as viewed from the light splitting surface in the light reflected by the light splitting surface to zero, and in many cases, it fluctuates more sensitively depending on the wavelength and the angle of incidence on the reflecting surface. I do.

例えば分配比が波長780nmにおいて1である非偏光ビ
ームスプリッタでは透過光量及び反射光量の分光特性は
第3図に示すようになる。
For example, in a non-polarizing beam splitter having a distribution ratio of 1 at a wavelength of 780 nm, the spectral characteristics of the transmitted light amount and the reflected light amount are as shown in FIG.

又、透過光の位相及び反射光の位相の分光特性は第4
図に示すようになる。
The spectral characteristics of the transmitted light phase and the reflected light phase are the fourth.
As shown in the figure.

反射光におけるP−S偏光成分間に位相差が生ずると
ビームスプリッタに入射する光が光分割面に対して45度
の方位の直線偏光のときはビームスプリッタによって楕
円偏光に変換されてしまう。この結果、非偏光ビームス
プリッタによって得られる2光束のうちP−S偏光成分
間に位相差が大きい反射光束をP−S偏光成分を等光量
透過する45度の偏光方位の偏光板を介して観察したと
き、ビームスプリッタに入射した直線偏光と偏光板の偏
光方位が一致していても光量が損失し、又入射直線偏光
と偏光板の偏光方位が直交していても偏光板から光がも
れてくることになるからビームスプリッタに入射する直
線偏光の偏光面の回転に伴って変化する明暗のコントラ
ストが低下し、例えばP−S偏光成分間の位相差が90度
になると円偏光となり、もはや偏光板を介しても明暗度
を観察することができなくなってくる。
If a phase difference occurs between the PS polarization components in the reflected light, when the light incident on the beam splitter is linearly polarized light having an azimuth of 45 degrees with respect to the light splitting plane, the light is converted into elliptically polarized light by the beam splitter. As a result, of the two light beams obtained by the non-polarizing beam splitter, the reflected light beam having a large phase difference between the PS polarized components is observed through a polarizing plate having a polarization direction of 45 degrees that transmits the same amount of the PS polarized component. In this case, the amount of light is lost even if the linearly polarized light incident on the beam splitter and the polarization direction of the polarizer match, and light leaks from the polarizer even if the incident linearly polarized light and the polarization direction of the polarizer are orthogonal. The contrast of light and dark, which changes with the rotation of the plane of polarization of the linearly polarized light incident on the beam splitter, is reduced.For example, when the phase difference between the P-S polarized light components becomes 90 degrees, the light becomes circularly polarized light. Even through a polarizing plate, the brightness cannot be observed.

又、P−S偏光成分間の位相差は光源の波長変動や入
射角度の誤差に対しても敏感に変化する。例えば、半導
体レーザ等の光源を用いた場合には個々のレーザの中心
波長のバラツキや温度変化等に対して約10nmのオーダー
で発振波長が変動し、この結果、明暗のコントラストを
良好に検出するのが大変難しくなってくる。
In addition, the phase difference between the PS polarization components changes sensitively with respect to the wavelength fluctuation of the light source and the error of the incident angle. For example, when a light source such as a semiconductor laser is used, the oscillation wavelength fluctuates on the order of about 10 nm with respect to variations in the center wavelength of individual lasers or changes in temperature. As a result, good contrast between light and dark is detected. It becomes very difficult.

第4図に示すように、一般に非偏光ビームスプリッタ
の分割面で反射された光束が、この傾向が著しいことが
わかる。
As shown in FIG. 4, it can be seen that this tendency is remarkable in the light flux generally reflected on the split surface of the non-polarizing beam splitter.

又、光分割手段の前後すなわち回転する直線偏光光束
を伝送する経路中に全反射面等のP−S偏光成分間の位
相差が発生する要素が挿入された場合も該反射面に対し
て45度の方位の直線偏光が同様に楕円偏光に変換されて
しまい、前述と同様の問題が生じる。
Also, when an element such as a total reflection surface that generates a phase difference between the PS polarization components is inserted in a path for transmitting a rotating linearly polarized light beam before and after the light splitting means, that is, 45 degrees with respect to the reflection surface. The linearly polarized light having the azimuth of degree is similarly converted into elliptically polarized light, and the same problem as described above occurs.

