JPH04130220A - Encoder - Google Patents

Encoder

Info

Publication number
JPH04130220A
JPH04130220A JP25228990A JP25228990A JPH04130220A JP H04130220 A JPH04130220 A JP H04130220A JP 25228990 A JP25228990 A JP 25228990A JP 25228990 A JP25228990 A JP 25228990A JP H04130220 A JPH04130220 A JP H04130220A
Authority
JP
Japan
Prior art keywords
diffraction grating
moving
diffracted lights
diffraction
moving scale
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25228990A
Other languages
Japanese (ja)
Other versions
JP3038860B2 (en
Inventor
Makoto Takamiya
誠 高宮
Hiroshi Sugiyama
浩 杉山
Hidejiro Kadowaki
門脇 秀次郎
Yasuhiko Ishida
泰彦 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2252289A priority Critical patent/JP3038860B2/en
Publication of JPH04130220A publication Critical patent/JPH04130220A/en
Application granted granted Critical
Publication of JP3038860B2 publication Critical patent/JP3038860B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To make it possible to detect the moving state stably and highly accurately without wavelength dependency of laser light by splitting coherent luminous flux into a plurality of diffracted lights at the specified orders, and irradiating the diffracted lights into a plurality of regions of the diffraction grating on the surface of a moving scale. CONSTITUTION:The laser light emitted from a laser light source 1 is made to be the parallel luminous flux through a collimator lens 2 and vertically irradiates into a diffraction grating 101. Diffracted lights 1a1 and 1b1 at the specified orders are emitted from the diffraction grating 101 at a diffraction angle theta0. The diffracted lights 1a1 and 1b1 are irradiated on two places 102a and 102b of the diffraction grating on a moving scale 3 at an angle theta0' respectively. Two diffracted lights 1a2 and 1b2 at the specified orders which undergo doppler shift in response to the moving speed V of the moving scale 3 in the direction of each center are irradiated into a transmitting type diffraction grating 103 at an incident angle theta0' respectively. After the diffraction and overlapping, the lights are irradiated into a light receiving means 8. In the light receiving means 8, the output signal corresponding to the moving state of the moving scale 3 is obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はエンコーダーに関し、特に移動物体に取付けた
移動スケール面上の回折格子に可干渉性光束を入射させ
該回折格子からのドツプラーシフトを受けた特定次数の
回折光を互いに干渉させて干渉縞を形成し、干渉縞の明
暗の縞を計数することによって回折格子の移動状態、即
ち移動物体の移動状態を測定するロータリーエンコーダ
ーやリニアエンコーダー等のエンコーダーに関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to an encoder, and more particularly, to an encoder, in which a coherent light beam is incident on a diffraction grating on a moving scale surface attached to a moving object, and a Doppler shift from the diffraction grating is detected. Rotary encoders, linear encoders, etc. that measure the movement state of a diffraction grating, that is, the movement state of a moving object, by making the received diffracted lights of specific orders interfere with each other to form interference fringes, and counting the bright and dark fringes of the interference fringes. This is related to the encoder.

(従来の技術) 近年NC工作機械や半導体焼付装置等の精密機械におい
ては1gm以下(サブミクロン)の単位で測定すること
のできる精密な測定器が要求されている。従来よりサブ
ミクロンの単位で測定することのできる測定器としては
、レーザー専の可干渉性光束を用い、移動物体からの回
折光より干渉縞を形成させ、該干渉縞を利用したロータ
リーエンコーダーやリニアエンコーダーが良く知られて
いる。
(Prior Art) In recent years, precision machines such as NC machine tools and semiconductor printing equipment have required precision measuring instruments that can measure in units of 1 gm or less (submicron). Traditionally, measuring instruments capable of measuring in submicron units use a laser-specific coherent light beam to form interference fringes from the diffracted light from a moving object, and use rotary encoders and linear encoders that utilize these interference fringes. Encoders are well known.

第7図は従来の例えば特開昭63−311121号公報
で提案されているリニアエンコーダーの一例の構成図で
ある。同図においてレーザーlからの可干渉性光束をコ
リメーターレンズ2によって略平行光束とし、偏光ビー
ムスプリッタ−9に入射させ直線偏光の透過光束と同じ
く直線偏光の反射光束の2つの光束に分割している。こ
のときレーザーlの出射光束の直線偏光方位が偏光ビー
ムスプリッタ−9に対して45度となるようにレーザー
lの取付位置を調整している。これにより偏光ビームス
プリッタ−9からの透過光束と反射光束の強度比が略l
:1となるようにしている。
FIG. 7 is a block diagram of an example of a conventional linear encoder proposed in, for example, Japanese Patent Laid-Open No. 63-311121. In the same figure, a coherent light beam from a laser 1 is made into a substantially parallel light beam by a collimator lens 2, and is incident on a polarizing beam splitter 9, where it is split into two light beams: a linearly polarized transmitted beam and a linearly polarized reflected beam. There is. At this time, the mounting position of the laser 1 is adjusted so that the linear polarization direction of the emitted light beam of the laser 1 is 45 degrees with respect to the polarizing beam splitter 9. As a result, the intensity ratio of the transmitted luminous flux and the reflected luminous flux from the polarizing beam splitter 9 is approximately l.
:1.

そして偏光ビームスプリッタ−9からの反射光束と透過
光束をl/4波長板51.5mを介して円偏光とし、反
射鏡101.101で反射させて回折格子30に入射さ
せる際、対象とする回折格子30からのm次回折光が回
折格子30から略垂直に反射するように入射させている
Then, the reflected light flux and the transmitted light flux from the polarizing beam splitter 9 are made into circularly polarized light through a 1/4 wavelength plate 51.5 m, and when they are reflected by reflectors 101 and 101 and incident on the diffraction grating 30, the target diffraction The m-th order diffracted light from the grating 30 is reflected from the diffraction grating 30 substantially perpendicularly.