位置、回転の変位の方向も検出する必要があるエンコ
ーダ等においては2つの出力をA相、B相とし、A相を
非偏光ビームスプリッタによって得られる2光束のうち
反射光を用いるとA相のみが環境温度の変動に対し、そ
の振幅成分が変化し、測定精度等を低下させる問題点が
生じてくる。
In an encoder or the like that also needs to detect the direction of the displacement of the position and rotation, the two outputs are A-phase and B-phase, and if the reflected light is used among the two light beams obtained by the non-polarizing beam splitter, only the A-phase is used. However, there is a problem in that the amplitude component changes in response to a change in the environmental temperature, and the measurement accuracy and the like deteriorate.

(発明が解決しようとする問題点) 本発明は被測定物体の物理量の変動を該被測定物体に
基づく光の偏光方位の回転に変換し、該偏光方位の回転
を光分割手段を介して検出することにより該被測定物体
の変動量及び変動方向を求める際、例えば被測定物体へ
の入射光の波長が変動しても反射面及び光分割手段を適
切に設定することにより干渉縞の明暗信号の振幅成分の
変動やバラツキ等が生じなく、常に高精度な検出ができ
る光学装置の提供を目的とする。
(Problems to be Solved by the Invention) The present invention converts a change in a physical quantity of an object to be measured into a rotation of a polarization direction of light based on the object to be measured, and detects the rotation of the polarization direction through a light splitting unit. When the variation amount and the variation direction of the object to be measured are obtained by, for example, even if the wavelength of the light incident on the object to be measured fluctuates, the light and dark signals of the interference fringes can be obtained by appropriately setting the reflecting surface and the light dividing means. It is an object of the present invention to provide an optical device that can always perform high-precision detection without causing fluctuation or variation of the amplitude component of the optical device.

(問題点を解決するための手段) 光束の偏光方位を検出する光学装置において、偏光方
位が回転する光束を反射させる第1反射部材と、該第1
反射部材でP偏光成分として反射させた光をS偏光成分
として反射させる又は該第1反射部材でS偏光成分とし
て反射させた光をP偏光成分として反射させる第2反射
部材と、該第2反射部材からの反射光束から特定の偏光
方位の成分のみを取り出す偏光素子と、該偏光素子から
射出した光を検出する検出手段とを有することである。
(Means for Solving the Problems) In an optical device for detecting the polarization direction of a light beam, a first reflecting member for reflecting a light beam whose polarization direction rotates is provided,
A second reflecting member that reflects light reflected as a P-polarized component by the reflecting member as an S-polarized component or reflects light reflected as an S-polarized component by the first reflecting member as a P-polarized component; A polarization element for extracting only a component of a specific polarization direction from a light beam reflected from a member, and a detection unit for detecting light emitted from the polarization element.

(実施例) 第1図は本発明を4相出力型のロータリエンコーダに
適用したときの第1実施例の概略図である。
(Embodiment) FIG. 1 is a schematic diagram of a first embodiment when the present invention is applied to a four-phase output type rotary encoder.