即ち回折格子30の格子ピッチをP、可干渉性光束の波
長をλ、mを整数とし、可干渉性光束の回折格子30へ
の入射角度をθ、とじたときθ、4sin−’(mλ/
P) となるように入射させている。
That is, when the grating pitch of the diffraction grating 30 is P, the wavelength of the coherent light beam is λ, m is an integer, and the angle of incidence of the coherent light beam on the diffraction grating 30 is θ, then θ, 4sin-'(mλ/
P).

回折格子30から略垂直に射出したm次回折光を所謂キ
ャッツアイ光学系より成る光学部材11に入射させてい
る。光学部材11の焦点面近傍には反射膜12が施され
ているので、入射した光束は第8図に示すように反射膜
12で反射した後、元の光路を戻り光学部材11から射
出し、再度回折格子30に入射する。
The m-th order diffracted light emitted substantially perpendicularly from the diffraction grating 30 is made incident on an optical member 11 comprising a so-called cat's eye optical system. Since a reflective film 12 is provided near the focal plane of the optical member 11, the incident light beam is reflected by the reflective film 12 as shown in FIG. 8, returns to its original optical path, and exits from the optical member 11. The light enters the diffraction grating 30 again.

そして回折格子30で再度回折されたm次の反射回折光
は元の光路を戻り、反射鏡10+、10諺で反射し、1
74波長板5I、5オを透過し偏光ビームスプリッタ−
9に再入射する。
Then, the m-th order reflected diffracted light that is diffracted again by the diffraction grating 30 returns to the original optical path and is reflected by the reflecting mirrors 10+ and 10.
74 wavelength plates 5I and 5O and polarized beam splitter.
9.

このとき再回折光はl/4波長板5+ 、5諺を往復し
ているので、偏光ビームスプリッタ−9で最初反射した
光束は再入射するときは偏光ビームスプリッタ−9に対
して偏光方位が90度興なっている為、透過するように
なる。逆に偏光ビームスプリッタ−9で最初透過した光
束は再入射したとき反射されるようになる。
At this time, the re-diffracted light goes back and forth between the 1/4 wavelength plates 5+ and 5+, so when the light beam first reflected by the polarizing beam splitter 9 re-enters, the polarization direction is 90 degrees with respect to the polarizing beam splitter 9. Since it is becoming popular, it becomes transparent. Conversely, the light beam that first passes through the polarizing beam splitter 9 is reflected when it enters the beam again.

こうして偏光ビームスプリッタ−9で2つの回折光を重
なり合わせl/4波長板5Iを介した後、円偏光とし、
ビームスプリッタ−6で2つの光束に分割し、各々偏光
板7+、7mを介した後、直線偏光とし受光素子8+、
8麿に各々入射させている。
In this way, the two diffracted lights are superimposed by the polarizing beam splitter 9, passed through the 1/4 wavelength plate 5I, and then converted into circularly polarized light.
The beam splitter 6 splits the beam into two beams, each passes through a polarizing plate 7+, 7m, and then becomes linearly polarized light through a light receiving element 8+,
The light is incident on each of the eight beams.

受光素子8+、8mで90度の位相差を持った2相の周
期信号として検出された信号はパルス出力回路15にて
検出分解能を高める為に内挿処理される。そして各出力
信号の波形のゼロクロス点を検出することで分割パルス
を得て、これを回折格子30の変位に応じた検出パルス
として出力している。即ちパルス出力回路15からは入
射光束に対する回折格子30の相対変化量(移動量)に
応じた数の検出パルスを出力している。同図のリニアエ
ンコーダは該検出パルスを用いて移動物体の移動速度、
移動方向等の移動状態を検出している。
The signals detected by the light receiving elements 8+ and 8m as two-phase periodic signals having a phase difference of 90 degrees are subjected to interpolation processing in the pulse output circuit 15 in order to increase the detection resolution. Then, a divided pulse is obtained by detecting the zero-crossing point of the waveform of each output signal, and this is output as a detection pulse corresponding to the displacement of the diffraction grating 30. That is, the pulse output circuit 15 outputs a number of detection pulses corresponding to the relative change amount (movement amount) of the diffraction grating 30 with respect to the incident light beam. The linear encoder shown in the figure uses the detection pulses to determine the moving speed of the moving object.
The state of movement, such as the direction of movement, is detected.

(発明が解決しようとする問題点) 第7図に示すエンコーダではレーザ1として半導体レー
ザな用いた場合には、例えば温度変化等によりレーザ光
に波長変動が生じてくる。そしてこれに伴って回折格子
30からの回折角が変化し、集光系20への入射光束が
本来の光路から外れてくる。同図ではこのときの波長変
調に伴う本来の光路からずれた入射光束を入射時と同一
方向の光路に戻す為に第8図に示すようなキャッツアイ
光学系を用いている。
(Problems to be Solved by the Invention) In the encoder shown in FIG. 7, when a semiconductor laser is used as the laser 1, wavelength fluctuations occur in the laser light due to, for example, temperature changes. Along with this, the diffraction angle from the diffraction grating 30 changes, and the light beam incident on the condensing system 20 deviates from the original optical path. In this figure, a cat's eye optical system as shown in FIG. 8 is used in order to return the incident light beam that is deviated from the original optical path due to the wavelength modulation to the optical path in the same direction as when it was incident.

尚このときの波長依存性の回避はキャッツアイ光学系の
代わりにコーナーキューブを用いても同様の効果が得ら
れる。
Note that the same effect can be obtained in avoiding the wavelength dependence at this time by using a corner cube instead of the cat's eye optical system.

しかしながら一般にキャッツアイ光学系やコーナーキュ
ーブを装置の一部に設けると前述した効果は得られるが
装置全体が複雑化してくる傾向がある。
However, in general, if a cat's eye optical system or a corner cube is provided in a part of the device, the above-mentioned effects can be obtained, but the device as a whole tends to become complicated.

本発明は第7図のエンコーダを改良し、キャッツアイ光
学系やコーナーキューブを用いずに簡素な構成によりレ
ーザ光の波長依存性がなく安定した高精度な移動状態の
検出が可能なエンコーダの提供を目的とする。
The present invention improves the encoder shown in Fig. 7 and provides an encoder that is capable of detecting a moving state with a stable and high precision without wavelength dependence of laser light with a simple configuration without using a cat's eye optical system or a corner cube. With the goal.

(問題点を解決する為の手段) 本発明のエンコーダは可干渉性の光束を第1回折格子を
介して所定次数の複数の回折光に分割し、該複数の回折
光を各々移動物体に連結した移動スケール面上に設けた
回折格子の複数の領域に入射させ、該移動スケール面上
の回折格子から発生する特定次数の複数の回折光を第2
回折格子を介して重ね合わせた後受光手段に導光し、該
受光手段から得られる出力信号を利用して該移動物体の
移動状態を検出するようにしたことを特徴としている。
(Means for solving the problem) The encoder of the present invention splits a coherent light beam into a plurality of diffracted lights of a predetermined order via a first diffraction grating, and connects each of the plurality of diffracted lights to a moving object. A plurality of diffracted lights of specific orders generated from the diffraction grating on the moving scale surface are incident on a plurality of regions of a diffraction grating provided on the moving scale surface.
The feature is that the light is superimposed through a diffraction grating and then guided to a light receiving means, and the moving state of the moving object is detected using an output signal obtained from the light receiving means.

この他事発明では可干渉性の光束を第1回折格子を介し
て所定次数の複数の回折光に分割し、該複数の回折光を
各々移動物体に連結した移動スケール面上の該第1回折
格子と同一の格子ピッチの回折格子の複数の領域に入射
させ、該移動スケール面上の回折格子から垂直方向に発
生する特定次数の複数の回折光をミラーを介して元の光
路に戻し、該移動スケール面上の回折格子で回折させ該
第1回折格子を介して重ね合わせた後、受光手段に導光
し、該受光手段から得られる出力信号を利用して該移動
物体の移動状態を検出するようにしたことを特徴として
いる。
In this other invention, a coherent light beam is divided into a plurality of diffracted lights of a predetermined order through a first diffraction grating, and each of the plurality of diffracted lights is connected to a moving object. A plurality of diffracted lights of specific orders generated perpendicularly from the diffraction grating on the moving scale surface are made incident on multiple regions of a diffraction grating having the same grating pitch as the grating, and are returned to the original optical path via a mirror. After being diffracted by a diffraction grating on the moving scale surface and superimposed via the first diffraction grating, the light is guided to a light receiving means, and the moving state of the moving object is detected using the output signal obtained from the light receiving means. It is characterized by the fact that it is made to do so.

(実施例) 第1図(A)、CB)は本発明をリニアエンコーダに適
用したときの第1実施例の要部斜視図と要部断面図であ
る。
(Embodiment) FIGS. 1A and 1B are a perspective view and a sectional view of a main part of a first embodiment when the present invention is applied to a linear encoder.

図中1はレーザ光源で半導体レーザから成り、波長λ(
=780nm)のレーザ光を放射している。2はコリメ
ーターレンズでありレーザ光源lからのレーザ光束を平
行光束としている。
1 in the figure is a laser light source, which consists of a semiconductor laser and has a wavelength λ (
=780nm) laser beam is emitted. A collimator lens 2 converts the laser beam from the laser light source 1 into a parallel beam.

101% 103は各々第1、第2回折格子であり格子
ピッチ2dの透過型の回折格子より成り、同一の温度膨
張係数を有する基板面上に設けられている。
101% First and second diffraction gratings 103 are transmission type diffraction gratings with a grating pitch of 2d, and are provided on substrate surfaces having the same coefficient of thermal expansion.

これにより温度変化に伴う検出誤差を防止している。This prevents detection errors due to temperature changes.

3は移動物体(不図示)に連結された透明の移動スケー
ルであり、透過型の格子ピッチdの回折格子102が設
けられている。又移動スケール3は第1、第2回折格子
101.103に挟まれており矢印で示すように格子配
列方向に速度Vで移動している。
3 is a transparent moving scale connected to a moving object (not shown), and is provided with a transmission type diffraction grating 102 having a grating pitch d. The moving scale 3 is sandwiched between the first and second diffraction gratings 101 and 103, and moves at a speed V in the grating arrangement direction as shown by the arrow.

8は受光手段である。8 is a light receiving means.

本実施例ではレーザ光源lから放射されたレーザ光はコ
リメーターレンズ2て平行光束とされ第1回折格子10
1に垂直入射する。このとき第1回折格子101からは
所定次数(本実施例では±1次であるが2次以上ありて
も良い、)の2つの回折光1al、lblが回折角θ0
.即ち0o−sun−’(入/2d)−−−(1)で射
出してくる。
In this embodiment, the laser light emitted from the laser light source 1 is converted into a parallel beam by the collimator lens 2, and the first diffraction grating 10
It is perpendicularly incident on 1. At this time, from the first diffraction grating 101, two diffracted lights 1al and lbl of a predetermined order (±1st order in this embodiment, but 2nd order or more may also exist) are transmitted at a diffraction angle θ0.
.. That is, it is ejected at 0o-sun-' (input/2d)---(1).

第1回折格子101で回折角θ。て回折された2つの回
折光1al、lblは各々移動スケール3面上の回折格
子の2ケ所102m、102bに角度θ0で入射する。
The diffraction angle θ at the first diffraction grating 101. The two diffracted lights 1al and lbl are respectively incident on two locations 102m and 102b of the diffraction grating on the three surfaces of the moving scale at an angle θ0.

そして各々の回折格子102m、102bllて各々の
中心方向に移動スケール3の移動速度Vに応じてドツプ
ラーシフトを受けた2つの特定次数(本実施例では±1
次)の回折光1a2.1b2を透過型の第2回折格子1
03に各々入射角θ。
Then, each of the diffraction gratings 102m and 102bll has two specific orders (in this example, ±1
The second diffraction grating 1 transmits the diffracted light 1a2.1b2 of
03 is the incident angle θ.