同図において1は光源で、例えば半導体レーザ等から
成っている。2はコリメータレンズであり、光源1から
の光束を平行光束としている。3はプリズムであり内部
に光分割面としての偏光ビームスプリッタ面4を有して
いる。5a,5bは折返しプリズムでありプリズム3の一部
に設けられている。6は放射状の回折格子円板であり、
不図示の被測定回転物体に取り付けられている。7a,7b
は1/4波長板、8a,8bは反射部材で、例えば反射鏡やキャ
ッツアイ光学系より成っている。9は1/4波長板、10は
第1非偏光ビームスプリッタ、11、12は第2、第3非偏
光ビームスプリッタ、13a〜13dは各々偏光板、14a〜14d
は各々4相用の検出素子である。
In FIG. 1, reference numeral 1 denotes a light source, which comprises, for example, a semiconductor laser or the like. Reference numeral 2 denotes a collimator lens that converts a light beam from the light source 1 into a parallel light beam. Reference numeral 3 denotes a prism having a polarizing beam splitter surface 4 as a light splitting surface inside. 5a and 5b are folding prisms, which are provided in a part of the prism 3. 6 is a radial diffraction grating disk,
It is attached to a rotating object to be measured (not shown). 7a, 7b
Is a quarter wavelength plate, and 8a and 8b are reflection members, which are composed of, for example, a reflection mirror or a cat's eye optical system. 9 is a quarter-wave plate, 10 is a first non-polarizing beam splitter, 11 and 12 are second and third non-polarizing beam splitters, 13a to 13d are polarizing plates, 14a to 14d, respectively.
Are detection elements for each of the four phases.

本実施例では光源1からの光束をコリメーターレンズ
2で平行光束とし、プリズム3の入射面3aに入射させ、
反射面3bで反射させた後偏光ビームスプリッタ面4に導
光し等光量の反射光1aと透過光1bの、例えば水平方向と
垂直方向の2つの直線偏光の光束に分割している。
In this embodiment, the light beam from the light source 1 is converted into a parallel light beam by the collimator lens 2 and is incident on the incident surface 3a of the prism 3.
After being reflected by the reflection surface 3b, the light is guided to the polarization beam splitter surface 4 and divided into two linearly polarized light beams, for example, a horizontal direction and a vertical direction, of the reflected light 1a and the transmitted light 1b having the same amount of light.

このうち例えば偏光ビームスプリッタ面4に対して水
平方向の直線偏光の反射光1aを反射面3bと折返しプリズ
ム5の反射面で反射させた後回折格子円板6面上に入射
させている。
Among them, for example, reflected light 1a of linearly polarized light in the horizontal direction with respect to the polarizing beam splitter surface 4 is reflected by the reflecting surface 3b and the reflecting surface of the folding prism 5, and then is incident on the surface of the diffraction grating disk 6.

そして回折格子円板6からの回折光、例えば1次回折
光を1/4波長板7aを介して円偏光とし反射部材8aで逆回
りの円偏光として同一光路に反射させ1/4波長板7aを通
過させて、その偏光方位を往路の光束に対して90度変更
した直線偏光としている。
Then, the diffracted light from the diffraction grating disc 6, for example, the first-order diffracted light is converted into circularly polarized light through the quarter wavelength plate 7a and reflected in the same optical path by the reflecting member 8a as circularly polarized light in the opposite direction. The light is passed, and its polarization direction is changed to 90 degrees with respect to the light beam on the outward path to be linearly polarized light.

次いで、回折格子円板6と折返しプリズム5aを介して
プリズム3内に導光し、反射面3bで反射させて偏光ビー
ムスプリッタ面4を通過させている。そして反射面3cで
反射させた後、射出面3dより射出させている。
Next, the light is guided into the prism 3 via the diffraction grating disk 6 and the folded prism 5a, reflected by the reflection surface 3b, and passed through the polarization beam splitter surface 4. After being reflected by the reflection surface 3c, the light is emitted from the emission surface 3d.

一方、偏光ビームスプリッタ面4を通過した偏光ビー
ムスプリッタ面4に対して垂直方向の直線偏光の透過光
1bは反射面3cで反射し、折返しプリズム5bの反射面で反
射した後、回折格子円板6に入射し、回折格子円板6か
らの回折光、例えば−1次回折光を1/4波長板7bを介し
て円偏光とし、反射部材8bで逆回りの円偏光として同一
光路に反射させ1/4波長板7bを通過させて、その偏光方
位を往路の光束に対して90度変更した直線偏光としてい
る。
On the other hand, transmitted light of linearly polarized light in a direction perpendicular to the polarization beam splitter surface 4 that has passed through the polarization beam splitter surface 4
1b is reflected by the reflecting surface 3c, reflected by the reflecting surface of the folded prism 5b, then incident on the diffraction grating disc 6, and diffracted light from the diffraction grating disc 6, for example, -1st-order diffracted light, is a quarter wavelength plate. Linearly polarized light having a circular polarization through 7b, reflected in the same optical path as reverse circularly polarized light by the reflection member 8b, passed through the quarter-wave plate 7b, and changed its polarization direction by 90 degrees with respect to the light beam on the outward path. And