で入射させ、回折させ重ね合わせた後受光手段8に入射
させている。
After being diffracted and superimposed, the light is made incident on the light receiving means 8.

受光手段8では移動スケール3の移動状態に対応した出
力信号を得ている。
The light receiving means 8 obtains an output signal corresponding to the moving state of the moving scale 3.

本実施例では移動スケール3が速度Vで移動しており、
この移動スケール3面上の回折格子102a、102b
部に興った方向から入射角θ。で2つの回折光1a1.
lblを入射させている。
In this embodiment, the moving scale 3 is moving at a speed V,
Diffraction gratings 102a and 102b on the three surfaces of the moving scale
The angle of incidence θ is from the direction in which it appears on the surface. The two diffracted lights 1a1.
lbl is incident.

このとき回折格子102a、102b部からの回折光の
周波数は、移動速度Vに比例して各々+Δf、−Δfの
ドツプラーシフトを受ける。ここで、レーザー光の波長
なλとすれば周波数置イヒΔfは入射角をθとすると次
の(2)式で表わすことができる。
At this time, the frequencies of the diffracted lights from the diffraction gratings 102a and 102b undergo a Doppler shift of +Δf and −Δf, respectively, in proportion to the moving speed V. Here, if λ is the wavelength of the laser beam, then the frequency position Δf can be expressed by the following equation (2), where θ is the incident angle.

Δf=v−5in (θ)/λ−−−(2)+Δf、−
Δfのドツプラーシフトを受けた2つの回折光は、互い
に干渉しあって受光手段の受光面での明暗の変化をもた
らし、その周波数Fは次の(3)式で与えられる。
Δf=v-5in (θ)/λ−−−(2)+Δf,−
The two diffracted lights that have undergone a Doppler shift of Δf interfere with each other and cause a change in brightness on the light receiving surface of the light receiving means, and the frequency F thereof is given by the following equation (3).

F=2 ・Δf=2 ・V−sin(θ)/λ−・・・
・・ (3) (3)式から、受光手段の周波数F(以下「ドツプラー
周波数」と呼ぶ)を測定すれば移動スケール3の移動速
度Vが求められる。
F=2 ・Δf=2 ・V-sin(θ)/λ-...
(3) From equation (3), the moving speed V of the moving scale 3 can be found by measuring the frequency F (hereinafter referred to as "Doppler frequency") of the light receiving means.

本実施例では移動スケール3の回折格子102a、10
2b部に各々興った方向から入射角θ0で入射させてい
るので(1)、(3)式より F:2 ・ v−S i nθ。/λ=V/d・ ・ 
・ ・ ・ (4) となる1wJちレーザ光の波長λに依存しなく回折格子
の格子とツチdに反比例し、移動スケール3の速度■に
比例したドツプラー周波数Fを検出することができる。
In this embodiment, the diffraction gratings 102a and 10 of the moving scale 3
Since the light is incident on portion 2b at an incident angle θ0 from each direction, F: 2 · v−S in θ from equations (1) and (3). /λ=V/d・・
・ ・ ・ (4) It is possible to detect the Doppler frequency F, which is 1wJ and is inversely proportional to the grating of the diffraction grating and the width d of the diffraction grating, independent of the wavelength λ of the laser beam, and proportional to the speed ■ of the moving scale 3.

このとき移動スケール3が回折格子102の一格子ピッ
チdだけ矢印の如く格子配列方向に変位すると受光手段
8からは4個の明暗信号(正弦波信号)が得られる。即
ち移動スケール3のd/4の変位量に対し受光手段8か
ら1ノスルスの信号が検出される。
At this time, when the moving scale 3 is displaced by one grating pitch d of the diffraction grating 102 in the grating arrangement direction as shown by the arrow, four bright and dark signals (sine wave signals) are obtained from the light receiving means 8. That is, a signal of 1 nosrus is detected from the light receiving means 8 for a displacement amount of d/4 of the moving scale 3.

本実施例ではこのときの受光手段8からの出力信号を用
いて移動スケール3.即ち移動物体の移動状態を検出し
ている。
In this embodiment, using the output signal from the light receiving means 8 at this time, the moving scale 3. That is, the moving state of the moving object is detected.

又本実施例ではレーザ光源1から放射されるレーザ光の
波長λが変化して(1)式の回折角θ。が変化してもs
inθ・/λが一定となるようにしている。即ち移動ス
ケール3から発生するドツプラーシフトを受けた中心方
向への±1次回折光の第2回折格子103への入射位置
が不変である為、常に安定した信号が得られるとし1う
特長がある。
Furthermore, in this embodiment, the wavelength λ of the laser light emitted from the laser light source 1 changes, resulting in the diffraction angle θ of equation (1). Even if s changes
Inθ·/λ is kept constant. That is, since the position of incidence of the ±1st-order diffracted light toward the center, which has undergone a Doppler shift generated from the moving scale 3, on the second diffraction grating 103 remains unchanged, one advantage is that a stable signal can always be obtained. .

第2図は本発明をリニアエンコーダーに適用したときの
第2実施例の要部断面図である。
FIG. 2 is a sectional view of a main part of a second embodiment when the present invention is applied to a linear encoder.

本実施例では第1図の第1実施例に比べてλ/4板51
.5I、ビームスプリッタ−17、偏光方位を互いに4
5度傾けて配置した2つの偏光板71.7m、そして2
つの受光手段8+。
In this embodiment, compared to the first embodiment shown in FIG.
.. 5I, beam splitter 17, polarization direction to each other 4
Two polarizing plates 71.7 m arranged at an angle of 5 degrees, and 2
one light receiving means 8+.

8、を設けた点が具っている。そしてこれらの各要素を
設けることにより受光手段81.81から得られる出力
信号に90度の位相差を付与して移動スケール3の移動
方向も判別出来るようにしている。
8, is provided. By providing these elements, a phase difference of 90 degrees is imparted to the output signals obtained from the light receiving means 81, 81, so that the moving direction of the moving scale 3 can also be determined.

この他の構成は第1図と同様である。The other configurations are the same as in FIG. 1.

本実施例ではレーザ光源lから放射されたレーザ光をコ
リメーターレンズ2で平行光束とし、第1回折格子10
1に垂直入射させ、該第1回折格子101で所定次数(
±1次)の2つの回折光la1.lblに分離している
。そして2つの回折光1aL、lblを各々λ/4板5
+、5mで円偏光とし移動スケール3面上の回折格子1
02a、102b部で回折させ、該回折格子102a、
102b部からの特定次数(±1次)の2つの回折光を
第2回折格子103に入射させ重ね合わせている。そし
て第2回折格子103からの回折光をビームスプリッタ
−17で反射光束と透過光束の2つの光束に分離し、各
々偏光板TI、7諺を介して位相が互いに90度ずれた
正弦波信号として受光手段81.8mで検出している0
本実施例ではこの2つの受光手段81.8禦からの出力
信号を用いて移動スケール3の移動速度と共に移動方向
も同時に検出している。
In this embodiment, the laser beam emitted from the laser light source 1 is made into a parallel beam by the collimator lens 2, and the first diffraction grating 10
1, and the first diffraction grating 101 has a predetermined order (
±1st order) two diffracted lights la1. It is separated into lbl. Then, the two diffracted lights 1aL and lbl are each transferred to a λ/4 plate 5.
+, circularly polarized light at 5 m and diffraction grating 1 on the 3 planes of the moving scale
02a and 102b, and the diffraction grating 102a,
Two diffracted lights of a specific order (±1st order) from the section 102b are made incident on the second diffraction grating 103 and superimposed. Then, the diffracted light from the second diffraction grating 103 is separated into two beams, a reflected beam and a transmitted beam, by a beam splitter 17, and each is converted into a sine wave signal whose phase is shifted by 90 degrees from each other through a polarizing plate TI. 0 detected by the light receiving means 81.8m
In this embodiment, the moving speed and moving direction of the moving scale 3 are simultaneously detected using the output signals from these two light receiving means 81.8.

第3図(A)、(B)は本発明をリニアエンコーダに適
用したときの第3実施例の要部斜視図と要部断面図であ
る。
FIGS. 3(A) and 3(B) are a perspective view and a sectional view of a main part of a third embodiment when the present invention is applied to a linear encoder.

本実施例では第1図の第1実施例に比べて移動スケール
3面上に設ける回折格子102を反射型とし、1/4波
長板5と偏光ビームスプリッタ−17を設けている点が
興なり、その他の構成は略同じである。
The advantage of this embodiment is that, compared to the first embodiment shown in FIG. , the other configurations are substantially the same.

本実施例ではレーザ光源lから放射されたレーザ光をコ
リメーターレンズ2で平行光束とし偏光方位を合わせた
偏光ビームスプリッタ−17を通過させ偏光方位を45
度傾けたl/4波長板5で円偏光とし透過型の第1回折
格子101に垂直入射させている。第1回折格子101
で回折された所定次数の2つの回折光1a、lbは(1
)式で示す回折角θ0で出射し、移動スケール3面上に
設けた反射型の回折格子102a、102b部に入射し
、ドツプラーシフトを受けて反射し、元の光路を戻り、
第1回折格子101に再入射し重ね合わせている。
In this embodiment, the laser beam emitted from the laser light source 1 is made into a parallel beam by the collimator lens 2, and is passed through the polarizing beam splitter 17 whose polarization direction is adjusted to 45.
The 1/4 wavelength plate 5 tilted at a degree converts the light into circularly polarized light and makes it perpendicularly enter the transmission type first diffraction grating 101 . First diffraction grating 101
The two diffracted lights 1a and lb of a predetermined order are (1
) is emitted at a diffraction angle θ0 shown by the formula, enters the reflection type diffraction gratings 102a and 102b provided on the three surfaces of the moving scale, undergoes a Doppler shift, is reflected, and returns to the original optical path.
The light enters the first diffraction grating 101 again and is superimposed.

そして重ね合わせた2つの回折光をl/4波長板5を介
して、入射時とは偏光方向が垂直な直線偏光として通過
させ偏光ビームスプリッタ−17で反射させた後受光手
段8に入射させている。そして受光手段8で移動スケー
ル3の移動状態に応じたパルス信号を得ている。
Then, the two superimposed diffracted lights are passed through the 1/4 wavelength plate 5 as linearly polarized light whose polarization direction is perpendicular to that at the time of incidence, reflected by the polarizing beam splitter 17, and then made incident on the light receiving means 8. There is. The light receiving means 8 obtains a pulse signal corresponding to the moving state of the moving scale 3.

本実施例では移動スケール3に反射型の回折格子を設け
て各要素を同一側に配置し、移動スケール3を独立に配
置することを可能とし、装置全体の組立を容易にしてい
る。
In this embodiment, the movable scale 3 is provided with a reflective diffraction grating, and each element is arranged on the same side, making it possible to arrange the movable scale 3 independently, thereby facilitating assembly of the entire device.

第4図(A)、(B)は本発明をリニアエンコーダーに
適用したときの第4実施例の要部斜視図と要部断面図で
ある。
FIGS. 4(A) and 4(B) are a perspective view and a sectional view of a main part of a fourth embodiment when the present invention is applied to a linear encoder.

本実施例では第3図の第3実施例に比べて移動スケール
3面上の格子ピッチdの回折格子102a、102b部
から垂直方向に発生する特定次数の回折格子を利用して
いる点と第1回折格子101の格子ピッチを回折格子1
02と同じ格子ピッチdとしている点とミラー104を
用いている点が興なり、その他の構成は同じである。
Compared to the third embodiment shown in FIG. 3, this embodiment uses diffraction gratings of a specific order generated in the vertical direction from the diffraction gratings 102a and 102b with a grating pitch d on the three surfaces of the moving scale. 1 The grating pitch of the diffraction grating 101 is
The advantages are that the grating pitch d is the same as in 02 and that a mirror 104 is used, but the other configurations are the same.