次いで、回折格子円板6と折返しプリズム5bを介して
プリズム3内に導入し、反射面3c、偏光ビームスプリッ
タ面4の順で反射させている。そして、再度反射面3cで
反射させた後射出面3dより射出させている。
Next, the light is introduced into the prism 3 via the diffraction grating disk 6 and the folded prism 5b, and is reflected in the order of the reflection surface 3c and the polarization beam splitter surface 4. After being reflected again by the reflection surface 3c, the light is emitted from the emission surface 3d.

このときプリズム3の射出面3dより射出した2光束は
重なり合い、1/4波長板9を通過し、直線偏光(偏光方
位が回転する光束)に変換される。このときの直線偏光
の方位は回折格子円板6の回転に伴って回転し、放射格
子1ピッチ分の回転当たり2回転する。
At this time, the two light beams emitted from the exit surface 3d of the prism 3 overlap, pass through the quarter-wave plate 9, and are converted into linearly polarized light (a light beam whose polarization direction rotates). At this time, the direction of the linearly polarized light rotates with the rotation of the diffraction grating disk 6, and rotates twice for one pitch of the radiation grating.

この直線偏光の光束を第1非偏光ビームスプリッタ10
の第1光分割面(第1反射部材)10aで反射光15aと透過
光15bの2光束に分割している。このうち反射光15aは光
分割面10から見たP−S偏光成分間に位相δが生じてい
る。そこで第2非偏光ビームスプリッタ11の第2光分割
面(第2反射部材)11aを第1非偏光ビームスプリッタ1
0の第1光分割面10aにおけるP偏光成分とS偏光成分と
の関係が逆になるように配置し、第1光分割面10aでP
偏光成分として作用した光を第2光分割面11aでS偏光
成分として作用させている。
The linearly polarized light beam is converted into a first non-polarized beam splitter 10.
The light is split into two light beams, a reflected light 15a and a transmitted light 15b, by a first light splitting surface (first reflecting member) 10a. Among them, the reflected light 15a has a phase δ between the PS polarization components as viewed from the light dividing surface 10. Therefore, the second light splitting surface (second reflecting member) 11a of the second non-polarizing beam splitter 11 is changed to the first non-polarizing beam splitter 1
0 in the first light splitting surface 10a, the relationship between the P-polarized light component and the S-polarized light component is reversed.
The light acting as the polarized light component is caused to act as the S polarized light component on the second light splitting surface 11a.

逆に第1光分割面10aでS偏光成分として作用した光
を第2光分割面11aでP偏光成分として作用させてい
る。これにより第1光分割面10aで反射し、第2光分割
面11aで反射した光に対して各偏光成分間の位相差が相
殺されるようにしている。そしてこのときの光を任意の
方向に偏光軸を向けた偏光板(偏光素子)13aを介して
検出素子(検出手段)14aで検出し、これによりコント
ラストの良い明暗信号を得ている。
Conversely, light acting as an S-polarized light component on the first light splitting surface 10a is caused to act as a P-polarized light component on the second light splitting surface 11a. As a result, the phase difference between the polarized light components of the light reflected by the first light splitting surface 10a and the light reflected by the second light splitting surface 11a is offset. Then, the light at this time is detected by a detecting element (detecting means) 14a via a polarizing plate (polarizing element) 13a having a polarizing axis directed in an arbitrary direction, thereby obtaining a bright and dark signal with good contrast.