本実施例では前述の(1)式は θ、=sin−’(λ/d)−・−−(1°)となり、
又(4)式は F = 2 V/d  ・・・・・・・・・(4°)と
なる。
In this example, the above equation (1) becomes θ,=sin-'(λ/d)--(1°),
Further, the formula (4) becomes F = 2 V/d (4°).

本実施例ではレーザ光源lから放射されたレーザ光をコ
リメーターレンズ2で平行光束とし偏光方位を合わせた
偏光ビームスプリッタ−17を通過させ偏光方位を45
度傾けたl/4波長板5で円偏光とし透過型の第1回折
格子lotに垂直入射させている。第1回折格子101
で回折された所定次数の2つの回折光1a、lbは(l
o)式で示す回折角θ。で出射し、移動スケール3面上
に設けた反射型の回折格子102a、102bsに入射
し、ドツプラーシフトを受けて垂直方向に反射回折して
ミラー104で反射して元の光路を戻り移動スケール3
面上の回折格子102a、102b部に再入射し回折さ
れて第1回折格子lotに再入射し重ね合わせている。
In this embodiment, the laser beam emitted from the laser light source 1 is made into a parallel beam by the collimator lens 2, and is passed through the polarizing beam splitter 17 whose polarization direction is adjusted to 45.
The 1/4 wavelength plate 5 tilted at a degree converts the light into circularly polarized light and makes it perpendicularly enter the transmission type first diffraction grating lot. First diffraction grating 101
The two diffracted lights 1a and lb of a predetermined order are (l
o) Diffraction angle θ shown by the formula. It emits light, enters the reflective diffraction gratings 102a and 102bs provided on the three surfaces of the moving scale, undergoes a Doppler shift, is reflected and diffracted in the vertical direction, is reflected by the mirror 104, and returns to the original optical path to the moving scale. 3
The light re-enters the diffraction gratings 102a and 102b on the surface, is diffracted, re-enters the first diffraction grating lot, and is superimposed.

そして重ね合わした2つの回折光をl/4波長板5を介
して、入射時とは偏光方向が垂直な直線偏光として通過
させ偏光ビームスプリッタ−17で反射させた後受光手
段8に入射させている。そして受光手段8で移動スケー
ル3の移動状態に応じたパルス信号を得ている。
Then, the two superimposed diffracted lights are passed through the 1/4 wavelength plate 5 as linearly polarized light whose polarization direction is perpendicular to that at the time of incidence, reflected by the polarizing beam splitter 17, and then made incident on the light receiving means 8. . The light receiving means 8 obtains a pulse signal corresponding to the moving state of the moving scale 3.

本実施例では受光手段8からは移動スケール3の回折格
子102の一格子ピッチdの変位に対して4回の明暗信
号(正弦波信号)が得られる。
In this embodiment, four light and dark signals (sine wave signals) are obtained from the light receiving means 8 for each displacement of one grating pitch d of the diffraction grating 102 of the moving scale 3.

即ちd/4の変位量毎に1パルスの出方信号が得られる
That is, one pulse output signal is obtained for every d/4 displacement amount.

そしてレーザ光源1からのレーザ光の波長λが変動して
前述の(lo)式の回折角θ。が変化しても移動スケー
ル3の回折格子102a、102bから発生するドツプ
ラーシフトを受けた2つの回折光は同一経路で第1回折
格子lotに入射し重ね合わされる為、常に安定した出
方信号が得られる。
Then, the wavelength λ of the laser light from the laser light source 1 changes, resulting in the diffraction angle θ of the above-mentioned equation (lo). Even if the diffraction grating changes, the two diffracted lights generated from the diffraction gratings 102a and 102b of the moving scale 3 that have undergone Doppler shift enter the first diffraction grating lot on the same path and are superimposed, so the output signal is always stable. is obtained.

又第1回折格子101と移動スケール3との間隔が変動
しても互いに平行であれば安定した出力信号が得られる
という特長がある。
Another advantage is that even if the distance between the first diffraction grating 101 and the moving scale 3 changes, a stable output signal can be obtained as long as they are parallel to each other.

第5図(A)、(B)は本発明をリニアエンコーダーに
適用したときの第5実施例の要部斜視図と要部断面図で
ある。
FIGS. 5A and 5B are a perspective view and a sectional view of a main part of a fifth embodiment when the present invention is applied to a linear encoder.

本実施例では第4図の第4実施例に比べて移動スケール
3を透過型のガラス材とし、その面上の回折格子102
を透過型の回折格子とし、移動スケール3の回折格子1
02が設けられている面と反対側の面をミラー面12と
している点が興なり、その他の構成は同じである。
In this embodiment, compared to the fourth embodiment shown in FIG. 4, the moving scale 3 is made of a transmission type glass material, and the diffraction grating 102
is a transmission type diffraction grating, and the diffraction grating 1 of the moving scale 3 is
The difference is that the surface opposite to the surface on which 02 is provided is a mirror surface 12, and the other configurations are the same.

即ち移動スケール3面上の回折格子102a、102b
部に入射した光束のうち、垂直方向に透過回折した特定
次数(±1次)の回折光をミラー面12で反射させ、元
の光路を戻し、回折格子102a、102b部に再入射
させており、その後の光路及び構成は第4図の第4実施
例と同じである。
That is, the diffraction gratings 102a and 102b on the three surfaces of the moving scale
Among the light beams incident on the diffraction gratings 102a and 102b, the diffracted light of a specific order (±1st order) that is transmitted and diffracted in the vertical direction is reflected by the mirror surface 12, returns to its original optical path, and enters the diffraction gratings 102a and 102b again. , and the subsequent optical path and configuration are the same as in the fourth embodiment shown in FIG.

以上の各実施例は本発明をリニアエンコーダに適用した
場合を示したが、本発明はロータリーエンコーダにも同
様に適用することができる。この場合、リニアスケール
の代わりに回転スケールを用いれば良い。
Although each of the above embodiments shows the case where the present invention is applied to a linear encoder, the present invention can be similarly applied to a rotary encoder. In this case, a rotary scale may be used instead of a linear scale.