又、第2光分割面11aを通過した光は位相差が相殺さ
れていないのでP偏光成分、又はS偏光成分のみを通過
する方位に偏光軸を向けた偏光板13bを介して検出素子1
4bで検出している。
Further, since the light that has passed through the second light splitting surface 11a does not cancel out the phase difference, the detection element 1 passes through the polarizing plate 13b whose polarization axis is directed to the direction in which only the P-polarized component or the S-polarized component passes.
Detected in 4b.

一方、第1非偏光ビームスプリッタ10の第1光分割面
10aを通過した光15bは第3非偏光ビームスプリッタ12の
第3光分割面12aで2つに分割される。
On the other hand, the first light splitting surface of the first non-polarizing beam splitter 10
The light 15b that has passed through 10a is split into two by a third light splitting surface 12a of the third non-polarizing beam splitter 12.

第1光分割面10aを通過した光15bは微少な位相ずれδ
を有しているが、第3光分割面12aを通過する光束は
P−S偏光成分間の関係が逆であるから位相差δが相
殺される。この為この光束は任意の方向に偏光軸を向け
た偏光板13cを介して検出素子14cで受光しても常にコン
トラストの良い明暗信号が得られる。
The light 15b that has passed through the first light splitting surface 10a has a slight phase shift δ
Has the 0, the light beam passes through the third beam splitting surface 12a is a phase difference [delta] 0 because the relationship is reversed between the P-S-polarized light component is canceled out. Therefore, even if this light beam is received by the detection element 14c via the polarizing plate 13c whose polarization axis is directed in an arbitrary direction, a bright and dark signal with good contrast is always obtained.

又、第3光分割面12aで反射した光は位相差が相殺さ
れないのでP偏光成分、又はS偏光成分のみを通過する
ように偏光軸を向けた偏光板13dを介して検出素子14dで
検出している。
Also, since the light reflected by the third light splitting surface 12a does not cancel out the phase difference, it is detected by the detecting element 14d via the polarizing plate 13d whose polarizing axis is directed so that only the P-polarized component or the S-polarized component passes. ing.

尚、本実施例において偏光板は偏光方位を規定する素
子であれば他の光学部材より構成しても良い。
In this embodiment, the polarizing plate may be formed of another optical member as long as it is an element for defining the polarization direction.

本実施例では検出素子14a〜14dより得られる4相の出
力信号を利用して回折格子円板6に取り付けられている
被測定物体の回転角度及びその変位方向を検出してい
る。
In this embodiment, the rotation angle and the displacement direction of the object to be measured attached to the diffraction grating disk 6 are detected using the four-phase output signals obtained from the detection elements 14a to 14d.

第2図は本発明を2相型のロータリエンコーダに適用
したときの一実施例の概略図である。
FIG. 2 is a schematic view of an embodiment when the present invention is applied to a two-phase rotary encoder.

本実施例では第1図の第1実施例に比べて光源1から
の光がプリズム3に入射し射出面3dから射出し、1/4波
長板9を通過するまでは全く同じである。
In this embodiment, the operation from the light source 1 to the prism 3, the emission from the exit surface 3d and the passage through the quarter-wave plate 9 is exactly the same as in the first embodiment shown in FIG.