又6実絶倒においては回折格子から発生する回折光とし
て±1次回折光を利用しているが±nn次回先光nは自
然数)でも良く、又次数の興なる2つの回折光、例えば
0次光とn次回先光を用いても良い。
In addition, in the 6-dimensional system, the ±1st-order diffracted light is used as the diffracted light generated from the diffraction grating, but it may also be ±nn-th order (where n is a natural number), or two diffracted lights of different orders, for example, the 0th order. The light and the n-th order light may be used.

第6図は本発明のエンコーダの駆動システムのシステム
構成図である。
FIG. 6 is a system configuration diagram of the encoder drive system of the present invention.

同図においてはモータやアクチュエータ、内燃機関等の
駆動源を有する駆動手段110の駆動出力部、あるいは
駆動される物体の移動部にはエンコーダ111が接続さ
れ、回転量や回転速度あるいは移動量や移動速度等の駆
動状態を検出する。
In the figure, an encoder 111 is connected to the drive output part of a drive means 110 having a drive source such as a motor, actuator, or internal combustion engine, or to the moving part of a driven object, and encodes the amount of rotation, rotation speed, amount of movement, etc. Detects driving conditions such as speed.

このエンコーダ111の検出出力は制御手段112にフ
ィードバックされ、制御手段112においては設定手段
113で設定された状態となるように駆動手段110に
駆動信号を伝達する。このようなフィードバック系を構
成することによって外乱の影響を受けずに設定手段11
3で設定された駆動状態を保つことができる。こめよう
な駆動システムは1例えば工作機械、製造機械、計測機
器、記録機器、更にはこれらに限らず駆動手段を有する
一般の装置に広く適用することができる。
The detection output of the encoder 111 is fed back to the control means 112, and the control means 112 transmits a drive signal to the drive means 110 so that the state set by the setting means 113 is achieved. By configuring such a feedback system, the setting means 11 can be operated without being affected by disturbances.
The driving state set in step 3 can be maintained. Such a drive system can be widely applied to, for example, machine tools, manufacturing machines, measuring instruments, recording instruments, and not only these, but also general devices having drive means.

(発明の効果) 本発明によれば前述の如く各要素を設定することにより
移動物体の移動状態をレーザ光源から放射されるレーザ
光の波長が変化しても、キャッツアイ光学系を使用せず
、波長依存性の無い状態で安定して高精度に検出するこ
とができるエンコーダを達成することができる。
(Effects of the Invention) According to the present invention, by setting each element as described above, the moving state of a moving object can be determined without using the cat's eye optical system even if the wavelength of the laser light emitted from the laser light source changes. , it is possible to achieve an encoder that can perform stable and highly accurate detection without wavelength dependence.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(A)、(B)は本発明の第1実施例の要部斜視
図と要部断面図、第2図は本発明の第2実施例の要部断
面図、第3図(A)、(B)〜第5図(A)、(B)は
各々本発明の第3〜第5実施例の要部斜視図と要部断面
図、第6図は本発明の駆動システムのシステム構成図、
第7図は従来のエンコーダの要部概略図、第8図は第7
図の一部分の説明図である。 図中1はレーザ光源、2はコリメーターレンズ、3は移
動スケール、5.5+、5@はl/4波長板、6はビー
ムスプリッタ−7,71,7寓は偏光板、8.8+ 、
8mは受光手段、9は偏光ビームスプリッタ−110,
,101,12はミラー 101は第1回折格子、10
3は第2回折格子、102a、102bは回折格子、で
ある。
1(A) and (B) are a perspective view and a sectional view of a main part of a first embodiment of the present invention, FIG. 2 is a sectional view of a main part of a second embodiment of the present invention, and FIG. A), (B) to FIG. 5 (A), (B) are perspective views and cross-sectional views of the main parts of the third to fifth embodiments of the present invention, respectively, and FIG. 6 is a diagram of the drive system of the present invention. system configuration diagram,
Figure 7 is a schematic diagram of the main parts of a conventional encoder, and Figure 8 is a schematic diagram of the main parts of a conventional encoder.
It is an explanatory view of a part of a figure. In the figure, 1 is a laser light source, 2 is a collimator lens, 3 is a moving scale, 5.5+, 5@ is a 1/4 wavelength plate, 6 is a beam splitter, 7, 71, 7 is a polarizing plate, 8.8+,
8m is a light receiving means, 9 is a polarizing beam splitter 110,
, 101, 12 are mirrors 101 is the first diffraction grating, 10
3 is a second diffraction grating, and 102a and 102b are diffraction gratings.

Claims (5)