同図において1/4波長板9を通過した直線偏光(偏光
方位が回転する光束)は反射面(第1反射部材)17によ
りP−S偏光成分間に位相のずれδを生じて反射す
る。この光束は非偏光ビームスプリッタ光分割面10によ
り2分割され、反射された光束はP−S間に位相のずれ
δを加えられるから合計したP−S間の位相ずれは両
者の符号が異なっていてもキャンセルしないので、P又
はS偏光成分の方位と一致するように配置した偏光板13
aを介してA相用の検出素子14aで検出している。一方、
光分割面10を通過した光束は反射面17と等質の反射面
(第2反射部材)18により反射され、反射面17のときと
P−S偏光面の関係が逆転している為に、位相のずれ−
δを生じて、合計したP−S間の位相のずれはキャン
セルしてほぼ0になる。この光束は任意の偏光成分を偏
光素子で取り出してもコントラストの良い明暗信号が得
られるので、例えばP偏光成分とS偏光成分を等光量通
過する45度方位の偏光板(偏光素子)13bを介してB相
用の検出素子(検出手段)14bで検出している。この構
成により、A,B相から得られる正弦波状信号の位相差が9
0度になる。
Linearly polarized light passing through the quarter-wave plate 9 (polarization direction of light beams to rotate) are reflected deviated [delta] 1 of phase between P-S-polarized light component by the reflecting surface (first reflecting member) 17 in FIG. . This light beam is split into two by the non-polarizing beam splitter light splitting surface 10, and the reflected light beam is added with a phase shift δ 2 between PS and PS. The polarization plate 13 arranged so as to coincide with the direction of the P or S polarized light component does not cancel even if
The signal is detected by the detection element 14a for the A phase via a. on the other hand,
The light beam that has passed through the light splitting surface 10 is reflected by the reflection surface 17 and the reflection surface (second reflection member) 18 of the same quality, and the relationship between the reflection surface 17 and the PS polarization plane is reversed. Phase shift-
caused a [delta] 1, the phase shift between the summed P-S is almost cancel 0. Even if an arbitrary polarization component is taken out by a polarization element, a light signal with good contrast can be obtained from this light flux. The detection is performed by the B-phase detecting element (detecting means) 14b. With this configuration, the phase difference between sinusoidal signals obtained from the A and B phases is 9
0 degrees.

尚、本発明はロータリエリコーダに限らずリニアエン
コーダにも同様に適用することが出来る。更に、互いに
直交する直線偏光の2つの干渉光の光路長変化や位相変
化等を利用した光学測定器にも同様に適用することがで
きる。
The present invention can be applied not only to the rotary encoder but also to a linear encoder. Furthermore, the present invention can be similarly applied to an optical measuring instrument utilizing a change in optical path length, a change in phase, and the like of two interference lights of linearly polarized light orthogonal to each other.

(発明の効果) 本発明によれば被測定物体の物理量の変動を直線偏光
光束の偏光方位の回転に変換して求める際、光分割手段
により分割した複数の光束のうち光分割手段内の反射面
で生じたP−S偏光成分間の位相ずれが相殺するような
少なくとも1つの他の反射面を介して検出することによ
り、例えば光源からの発振波長が変動しても干渉信号の
コントラストが変動しなく各出力信号間でバランスの良
い常に高精度な検出が可能な光学装置を達成することが
できる。
(Effects of the Invention) According to the present invention, when a change in a physical quantity of an object to be measured is converted into a rotation of a polarization direction of a linearly polarized light beam, the reflection in the light splitting unit among a plurality of light beams split by the light splitting unit is determined. By detecting the light through at least one other reflecting surface such that the phase shift between the PS polarization components generated on the surface cancels out, for example, even if the oscillation wavelength from the light source changes, the contrast of the interference signal changes. Thus, an optical device that can always perform high-precision detection with good balance between output signals can be achieved.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明を4相型のロータリエンコーダに適用し
たときの第1実施例の概略図、第2図は本発明を2相型
のロータリエンコーダに適用したときの第2実施例の概
略図、第3,第4図は各々従来の非偏光ビームスプリッタ
における反射光と透過光の分光特性の説明図である。 図中、1は光源、2はコリメーターレンズ、3はプリズ
ム、4はビームスプリッタ面、5a,5bは折返しプリズ
ム、6は回折格子円板、7a,7b,9は1/4波長板、8a,8bは
反射部材、10,11,12は非偏光ビームスプリッター、13a
〜13dは偏光板、14a〜14dは検出素子である。
FIG. 1 is a schematic diagram of a first embodiment when the present invention is applied to a four-phase rotary encoder, and FIG. 2 is a schematic diagram of a second embodiment when the present invention is applied to a two-phase rotary encoder. FIGS. 3 and 4 are illustrations of spectral characteristics of reflected light and transmitted light in a conventional non-polarizing beam splitter. In the figure, 1 is a light source, 2 is a collimator lens, 3 is a prism, 4 is a beam splitter surface, 5a and 5b are folding prisms, 6 is a diffraction grating disk, 7a, 7b and 9 are 1/4 wavelength plates, 8a , 8b are reflective members, 10, 11, 12 are non-polarizing beam splitters, 13a
13d is a polarizing plate, and 14a to 14d are detection elements.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 石井 哲 東京都大田区下丸子3丁目30番2号 キ ヤノン株式会社内 (56)参考文献 特開 昭63−263452(JP,A) 特開 昭62−200219(JP,A) 特開 昭61−66926(JP,A) ────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Tetsu Ishii 3-30-2 Shimomaruko, Ota-ku, Tokyo Canon Inc. (56) References JP-A-63-263452 (JP, A) JP-A-62 -200219 (JP, A) JP-A-61-66926 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】光束の偏光方位を検出する光学装置におい
て、偏光方位が回転する光束を反射させる第1反射部材
と、該第1反射部材でP偏光成分として反射させた光を
S偏光成分として反射させる又は該第1反射部材でS偏
光成分として反射させた光をP偏光成分として反射させ
る第2反射部材と、該第2反射部材からの反射光束から
特定の偏光方位の成分のみを取り出す偏光素子と、該偏
光素子から射出した光を検出する検出手段とを有するこ
とを特徴とする光学装置。
1. An optical device for detecting a polarization direction of a light beam, wherein the first reflection member reflects a light beam having a rotating polarization direction, and light reflected as a P-polarization component by the first reflection member is converted to an S-polarization component. A second reflecting member for reflecting light reflected by the first reflecting member as an S-polarized light component as a P-polarized light component, and a polarized light for extracting only a component of a specific polarization direction from a light beam reflected from the second reflecting member; An optical device comprising: an element; and detection means for detecting light emitted from the polarizing element.
JP8458588A 1988-04-06 1988-04-06 Optical device Expired - Lifetime JP2600783B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP8458588A JP2600783B2 (en) 1988-04-06 1988-04-06 Optical device
US07/334,197 US5067813A (en) 1988-04-06 1989-04-06 Optical apparatus for measuring displacement of an object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8458588A JP2600783B2 (en) 1988-04-06 1988-04-06 Optical device

Publications (2)

Publication Number Publication Date
JPH01257216A JPH01257216A (en) 1989-10-13
JP2600783B2 true JP2600783B2 (en) 1997-04-16

Family

ID=13834750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8458588A Expired - Lifetime JP2600783B2 (en) 1988-04-06 1988-04-06 Optical device

Country Status (1)

Country Link
JP (1) JP2600783B2 (en)

Also Published As

Publication number Publication date
JPH01257216A (en) 1989-10-13

Similar Documents

Publication Publication Date Title
JP2603305B2 (en) Displacement measuring device
JPH07101181B2 (en) Position detector and position measuring method
JP2586120B2 (en) encoder
JPH056853B2 (en)
JP2004144581A (en) Displacement detecting apparatus
JP4365927B2 (en) Interference measuring device and grating interference encoder
JP3495783B2 (en) Encoder
JPH01284715A (en) Encoder
JPH0778433B2 (en) Rotary encoder
JPH045922B2 (en)
JP2683117B2 (en) encoder
US5067813A (en) Optical apparatus for measuring displacement of an object
JP2547826B2 (en) Interferometer using multimode semiconductor laser
JPH02138821A (en) Rotary encoder
JP2567036B2 (en) Optical encoder
JP2600783B2 (en) Optical device
JPH06160117A (en) Optical displacement detecting device
JP2650645B2 (en) Optical device
JPH02298804A (en) Interferometer
JP2003097975A (en) Origin detecting device for rotary encoder and measurement device for rotation information
JPH04130220A (en) Encoder
JP2683098B2 (en) encoder
JP2020051782A (en) Optical angle sensor
JP3517506B2 (en) Optical displacement measuring device
JP3937593B2 (en) Displacement information detector

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090129

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090129

Year of fee payment: 12