【特許請求の範囲】[Claims] (1)可干渉性の光束を第1回折格子を介して所定次数
の複数の回折光に分割し、該複数の回折光を各々移動物
体に連結した移動スケール面上に設けた回折格子の複数
の領域に入射させ、該移動スケール面上の回折格子から
発生する特定次数の複数の回折光を第2回折格子を介し
て重ね合わせた後受光手段に導光し、該受光手段から得
られる出力信号を利用して該移動物体の移動状態を検出
するようにしたことを特徴とするエンコーダ。
(1) A plurality of diffraction gratings are provided on a moving scale surface that divides a coherent light beam into a plurality of diffracted lights of a predetermined order via a first diffraction grating, and each of the plurality of diffracted lights is connected to a moving object. A plurality of diffracted lights of specific orders generated from the diffraction grating on the moving scale surface are superimposed via a second diffraction grating, and then guided to a light receiving means, and an output obtained from the light receiving means. An encoder characterized in that the moving state of the moving object is detected using signals.
(2)可干渉性の光束を第1回折格子を介して所定次数
の複数の回折光に分割し、該複数の回折光を各々移動物
体に連結した移動スケール面上の該第1回折格子と同一
の格子ピッチの回折格子の複数の領域に入射させ、該移
動スケール面上の回折格子から垂直方向に発生する特定
次数の複数の回折光をミラーを介して元の光路に戻し、
該移動スケール面上の回折格子で回折させ、該第1回折
格子を介して重ね合わせた後、受光手段に導光し、該受
光手段から得られる出力信号を利用して該移動物体の移
動状態を検出するようにしたことを特徴とするエンコー
ダ。
(2) The first diffraction grating on the moving scale surface splits the coherent light beam into a plurality of diffracted lights of a predetermined order through a first diffraction grating, and connects each of the plurality of diffracted lights to a moving object. The diffraction lights are incident on a plurality of regions of a diffraction grating having the same grating pitch, and a plurality of diffracted lights of a specific order generated in the vertical direction from the diffraction grating on the moving scale surface are returned to the original optical path via a mirror,
After being diffracted by the diffraction grating on the moving scale surface and superimposed via the first diffraction grating, the light is guided to a light receiving means, and an output signal obtained from the light receiving means is used to determine the moving state of the moving object. An encoder characterized by detecting.
(3)前記第1回折格子と第2回折格子の格子ピッチは
同一で、かつ同一の温度膨張係数を有する基板面上に各
々設けられていることを特徴とする請求項1記載のエン
コーダ。
(3) The encoder according to claim 1, wherein the first diffraction grating and the second diffraction grating have the same grating pitch and are provided on substrate surfaces having the same coefficient of thermal expansion.
(4)前記移動スケール面上の回折格子は反射型であり
、前記第1回折格子と第2回折格子を同一部材より構成
したことを特徴とする請求項1又は2記載のエンコーダ
(4) The encoder according to claim 1 or 2, wherein the diffraction grating on the moving scale surface is a reflection type, and the first diffraction grating and the second diffraction grating are made of the same material.
(5)前記移動スケール面上の回折格子は透過型であり
、前記ミラーは該移動スケールの該回折格子が設けられ
ている面とは反対側の面に設けられていることを特徴と
する請求項2記載のエンコーダ。
(5) The diffraction grating on the moving scale surface is of a transmission type, and the mirror is provided on a surface of the moving scale opposite to the surface on which the diffraction grating is provided. Encoder according to item 2.
JP2252289A 1990-09-21 1990-09-21 Encoder Expired - Fee Related JP3038860B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2252289A JP3038860B2 (en) 1990-09-21 1990-09-21 Encoder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2252289A JP3038860B2 (en) 1990-09-21 1990-09-21 Encoder

Publications (2)

Publication Number Publication Date
JPH04130220A true JPH04130220A (en) 1992-05-01
JP3038860B2 JP3038860B2 (en) 2000-05-08

Family

ID=17235187

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2252289A Expired - Fee Related JP3038860B2 (en) 1990-09-21 1990-09-21 Encoder

Country Status (1)

Country Link
JP (1) JP3038860B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06194124A (en) * 1992-12-24 1994-07-15 Canon Inc Displacement detecting device
US5499096A (en) * 1993-04-13 1996-03-12 Sony Magnescale Inc. Optical instrument and measurement for measuring displacement of scale using different order diffraction of a diffraction grating
JPH08240443A (en) * 1995-03-03 1996-09-17 Canon Inc Displacement information detecting device and drive control device using it
JP2012098287A (en) * 2010-11-03 2012-05-24 Dr Johannes Heidenhain Gmbh Optical angle-measuring device
RU2554596C1 (en) * 2013-12-16 2015-06-27 федеральное государственное автономное образовательное учреждение высшего образования "Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики" Ballistic gravity meter
US11220010B2 (en) 2017-08-30 2022-01-11 Canon Kabushiki Kaisha Force sensor, torque sensor, force-sense sensor, fingertip-force sensor, and method of manufacturing the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06194124A (en) * 1992-12-24 1994-07-15 Canon Inc Displacement detecting device
US5499096A (en) * 1993-04-13 1996-03-12 Sony Magnescale Inc. Optical instrument and measurement for measuring displacement of scale using different order diffraction of a diffraction grating
JPH08240443A (en) * 1995-03-03 1996-09-17 Canon Inc Displacement information detecting device and drive control device using it
JP2012098287A (en) * 2010-11-03 2012-05-24 Dr Johannes Heidenhain Gmbh Optical angle-measuring device
RU2554596C1 (en) * 2013-12-16 2015-06-27 федеральное государственное автономное образовательное учреждение высшего образования "Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики" Ballistic gravity meter
US11220010B2 (en) 2017-08-30 2022-01-11 Canon Kabushiki Kaisha Force sensor, torque sensor, force-sense sensor, fingertip-force sensor, and method of manufacturing the same

Also Published As

Publication number Publication date
JP3038860B2 (en) 2000-05-08

Similar Documents

Publication Publication Date Title
US4979826A (en) Displacement measuring apparatus
JP2586120B2 (en) encoder
US7375820B2 (en) Interference measuring apparatus for detecting a plurality of stable phase difference signals
JPH073344B2 (en) Encoder
JPH056853B2 (en)
US5499096A (en) Optical instrument and measurement for measuring displacement of scale using different order diffraction of a diffraction grating
US5000542A (en) Optical type encoder
US6570660B2 (en) Measuring instrument
US5017777A (en) Diffracted beam encoder
US5067813A (en) Optical apparatus for measuring displacement of an object
JPH04130220A (en) Encoder
JPH03146822A (en) Encoder
JPH046884B2 (en)
CN108931190B (en) Displacement detection device
JP5918592B2 (en) Position detection device
JPH07117426B2 (en) Optical encoder
JP2003035570A (en) Diffraction interference type linear scale
JPH02298804A (en) Interferometer
JP2683098B2 (en) encoder
JPH0427870A (en) Encoder
JP2600888B2 (en) Encoder
JP3517506B2 (en) Optical displacement measuring device
JPH07119623B2 (en) Displacement measuring device
EP2138808B1 (en) Photoelectric encoder
JP2600783B2 (en) Optical device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080303

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090303

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100303

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees