WO2002023130A1 - Optical encoder - Google Patents

Optical encoder Download PDF

Info

Publication number
WO2002023130A1
WO2002023130A1 PCT/JP2000/006276 JP0006276W WO0223130A1 WO 2002023130 A1 WO2002023130 A1 WO 2002023130A1 JP 0006276 W JP0006276 W JP 0006276W WO 0223130 A1 WO0223130 A1 WO 0223130A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
scale
pattern
optical encoder
reflecting
Prior art date
Application number
PCT/JP2000/006276
Other languages
French (fr)
Japanese (ja)
Inventor
Toshikazu Satone
Original Assignee
Mitsubishi Denki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Denki Kabushiki Kaisha filed Critical Mitsubishi Denki Kabushiki Kaisha
Priority to JP2002527730A priority Critical patent/JPWO2002023130A1/en
Priority to PCT/JP2000/006276 priority patent/WO2002023130A1/en
Publication of WO2002023130A1 publication Critical patent/WO2002023130A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/347Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells using displacement encoding scales
    • G01D5/34707Scales; Discs, e.g. fixation, fabrication, compensation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/347Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells using displacement encoding scales
    • G01D5/34707Scales; Discs, e.g. fixation, fabrication, compensation
    • G01D5/34715Scale reading or illumination devices

Definitions

  • the present invention relates to an improvement in an optical encoder used for a position detector such as a servo system.
  • FIG. 8 is a side view of a conventional optical encoder.
  • the optical encoder is fixed to the shaft 2 of the module to be detected, and is provided opposite to the scale disk 1 formed of glass or the like and the scale disk 1.
  • the light-emitting diode 3 includes a light-emitting diode 3 and a photodiode 5 that receives light emitted from the light-emitting diode 3 via the scale disk 1 at the light-receiving units 5a and 5b.
  • the scale disk 1 includes a ring-shaped outer pattern 4 and an inner pattern 14, and the outer pattern 4 includes a reflective portion 4b for reflecting light and a slit portion 4a for transmitting light. Similarly, in the inner pattern 14, a reflection portion 14b and a slit portion 14a are formed periodically and repeatedly.
  • the operation of the optical encoder configured as described above will be described with reference to FIG.
  • the scale disk 1 rotates, and the light emitted from the light emitting diode 3 passes through the slit 4a (14a) of the pattern 4 (14) to the photodiode 5
  • Light is received by the light receiving section 5a (5b).
  • the signal output from the light receiving section 5a (5b) has a rectangular waveform in proportion to the slit section 4a (14a) of the pattern 4 (14).
  • the signal output from the light receiving unit 5b is generated by shifting the phase of the signal output from the light receiving unit 5a by 7 ⁇ / 2 because the pattern 4 and the pattern 14 are out of phase by 7 ⁇ 2. .
  • the light emitted from the light emitting diode 3 is not only parallel light Ps generated in parallel from the central axis of the light emitting diode 3, but also several degrees with respect to the central axis. Includes shifted oblique lights PL1 to PL4. In particular, light at the end of the light emitting diode 3 is more likely to generate oblique lights PL1 to PL4. The oblique lights PL1 to PL4 distorted the output signal of the photodiode 5 as shown below.
  • the adjacent slits 4a (4) of the same pattern 4 (14) as shown in Fig. 9 are caused by the oblique light PL1 and PL2 that pass through the slits 4a and 14a.
  • the former is due to mutual interference between the slits 4a and 14a. That is, the parallel light Ps emitted from the light emitting diode 3 passes through the scale disk 1 from the slit portion 4a (14a) of the scale disk 1 and is received by the light receiving portion 5a (5b), and the oblique light PL 2 (PL 1) passes through the adjacent disk portion 14 a (4 a) through the scale disk 1 and is received by the light receiving portion 5 a (5 b).
  • the output signal from the photodiode 5 is not a signal completely proportional to the slit 4a of the pattern 4 and the slit 14a of the pattern 14, but is oblique from the slit 14a (4a) adjacent to each other. Under the influence of light PL 2 (PL 1), it becomes a distorted rectangular wave.
  • the phase difference between the slit portions 4a is 2 TV and the center line of the light receiving portion 5a is the phase difference X with respect to the pattern 4, the phase difference of the parallel light P s emitted from the light emitting diode 3 is given. Is X, and the light passes through the scale disk 1 from the slit portion 4a and is received by the light receiving portion 5a.
  • the phase difference of the oblique light PL 3 (PL 4) is y, which is transmitted through the scale disk 1 from the slit portion 4 a and received by the light receiving portion 5 a.
  • the light receiving section 5a receives both the light having the phase difference X and the light having the phase difference y, the light is a distorted signal including the output signal of the photodiode 5 (or the signal 'component of the phase difference y).
  • the interval between pattern 4 and pattern 14 and the interval between the repetition periods of the slit portions 4a and 14a are made wider. Therefore, there is a problem that it is impossible to manufacture a device having a small size and high resolution performance.
  • the present invention has been made to solve the above problems, and an object of the present invention is to provide an optical encoder that is hardly affected by oblique light generated from a light emitting element even when a pattern or the like is narrowed.
  • An optical encoder includes: a light emitting element that emits light; a light receiving element that receives light emitted from the light emitting element at a predetermined distance and outputs a signal based on the light amount; At least one plate-shaped scale member provided in a light path to a light-receiving element for receiving light emitted from the light source, and connected and fixed to a movable movable portion, wherein the scale member includes: A first reflecting portion for reflecting the light emitted from the light emitting element, and a plurality of slit-shaped first transmitting portions for transmitting the light at predetermined intervals in the first reflecting portion; A first pattern layer provided on the front side and a back side opposed to the first pattern layer; A second reflecting portion that reflects light emitted from the light emitting element; a second transmitting portion that transmits light that has passed through the first transmitting portion in the second reflecting portion; And a second pattern layer provided on the substrate.
  • the first pattern layer in the optical encoder according to the next invention is provided on the front surface, has an inner pattern and an outer pattern arranged side by side, and the second pattern layer is provided on the back surface.
  • the second transmission section has the same shape as the first transmission section, and is provided to face the first transmission section.
  • the scale member in the optical encoder according to the next invention comprises at least a first and a second scale plate, wherein the first scale plate is provided with a first pattern layer, The second scale layer is provided on the second scale plate, and the first scale plate and the second scale plate are arranged in parallel.
  • An optical encoder according to the next invention is characterized in that the first scale plate and the second scale plate are joined via an adhesive.
  • the second transmission section is provided continuously in a track shape, and has a plurality of the first pattern layers.
  • the optical encoder according to the next invention is characterized in that a light absorbing portion for absorbing the light emitted from the light emitting element is provided instead of the second reflecting portion for reflecting the light emitted from the light emitting element. Is what you do.
  • FIG. 1 is a partial front sectional view of an optical encoder according to an embodiment of the present invention.
  • FIG. 2 shows the front surface (a) and back surface (b) of the scale disk in Fig. 1.
  • FIG. 3 is a process diagram showing a manufacturing process of the scale disk shown in FIG.
  • FIG. 4 is a front sectional view showing that there is no influence of oblique light between slits in the same pattern in the optical encoder shown in FIG.
  • FIG. 5 is a front cross-sectional view (a) in which two scale disks according to another embodiment of the present invention are stuck together so that the reflecting portion is on the surface, and a front cross-sectional view in which the two scale discs are stuck together ( b).
  • FIG. 6 is a front sectional view of an optical encoder according to another embodiment of the present invention.
  • FIG. 7 is a plan view of a scale disk according to another embodiment of the present invention.
  • FIG. 8 is a partial front sectional view of a conventional optical encoder. .
  • FIG. 9 is a partial front sectional view showing the effect of oblique light between slits in the same pattern in a conventional optical encoder.
  • FIG. 1 is a side view of an optical encoder according to an embodiment of the present invention
  • FIG. 2 is a plan view showing a front surface (a) and a back surface (b) of the scale disk in FIG.
  • the same reference numerals as those in the related art indicate the same or corresponding parts.
  • an optical encoder is fixed to a shaft (movable part) 2 of a motor to be detected, and a scale disk 101 as a plate-like scale member formed of glass or the like;
  • a light emitting diode 3 provided as a light emitting element provided opposite to the disk 101 and light emitted from the light emitting diode 3 is used as a light emitting diode 4, 1 4, 104 on the scale disk 101.
  • 1 14 through which the photodiodes as light receiving elements are received by the light receiving sections 5a and 5b. And five.
  • the scale disk 101 has exactly the same pattern formed on the front and rear surfaces, and the surface of the scale disk 101 has the same ring-shaped first pattern as the conventional one.
  • the outer surface pattern 4 has an outer surface pattern 4 and an inner surface layer 14 as an evening layer, and the outer surface pattern 4 has a reflective portion 4b (a hatched portion) on which chrome is deposited (hatched portion) for reflecting light. 1), and a slit portion 4a (first transmitting portion) that transmits light is formed periodically in the reflecting portion 4b.
  • a reflection portion 14b first reflection portion
  • a slit portion 14a first transmission portion
  • the outer back pattern 104 includes a chrome-deposited (hatched portion) reflecting portion 104 b (second reflecting portion) and a reflecting portion 104 for reflecting light.
  • a slit portion 104 a as a second transmitting portion for transmitting light is formed periodically and repeatedly, and the inner back pattern 114 also has a reflecting portion 114 b similarly. (Second reflection part) is formed, and a slit-shaped transmission part 114a (second transmission part) is formed periodically and repeatedly in the reflection part 114b.
  • the slit portion 4a and the slit portion 104a have the same surface area and are located at positions facing each other.
  • the slits 14a and the slits 114a have the same relationship.
  • FIG. 3 is a process diagram showing a manufacturing process of the scale disk shown in FIG.
  • the resist 150 After irradiating a beam from a laser light generator (not shown) facing the surface of the scale disk 1, the resist 150 is immersed in the imaging solution to face the reflecting portions 4b and 14b. to resist 1 5 0 parts only are removed allowed formed a concave portion 1 5 0 a, the resist 1 5 0 is cured (FIG. 3 (c)) to the back surface of the c scale disc 1 resist 1 5 0 Chromium 160 thinner than the thickness is deposited (Fig. 3 (d)). The resist 150 is removed using a solvent such as thinner to form slits 104a and 114a, and the reflecting portions 104b and 114b with chromium deposited on both surfaces. A scale disk 101 having the inner back pattern 114 and the outer back pattern 104 is formed (FIG. 3 (e)).
  • FIG. 1 is a view to a front cross-sectional view that there is no influence of the oblique light between the slits in the first pattern.
  • the parallel light Ps of the light emitted from the light emitting diode 3 is divided into the slit portions 4 a, 1 in the outer surface pattern 4 and the inner surface pattern 14 of the scale disk 101. 4 Inside the scale disk 1 0 1 when incident on a Then, the light is emitted from the slit portions 104a and 114a of the outer back pattern 104 and the inner back pattern 114, and is received by the light receiving portions 5a and 5b of the photodiode 5.
  • the oblique light PL 1 (PL 2) emitted from the light-emitting diode 3 enters the slit portion 4 a (14 a), passes through the inside of the scale disk 101, and reflects at the central reflecting portion 104 b , 114b, and further reflected by the central reflectors 4b, 14b and incident on the slit 114a (104a), but is incident on the light-receiving section 5a (5b) of the photodiode 5. No light is received.
  • the parallel light Ps of the light emitted from the light emitting diode 3 enters the slit portion 4a of the scale disk 101 and transmits through the inside of the scale disk 101. Then, the light is emitted from the slit portion 104a and received by the light receiving portion 5a of the photodiode 5.
  • the oblique light PL.3, PL4 emitted from the light emitting diode 3 enters the slit portion 4a, passes through the inside of the scale disk 101, is reflected by the reflecting portion 104b, and The light is reflected by the reflecting portion 4b and is incident on the slit portion 104a, but is not received by the light receiving portion 5a of the photodiode 5 ( as described above, the output signal of the photodiode 5a is ⁇ Output a square wave signal without distortion proportional to the slits 4a, 14a, 104a, 114a of pattern 4, 14, 104, 114 without being affected by PL4 Can be.
  • the reflecting portions 104b and 114b were provided on the back surface of the scale disk 101, but instead of the reflecting portions 104b and 114b, a chromium oxide film and a chromium film were used. And a light absorbing portion for absorbing the emitted light formed by the step (b).
  • FIG. 1 The oblique light PL 1 (PL 2) emitted from the light emitting diode 3 enters the slit portion 4 a (14 a), passes through the inside of the scale disk 101, and receives the light absorption portion 104 b at the center. , 114b and is not received by the light receiving section 5a (5b) of the photodiode 5.
  • a front side light absorbing portion may be provided instead of the reflecting portions 4b and 14b of the scale disk 101.
  • FIG. Fig. 5 is a front cross-sectional view (a) in which two scale disks are stuck together so that the reflection part is on the surface, and a front cross-sectional view (b) in which two scale disks are stuck together.
  • the patterns 4, 14, 104, 114 are formed on both sides of one scale disk 101, but in this embodiment, two scale disks 201, 203 are used.
  • the step of forming a pattern on the back surface becomes unnecessary.
  • the scale member 200 has the patterns 204, 2
  • the scale disk shown in Example 1 is obtained by joining flat surfaces of a scale disk 201 having 14 and scale disks 203 having patterns 206 and 216 via an adhesive 210. This realizes a plate 101 equivalent.
  • the scale member 250 connects the plane of the scale disk 201 with the reflecting portions 206b, 216b of the scale disk 203 via an adhesive 210. By joining, the scale disk 101 shown in Example 1 is realized.
  • FIG. 6 is a front sectional view of the optical encoder.
  • the scale member 40.0 has a scale disk 201, 203 having reflecting portions 204b, 206b on one side, and a motor shaft 2 so that the reflecting portions 204b, 206b are on the outside. This is to obtain encoders 300 which are arranged side by side with a slight gap formed in the direction.
  • the scale disk 201 may be fixed to the motor shaft 2 so that the reflecting portions 204b and 206b are on the upper side as shown by the dashed line in FIG. Example 4.
  • FIG. 7 is a plan view of a scale disk.
  • the same pattern 4, 14, 104, 114, etc. was formed on both sides of the scale disk 101 or the scale members 200, 250, 400.
  • the scale disk 500 having e is provided with a pattern (not shown) similar to that of the first to third embodiments on the front surface, and a track 500 a, 500 formed of a ring-shaped recess as shown in FIG. b and reflecting portions 5110 and 520.
  • the formation of the tracks 500a and 500b on the back surface and the reflection portions 510 and 520 correspond to the patterns 104 and 114 of Examples 1 to 3. It is simpler than that.
  • the back side of the scale disk 500 is flat like the scale disk 201.
  • the pattern may not be formed, and the surface may be composed of tracks 500a and 500b and reflecting portions 5100 and 520 as shown in FIG.
  • Such a scale disk 500 and the scale disk 210 shown in Example 2 or 3 are joined by an adhesive, or the scale disk 201 and the scale disk 500 are juxtaposed.
  • the scale member may be formed by joining to the shaft 2 of the motor or the like.
  • the time required to match the pattern 204 of the scale disk 201 and the pattern of the scale disk 214 with the pattern of the scale disk 500 is the same as that of the absence of the slit portion. Only easier.
  • the oblique light transmitted through the adjacent slit portions 4a and 14a is blocked by the reflection portion. I can't.
  • the patterns 4, 14, etc. of the above-described Examples 1 to 4 are provided on the front and back surfaces of the scale disk 101, etc., but may be provided inside the scale disk 101, etc.
  • the present invention is configured as described above, and has the following effects.
  • the second transmitting portion may have, for example, a slit shape or a continuous track shape. If the second transmitting portion has the slit shape, it is difficult for the light receiving element to receive oblique light from the first transmitting portion. On the other hand, in the case of a track shape, if there are a plurality of first pattern layers, it is difficult for the light receiving element to receive oblique light from the first transmitting portion in different patterns. Therefore, since the light receiving element receives only the parallel light emitted from the light emitting element, the output signal of the light receiving element is less likely to be distorted, the distance between the slits in the same pattern can be reduced, and the encoder can be reduced in size. There is.
  • oblique light emitted from the first transmitting portion of the inner pattern and the outer pattern in the adjacent first pattern is shielded by the second reflecting portion of the second pattern.
  • the distance between the inner pattern and the outer pattern can be shortened, which has the effect of reducing the size of the encoder.
  • the scale having the first and second pattern layers is provided. There is no need to provide a member, which has the effect of facilitating the manufacture of the scale member.
  • the scale member is composed of the first and second scale plates
  • the first pattern layer provided on the first scale plate and the second pattern layer provided on the second scale plate are provided.
  • oblique light emitted from the first transmitting portion between the inner pattern and the outer pattern in the adjacent first pattern is absorbed by the light absorbing portion of the second pattern. This has the effect of reducing the distance between the pattern and the outer pattern, and consequently the encoder becomes smaller.
  • the optical encoder according to the present invention is suitable for use in detecting the position of a movable part.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Transform (AREA)

Abstract

An optical encoder comprises a scale plate (101) disposed in the optical path to light receiving elements (5a, 5b) receiving light emitted from a light emitting element (3) and coupled fixedly to a movable shaft (2), first patterns (4, 14) provided on the front of the scale plate (101) and including first reflecting parts (4b, 14b) reflecting light emitted from the light emitting element (3) and a large number of first slitlike light passing parts (4a, 14a) arranged at a specified intervakl, and second patterns (104, 114) provided on the back of the scale plate (101) oppositely to the first patterns (4, 14) and including second reflecting parts (104b, 114b) reflecting light emitted from the light emitting element (3) and second light transmitting parts (104a, 114a) transmitting light passed through the first light transmitting parts (4, 14a).

Description

明 細 書 光学式エンコーダ 技術分野  Description Optical encoder Technical field
この発明は、 サーボシステムなどの位置検出器に用いる光学式ェンコ ーダの改良に関するものである。  The present invention relates to an improvement in an optical encoder used for a position detector such as a servo system.
背景技術 Background art
従来の光学式エンコーダを第 8図によって説明する。 第 8図は、 従 来の光学式エンコーダの側面図である。 第 8図において、 光学式ェンコ —ダは検出対象のモ一夕の軸 2に固着されると共に、 ガラス等により形 成されたスケール円板 1と、 スケール円板 1に対向して設けられた発光 ダイオード 3と、 発光ダイォード 3から出射した光をスケール円板 1を 介して受光部 5 a、 5 bで受光されるフォトダイオード 5とを備えてい る。  A conventional optical encoder will be described with reference to FIG. FIG. 8 is a side view of a conventional optical encoder. In FIG. 8, the optical encoder is fixed to the shaft 2 of the module to be detected, and is provided opposite to the scale disk 1 formed of glass or the like and the scale disk 1. The light-emitting diode 3 includes a light-emitting diode 3 and a photodiode 5 that receives light emitted from the light-emitting diode 3 via the scale disk 1 at the light-receiving units 5a and 5b.
スケール円板 1は、 リング状の外側パターン 4及び内側パターン 14 とを備え、 外側パターン 4には、 光を反 ¾fさせる反射部 4 bと、 光を透 過するスリット部 4 aとが周期的に繰り返して形成されており、 内側パ ターン 14には、 同様に反射部 14 bと、 スリット部 14 aとが周期的 に繰り返して形成されている。  The scale disk 1 includes a ring-shaped outer pattern 4 and an inner pattern 14, and the outer pattern 4 includes a reflective portion 4b for reflecting light and a slit portion 4a for transmitting light. Similarly, in the inner pattern 14, a reflection portion 14b and a slit portion 14a are formed periodically and repeatedly.
次に、 上記のように構成された光学式エンコーダの動作を第 8図よつ て説明する。 モ一夕の軸 2が回転すると、 スケール円板 1が回転し、 発 光ダイォード 3から出射した光は、 パターン 4 ( 14) のスリッ ト部 4 a ( 14 a) を介してフォトダイオード 5の受光部 5 a (5 b) で受光 される。 受光部 5 a ( 5 b) から出力される信号は、 パターン 4 ( 14) のスリッ ト部 4 a ( 14 a) に比例して矩形波状となる。 受光部 5 bから出力される信号は、 パターン 4とパターン 14の位相 が 7ΓΖ2ずれているので、 受光部 5 aから出力される信号に対して位相 が 7Γ/ 2ずれて生成されるものである。 Next, the operation of the optical encoder configured as described above will be described with reference to FIG. When the shaft 2 rotates, the scale disk 1 rotates, and the light emitted from the light emitting diode 3 passes through the slit 4a (14a) of the pattern 4 (14) to the photodiode 5 Light is received by the light receiving section 5a (5b). The signal output from the light receiving section 5a (5b) has a rectangular waveform in proportion to the slit section 4a (14a) of the pattern 4 (14). The signal output from the light receiving unit 5b is generated by shifting the phase of the signal output from the light receiving unit 5a by 7Γ / 2 because the pattern 4 and the pattern 14 are out of phase by 7ΓΖ2. .
しかしながら、 第 8図及び第 9図に示すように発光ダイオード 3から 出射した光は発光ダイォ一ド 3の中心軸から平行に発生する平行光 P s ばかりではなく、 該中心軸に対し数度程度ずれた斜め光 P L 1〜P L 4 も含んでおり、 特に、 発光ダイオード 3の端の光ほど斜め光 PL 1〜P L 4が発生し易い。 かかる斜め光 PL 1〜PL4は、 以下に示すように フォトダイォード 5の出力信号に歪みを与えていた。  However, as shown in FIGS. 8 and 9, the light emitted from the light emitting diode 3 is not only parallel light Ps generated in parallel from the central axis of the light emitting diode 3, but also several degrees with respect to the central axis. Includes shifted oblique lights PL1 to PL4. In particular, light at the end of the light emitting diode 3 is more likely to generate oblique lights PL1 to PL4. The oblique lights PL1 to PL4 distorted the output signal of the photodiode 5 as shown below.
該出力信号の歪みは、 第 8図に示すように、 異なる隣接するパターン The distortion of the output signal, as shown in FIG.
4 , 14のスリット部 4 a, 14 aを透過する斜め光 P L 1, PL 2に 起因するものと、 第 9図に示すように同一のパターン 4 ( 14) の隣接 したスリッ ト部 4 a (14 a) からの斜め光 P L 3 , P L 4に起因する ものとの二種類が存在する。 As shown in Fig. 9, the adjacent slits 4a (4) of the same pattern 4 (14) as shown in Fig. 9 are caused by the oblique light PL1 and PL2 that pass through the slits 4a and 14a. 14 a) There are two types of light, oblique light from PL 3 and PL 4.
前者については、 スリット部 4 a, 14 aの相互の干渉によるもので ある。 すなわち、 発光ダイオード 3から出射した平行光 P sがスケール 円板 1のスリット部 4 a (14a) からスケール円板 1を透過して受光 部 5 a (5 b) にて受光され、 斜め光 P L 2 (P L 1 ) が隣接するスリ ヅト部 14 a (4a)からスケール円板 1を透過して受光部 5 a ( 5 b) にて受光される。  The former is due to mutual interference between the slits 4a and 14a. That is, the parallel light Ps emitted from the light emitting diode 3 passes through the scale disk 1 from the slit portion 4a (14a) of the scale disk 1 and is received by the light receiving portion 5a (5b), and the oblique light PL 2 (PL 1) passes through the adjacent disk portion 14 a (4 a) through the scale disk 1 and is received by the light receiving portion 5 a (5 b).
よって、 フォトダイオード 5からの出力信号はパターン 4のスリッ ト 部 4 a, パターン 14のスリヅ ト部 14 aに完全に比例した信号でなく、 隣どうしのスリット部 14 a (4 a) からの斜め光 P L 2 (P L 1 ) の 影響を受けて、 歪んだ矩^ ^波となるのである。  Therefore, the output signal from the photodiode 5 is not a signal completely proportional to the slit 4a of the pattern 4 and the slit 14a of the pattern 14, but is oblique from the slit 14a (4a) adjacent to each other. Under the influence of light PL 2 (PL 1), it becomes a distorted rectangular wave.
後者については第 9図に示すように、 同一パターン 4の隣どうしのス リッ ト部 4 aの干渉によるものである。 すなわち、 同一パターン 4の隣 どうしのスリット部 4 aの位相差は 2 TVであり、 受光部 5 aの中心線が パターン 4に対し、 位相差 Xであったとすると、 発光ダイオード 3から 出射された平行光 P sの位相差は Xとなり、 スリット部 4 aからスケ一 ル円板 1を透過して受光部 5 aに受光される。 The latter is due to the interference of the adjacent slit portions 4a of the same pattern 4, as shown in FIG. That is, next to the same pattern 4 Assuming that the phase difference between the slit portions 4a is 2 TV and the center line of the light receiving portion 5a is the phase difference X with respect to the pattern 4, the phase difference of the parallel light P s emitted from the light emitting diode 3 is given. Is X, and the light passes through the scale disk 1 from the slit portion 4a and is received by the light receiving portion 5a.
斜め光 P L 3 ( P L 4 ) の位相差は yとなり、 スリッ ト部 4 aからス ケ一ル円板 1を透過して受光部 5 aに受光される。  The phase difference of the oblique light PL 3 (PL 4) is y, which is transmitted through the scale disk 1 from the slit portion 4 a and received by the light receiving portion 5 a.
よって、 受光部 5 aは位相差 X , 位相差 yの双方の光が受光されるの で、 フォトダイオード 5の出力信号 (ま、 位相差 yの信号'成分も含む歪ん だ信号となる。  Therefore, since the light receiving section 5a receives both the light having the phase difference X and the light having the phase difference y, the light is a distorted signal including the output signal of the photodiode 5 (or the signal 'component of the phase difference y).
したがって、 光学式 ンコーダは斜め光 P L 1〜P L 4の影響を受け にく くするために、 パターン 4とパターン 1 4との間隔、 スリッ ト部 4 a , 1 4 aの繰り返し周期の間隔を広くしており、 小型で高分解能の性 能を有するものが製作できないと'いう問題があった。  Therefore, in order to make the optical encoder less susceptible to the effects of the oblique lights PL1 to PL4, the interval between pattern 4 and pattern 14 and the interval between the repetition periods of the slit portions 4a and 14a are made wider. Therefore, there is a problem that it is impossible to manufacture a device having a small size and high resolution performance.
発明の開示 Disclosure of the invention
この発明は上記問題点を解決するためになされたもので、 パターンな どの間隔を狭くしても、 発光素子から生じる斜め光の影響を受けにくい 光学式エンコーダを提供することを目的とする。  The present invention has been made to solve the above problems, and an object of the present invention is to provide an optical encoder that is hardly affected by oblique light generated from a light emitting element even when a pattern or the like is narrowed.
この発明に係る光学式エンコーダは、 光を出射する発光素子と、 この 発光素子から出射した光を所定の距離を隔てて受けると共に、 該光量に 基づいて信号を出力する受光素子と、 上記発光素子からの出射光を受光 する受光素子への光の経路に設けられると共に、 移動可能な可動部に連 結固定された少なくとも一つの板状のスケール部材とを備え、 該スケ一 ル部材には、 上記発光素子から出射した光を反射する第 1の反射部を有 し、 該第 1の反射部内において、 上記光を透過する多数のスリット状の 第 1の透過部を所定の間隔で有すると共に、 表側に設けられた第 1のパ ターン層と、 該第 1のパターン層に対向して裏側に設けられると共に、 上記発光素子から出射された光を反射する第 2の反射部を有し、 該第 2 の反射部内において、 第 1の透過部を通過した光を透過する第 2の透過 部を有すると共に、 裏側に設けられた第 2のパターン層と、 を有するこ とを特徴とするものである。 An optical encoder according to the present invention includes: a light emitting element that emits light; a light receiving element that receives light emitted from the light emitting element at a predetermined distance and outputs a signal based on the light amount; At least one plate-shaped scale member provided in a light path to a light-receiving element for receiving light emitted from the light source, and connected and fixed to a movable movable portion, wherein the scale member includes: A first reflecting portion for reflecting the light emitted from the light emitting element, and a plurality of slit-shaped first transmitting portions for transmitting the light at predetermined intervals in the first reflecting portion; A first pattern layer provided on the front side and a back side opposed to the first pattern layer; A second reflecting portion that reflects light emitted from the light emitting element; a second transmitting portion that transmits light that has passed through the first transmitting portion in the second reflecting portion; And a second pattern layer provided on the substrate.
次の発明に係る光学式エンコーダにおける第 1のパターン層は、 表面 に設けられると共に、 互いに並設された内側パターンと外側パターンと を有しており、 第 2のパターン層は、 裏面に設けられ、 第 2の透過部は、 第 1の透過部と同一の形状であると共に、 第 1の透過部と対向して設け られている、 ことを特徴とするものである。  The first pattern layer in the optical encoder according to the next invention is provided on the front surface, has an inner pattern and an outer pattern arranged side by side, and the second pattern layer is provided on the back surface. The second transmission section has the same shape as the first transmission section, and is provided to face the first transmission section.
次の発明に係る光学式エンコーダにおけるスケール部材は、 少なくと も第 1及び第 2のスケール板から成り、 上記第 1のスケール板には、 第 1のパターン層が設けられており、 上記第 2のスケール板には、 第 2の パターン層が設けられており、 上記第 1のスケール板と上記第 2のスケ —ル板とを平行に並べた、 ことを特徴とするものである。  The scale member in the optical encoder according to the next invention comprises at least a first and a second scale plate, wherein the first scale plate is provided with a first pattern layer, The second scale layer is provided on the second scale plate, and the first scale plate and the second scale plate are arranged in parallel.
次の発明に係る光学式エンコーダは、 第 1のスケール板と第 2のスケ ール板とを接着剤を介して接合した、 ことを特徴とするものである。 次の発明に係る光学式エンコーダにおける第 2の透過部は、 トラック 状に連続して設けられており、 上記第 1のパターン層は複数有している、 ことを特徴とするものである。  An optical encoder according to the next invention is characterized in that the first scale plate and the second scale plate are joined via an adhesive. In the optical encoder according to the next invention, the second transmission section is provided continuously in a track shape, and has a plurality of the first pattern layers.
次の発明に係る光学式エンコーダにおける発光素子から出射された 光を反射する第 2の反射部の代わりに、 上記発光素子から出射された光 を吸収する光吸収部を設けた、 ことを特徴とするものである。  The optical encoder according to the next invention is characterized in that a light absorbing portion for absorbing the light emitted from the light emitting element is provided instead of the second reflecting portion for reflecting the light emitted from the light emitting element. Is what you do.
図面の簡単な説明 BRIEF DESCRIPTION OF THE FIGURES
第 1図はこの発明の一実施例による光学式エンコーダの正面一部断 面図である。  FIG. 1 is a partial front sectional view of an optical encoder according to an embodiment of the present invention.
第 2図は第 1図におけるスケール円板の表面 (a ) 、 裏面 (b ) を示 す平面図である。 Fig. 2 shows the front surface (a) and back surface (b) of the scale disk in Fig. 1. FIG.
第 3図は第 1図に示すスケール円板の製造工程を示す工程図である。 第 4図は第 1図に示す光学式エンコーダにおける同一パターン内の スリット間の斜め光の影響がないことを示す正面断面図である。  FIG. 3 is a process diagram showing a manufacturing process of the scale disk shown in FIG. FIG. 4 is a front sectional view showing that there is no influence of oblique light between slits in the same pattern in the optical encoder shown in FIG.
第 5図はこの発明の他の実施例による二つのスケール円板を反射部が 表面になるように貼り合せた正面断面図 (a ) 、 二つのスケール円板を 並べて貼り合せた正面断面図 (b ) である。  FIG. 5 is a front cross-sectional view (a) in which two scale disks according to another embodiment of the present invention are stuck together so that the reflecting portion is on the surface, and a front cross-sectional view in which the two scale discs are stuck together ( b).
第 6図はこの発明の他の実施例による光学式エンコーダの正面断面図 である。  FIG. 6 is a front sectional view of an optical encoder according to another embodiment of the present invention.
第 7図はこの発明の他の実施例によるスケール円板の平面図である。 第 8図は従来の光学式エンコーダの正面一部断面図である。 .  FIG. 7 is a plan view of a scale disk according to another embodiment of the present invention. FIG. 8 is a partial front sectional view of a conventional optical encoder. .
第 9図は従来の光学式エンコーダにおける同一パターン内のスリット 間の斜め光の影響を示す正面一部断面図である。 発明を実施するための最良の形態  FIG. 9 is a partial front sectional view showing the effect of oblique light between slits in the same pattern in a conventional optical encoder. BEST MODE FOR CARRYING OUT THE INVENTION
実施例 1 . Example 1
この発明の一実施例について第 1図及び第 2図によって説明する。 第 1図はこの発明の一実施例である光学式エンコーダの側面図、 第 2図は 第 1図におけるスケール円板の表面 (a ) 、 裏面 (b ) を示す平面図で ある。 従来と同一符号は、 同一又ば相当部分を示す。  One embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a side view of an optical encoder according to an embodiment of the present invention, and FIG. 2 is a plan view showing a front surface (a) and a back surface (b) of the scale disk in FIG. The same reference numerals as those in the related art indicate the same or corresponding parts.
第 1図において、光学式エンコーダは検出対象のモ一夕の軸(可動部) 2に固着されると共に、 ガラス等により形成された板状のスケール部材 としてのスケール円板 1 0 1と、 スケール円板 1 0 1に対向して設けら れた発光素子としての発光ダイォード 3と、 発光ダイオード 3からの出 射光をスケール円板 1 0 1上のパ夕一ン 4 , 1 4, 1 0 4 , 1 1 4を透 過し、 受光部 5 a, 5 bで受光される受光素子としてのフォトダイォー ド 5とを備えている。 In FIG. 1, an optical encoder is fixed to a shaft (movable part) 2 of a motor to be detected, and a scale disk 101 as a plate-like scale member formed of glass or the like; A light emitting diode 3 provided as a light emitting element provided opposite to the disk 101 and light emitted from the light emitting diode 3 is used as a light emitting diode 4, 1 4, 104 on the scale disk 101. , 1 14 through which the photodiodes as light receiving elements are received by the light receiving sections 5a and 5b. And five.
第 2図において、 スケール円板 1 0 1は、 表面と裏面に形成されたパ ターンが全く同一で、 スケール円板 1 0 1の表面には、 従来と同様なリ ング状の第 1のパ夕一ン層としての外側表パターン 4及び内側表パ夕一 ン 1 4とを有し、外側表パターン 4には、光を反射させるクロム蒸着(斜 線部) された反射部 4 b (第 1の反射部) が形成されると共に、 反射部 4 b内において、 光を透過するスリツト部 4 a (第 1の透過部) が周期 的に繰り返して形成されており、 内側表パターン 1 4には、 同様に、 反 射部 1 4 b (第 1の反射部) が形成されると共に、 反射部 1 4 b内にお いて、 スリッ ト部 1 4 a (第 1の透過部) が周期的に繰り返して形成さ れている。  In FIG. 2, the scale disk 101 has exactly the same pattern formed on the front and rear surfaces, and the surface of the scale disk 101 has the same ring-shaped first pattern as the conventional one. The outer surface pattern 4 has an outer surface pattern 4 and an inner surface layer 14 as an evening layer, and the outer surface pattern 4 has a reflective portion 4b (a hatched portion) on which chrome is deposited (hatched portion) for reflecting light. 1), and a slit portion 4a (first transmitting portion) that transmits light is formed periodically in the reflecting portion 4b. Similarly, a reflection portion 14b (first reflection portion) is formed, and a slit portion 14a (first transmission portion) is periodically formed in the reflection portion 14b. It is formed repeatedly.
スケール円板 1 0 1の裏面には、 外側表パターン 4及び内側表パター ン 1 4に対向して形成された第 2のパターン層とレての外側裏パターン 1 0 4及び内側裏パターン 1 1 4とを備え、 外側裏パターン 1 0 4には、 クロム蒸着 (斜線部) された反射部 1 0 4 b (第 2の反射部) が形成さ れると共に、 光を反射する反射部 1 0 4 b内において、 光を透過する第 2の透過部としてのスリット部 1 0 4 aが周期的に繰り返して形成され ており、 内側裏パターン 1 1 4には、 同様に、 反射部 1 1 4 b (第 2の 反射部) が形成されると共に、 反射部 1 1 4 b内において、 スリット状 の透過部 1 1 4 a (第 2の透過部) が周期的に繰り返して形成されてい る o  On the back surface of the scale disk 101, there is a second pattern layer formed opposite to the outer front pattern 4 and the inner front pattern 14 and the outer back pattern 104 and the inner back pattern 1 1 The outer back pattern 104 includes a chrome-deposited (hatched portion) reflecting portion 104 b (second reflecting portion) and a reflecting portion 104 for reflecting light. In b, a slit portion 104 a as a second transmitting portion for transmitting light is formed periodically and repeatedly, and the inner back pattern 114 also has a reflecting portion 114 b similarly. (Second reflection part) is formed, and a slit-shaped transmission part 114a (second transmission part) is formed periodically and repeatedly in the reflection part 114b.
ここで、 スケール円板 1 0 1の表面と裏面に形成されたパターンが全 く同一であるから、 スリヅト部 4 aとスリット部 1 0 4 aとは、 表面積 が同一で、 互いに対向した位置に形成されており、 スリット部 1 4 aと スリット部 1 1 4 aとの関係も同一である。  Here, since the patterns formed on the front surface and the back surface of the scale disk 101 are completely the same, the slit portion 4a and the slit portion 104a have the same surface area and are located at positions facing each other. The slits 14a and the slits 114a have the same relationship.
上記のように構成された光学式エンコーダにおいて、 スケール円板の 表裏両面にクロム等を蒸着する方法を第 3図によって説明する。 第 3図 は第 1図に示すスケール円板の製造工程を示す工程図である。 In the optical encoder configured as above, the scale disk The method of depositing chromium or the like on both sides will be described with reference to FIG. FIG. 3 is a process diagram showing a manufacturing process of the scale disk shown in FIG.
まず、 従来通りの製造方法によって、 スリット部 4 aとクロムが蒸着 された反射部 4 bを有する外側表パターン 4と、 スリット部 1 4 aと反 射部 1 4 bとを有する内側表パターン 1 4とを有するスケール円板 1を 得る (第 3図 (a ) ) 。  First, an outer surface pattern 4 having a slit portion 4a and a reflecting portion 4b on which chromium is deposited, and an inner surface pattern 1 having a slit portion 14a and a reflecting portion 14b by a conventional manufacturing method. Then, a scale disk 1 having 4 is obtained (FIG. 3 (a)).
次に、 スケール円板 1の裏面に露光されたところだけが、 残留する液 状のレジスト 1 5 0を反射部 4 b, 1 4 bの厚さよりも厚くして一様に 塗布する (第 3図 (b ) ) 。  Next, only the exposed portions of the back surface of the scale disk 1 are coated with the remaining liquid resist 150 thicker than the thicknesses of the reflection portions 4b and 14b (third layer). Figure (b)).
スケール円板 1の表面に対向されたレザー光発生装置 (図示せず) か らビームを照射した後、 撮像液にレジスト 1 5 0を浸すことにより、 反 射部 4 b, 1 4 bに対向する部分のみのレジスト 1 5 0が除去されて凹 部 1 5 0 aを形成せしめ、 レジスト 1 5 0が硬化する (第 3図 ( c ) ) c スケール円板 1の裏面にレジスト 1 5 0の厚さよりも薄いクロム 1 6 0を蒸着する (第 3図 (d ) ) 。 レジスト 1 5 0をシンナーなどの溶剤 を用いて除去することによりスリット部 1 0 4 a, 1 1 4 aを形成する と共に、 両面にクロムを蒸着した反射部 1 0 4 b , 1 1 4 bを有する内 側裏パターン 1 1 4及び外側裏パターン 1 0 4を備えたスケール円板 1 0 1が形成される (第 3図 (e ) ) 。 After irradiating a beam from a laser light generator (not shown) facing the surface of the scale disk 1, the resist 150 is immersed in the imaging solution to face the reflecting portions 4b and 14b. to resist 1 5 0 parts only are removed allowed formed a concave portion 1 5 0 a, the resist 1 5 0 is cured (FIG. 3 (c)) to the back surface of the c scale disc 1 resist 1 5 0 Chromium 160 thinner than the thickness is deposited (Fig. 3 (d)). The resist 150 is removed using a solvent such as thinner to form slits 104a and 114a, and the reflecting portions 104b and 114b with chromium deposited on both surfaces. A scale disk 101 having the inner back pattern 114 and the outer back pattern 104 is formed (FIG. 3 (e)).
次に、 上記のように構成された光学式エンコーダの動作について第 1 図及び第 4図によって説明する。 第 4図は第 1図に示す光学式ェンコ一 ダにおける同 :一パターン内のスリット間の斜め光の影響がないことを示 す正面断面図である。 Next, the operation of the optical encoder configured as described above will be described with reference to FIG. 1 and FIG. Figure 4 is the same in an optical Enko one da shown in FIG. 1: is a view to a front cross-sectional view that there is no influence of the oblique light between the slits in the first pattern.
第 1図に示すように、 発光ダイォ一ド 3から出射された光の平行光 P sは、 スケール円板 1 0 1の外側表パターン 4及び内側表パターン 1 4 におけるスリヅ ト部 4 a , 1 4 aに入射してスケール円板 1 0 1の内部 を透過し、 外側裏パターン 1 04及び内側裏パターン 1 14におけるス リット部 1 04 a, 1 14 aから出射してフォトダイオード 5の受光部 5 a, 5 bにて受光される。 As shown in FIG. 1, the parallel light Ps of the light emitted from the light emitting diode 3 is divided into the slit portions 4 a, 1 in the outer surface pattern 4 and the inner surface pattern 14 of the scale disk 101. 4 Inside the scale disk 1 0 1 when incident on a Then, the light is emitted from the slit portions 104a and 114a of the outer back pattern 104 and the inner back pattern 114, and is received by the light receiving portions 5a and 5b of the photodiode 5.
—方、 発光ダイオード 3より出射された斜め光 PL 1 (PL 2) は、 スリット部 4 a ( 14 a) に入射してスケール円板 1 0 1の内部を透過 し、 中央の反射部 1 04b, 1 14bにより反射され、 さらに、 中央の 反射部 4 b, 14 bにより反射されてスリット部 1 14 a ( 1 04 a) に入射するが、 フォトダイオード 5の受光部 5 a (5 b) に受光されな い。  On the other hand, the oblique light PL 1 (PL 2) emitted from the light-emitting diode 3 enters the slit portion 4 a (14 a), passes through the inside of the scale disk 101, and reflects at the central reflecting portion 104 b , 114b, and further reflected by the central reflectors 4b, 14b and incident on the slit 114a (104a), but is incident on the light-receiving section 5a (5b) of the photodiode 5. No light is received.
同様に、 第 4図に示すように発光ダイオード 3から出射された光の平 行光 P sは、 スケール円板 1 0 1のスリット部 4 aに入射してスケール 円板 10 1の内部を透過し、 スリッ ト部 104 aから出射されてフォト ダイオード 5の受光部 5 aにて受光される。  Similarly, as shown in FIG. 4, the parallel light Ps of the light emitted from the light emitting diode 3 enters the slit portion 4a of the scale disk 101 and transmits through the inside of the scale disk 101. Then, the light is emitted from the slit portion 104a and received by the light receiving portion 5a of the photodiode 5.
一方、 発光ダイオード 3より出射された斜め光 P L .3 , PL 4は、 ス リツト部 4 aに入射してスケール円板 1 0 1の内部を透過し、 反射部 1 04 bにより反射され、 さらに、 反射部 4 bに反射されてスリッ ト部 1 04 aに入射するが、 フォトダイォ一ド 5の受光部 5 aに受光されない ( 以上のようにフォトダイォ一ド 5 aの出力信号は斜め光 P L 1〜P L 4の影響を受けることなく、 パターン 4, 14, 1 04, 1 14のスリ ヅ ト部 4 a, 14 a, 104 a, 1 14 aに比例した歪みの無い矩形波 信号を出力することができる。 On the other hand, the oblique light PL.3, PL4 emitted from the light emitting diode 3 enters the slit portion 4a, passes through the inside of the scale disk 101, is reflected by the reflecting portion 104b, and The light is reflected by the reflecting portion 4b and is incident on the slit portion 104a, but is not received by the light receiving portion 5a of the photodiode 5 ( as described above, the output signal of the photodiode 5a is ~ Output a square wave signal without distortion proportional to the slits 4a, 14a, 104a, 114a of pattern 4, 14, 104, 114 without being affected by PL4 Can be.
なお、前記実施例では、スケール円板 1 0 1の裏面に反射部 1 04 b, 1 14 bを設けたが、 反射部 1 04 b, 1 14 bの代わりに、 酸化グロ ム膜とクロム膜とで形成された出射された光を吸収する光吸収部を設け ても良い。  In the above embodiment, the reflecting portions 104b and 114b were provided on the back surface of the scale disk 101, but instead of the reflecting portions 104b and 114b, a chromium oxide film and a chromium film were used. And a light absorbing portion for absorbing the emitted light formed by the step (b).
このような光吸収部を設けたスケール円板によれば、第 1図において、 発光ダイォ一ド 3より出射された斜め光 PL 1 (PL 2) は、 スリット 部 4 a ( 14 a) に入射してスケール円板 10 1の内部を透過し、 中央 の光吸収部 1 04 b, 1 14 bにより吸収されてフォトダイォ一ド 5の 受光部 5 a ( 5 b) に受光されない。 According to the scale disk provided with such a light absorbing portion, in FIG. The oblique light PL 1 (PL 2) emitted from the light emitting diode 3 enters the slit portion 4 a (14 a), passes through the inside of the scale disk 101, and receives the light absorption portion 104 b at the center. , 114b and is not received by the light receiving section 5a (5b) of the photodiode 5.
さらに、 前記光吸収部に加え、 スケール円板 1 0 1の反射部 4 b, 1 4 bの代わりに、 表側光吸収部を設けても良い。 ―  Further, in addition to the light absorbing portion, a front side light absorbing portion may be provided instead of the reflecting portions 4b and 14b of the scale disk 101. ―
実施例 2. Example 2.
この発明の他の実施例を第 5図によって説明する。 集 5図は二つのス ケール円板を反射部が表面になるように貼り合せた正面断面図 (a)、 二つのスケール円板を並べて貼り合せた正面断面図 (b) である。  Another embodiment of the present invention will be described with reference to FIG. Fig. 5 is a front cross-sectional view (a) in which two scale disks are stuck together so that the reflection part is on the surface, and a front cross-sectional view (b) in which two scale disks are stuck together.
実施例 1では一つスケール円板 1 0 1の両面にパターン 4, 14, 1 04, 1 14を形成させたが、 本実施例では、 スケール円板 20 1, 2 03を二枚用いて、 一つのスケール部材 200 ( 2 50 ) を形成するこ とにより裏面にパターンを形成する工程を不要とするものである。  In the first embodiment, the patterns 4, 14, 104, 114 are formed on both sides of one scale disk 101, but in this embodiment, two scale disks 201, 203 are used. By forming one scale member 200 (250), the step of forming a pattern on the back surface becomes unnecessary.
第 5図 (a) において、 スケール部材 200は、 パターン 204, 2 In FIG. 5 (a), the scale member 200 has the patterns 204, 2
14を有するスケール円板 20 1と、 パターン 2 06, 2 16を有する スケール円板 2 03との平らな面どうしを接着剤 2 1 0を介して接合す ることにより実施例 1に示すスケール円板 1 0 1相当を実現するもので ある。 The scale disk shown in Example 1 is obtained by joining flat surfaces of a scale disk 201 having 14 and scale disks 203 having patterns 206 and 216 via an adhesive 210. This realizes a plate 101 equivalent.
また、 第 5図 (b) において、 スケール部材 2 50は、 スケール円板 20 1の平面とスケール円板 203の反射部 20 6 b, 2 1 6 bとを接 着剤 2 1 0を介して接合することにより実施例 1に示すスケール円板 1 0 1相当を実現するものである。  In FIG. 5 (b), the scale member 250 connects the plane of the scale disk 201 with the reflecting portions 206b, 216b of the scale disk 203 via an adhesive 210. By joining, the scale disk 101 shown in Example 1 is realized.
このようにして得られたスケール部材 200 , 2 50によれば、 実施 例 1のように裏面にパターン 1 04, 1 14を形成する第 3図 (b) 〜 (e) の工程が不要になる。 実施例 3. According to the scale members 200 and 250 obtained in this manner, the steps shown in FIGS. 3 (b) to (e) for forming the patterns 104 and 114 on the back surface as in the first embodiment become unnecessary. . Example 3.
この発明の他の実施例を第 6図によって説明する。 第 6図は、 光学式 エンコーダの正面断面図である。  Another embodiment of the present invention will be described with reference to FIG. FIG. 6 is a front sectional view of the optical encoder.
第 6図において、 スケール部材 40.0は、 片面に反射部 204 b, 2 06 bを有するスケール円板 20 1 , 203を反射部 204 b, 206 bが外側になるようにモー夕の軸 2の軸方向に僅かな隙間を形成して平 行に並べて配置されたエンコーダ 300を得るものである。  In FIG. 6, the scale member 40.0 has a scale disk 201, 203 having reflecting portions 204b, 206b on one side, and a motor shaft 2 so that the reflecting portions 204b, 206b are on the outside. This is to obtain encoders 300 which are arranged side by side with a slight gap formed in the direction.
このようにして得られたスケール部材 400によれば、 実施例 1のよ うな裏面にパターン 1 04, 1 14を形成する第 3図 (b) ~ (e) の 工程が不要になると共に、 実施例 2のようなスケール円板 20 1 , 2 0 3どうしの接着も不要になるものである。  According to the scale member 400 obtained in this manner, the steps shown in FIGS. 3 (b) to (e) for forming the patterns 104 and 114 on the back surface as in Example 1 become unnecessary, and It is unnecessary to bond the scale disks 201, 203 as in Example 2.
なお、 スケール円板 20 1を第 6図の一点鎖線に示すように反射部 2 04 b, 20 6 bが上側になるようモー夕の軸 2に固定しても良い。 実施例 4. .  The scale disk 201 may be fixed to the motor shaft 2 so that the reflecting portions 204b and 206b are on the upper side as shown by the dashed line in FIG. Example 4.
この発明の他の実施例を第 7図によって説明する。 第 7図は、 スケ一 ル円板の平面図である。  Another embodiment of the present invention will be described with reference to FIG. FIG. 7 is a plan view of a scale disk.
実施例 1〜 3では、 スケール円板 10 1又はスケール部材 200, 2 50 , 400の両面に同一のパターン 4 , 14, 104, 1 14などが 形成されていたが、 実施例 4における、 孔 500 eを有するスケール円 板 500は実施例 1〜3と同様なパターン (図示せず) を表面に備え、 裏面には、 第 7図に示すようにリング状の凹部から成るトラック 5 00 a, 500 bと反射部 5 1 0, 520とを有するものである。  In the first to third embodiments, the same pattern 4, 14, 104, 114, etc. was formed on both sides of the scale disk 101 or the scale members 200, 250, 400. The scale disk 500 having e is provided with a pattern (not shown) similar to that of the first to third embodiments on the front surface, and a track 500 a, 500 formed of a ring-shaped recess as shown in FIG. b and reflecting portions 5110 and 520.
このようにして得られたスケール円板 500によれば、 裏面のトラッ ク 500 a, 5 00 bと反射部 5 10 , 5 20の形成が実施例 1〜 3の パターン 1 04, 1 14などに比べて簡易になる。  According to the scale disk 500 obtained in this manner, the formation of the tracks 500a and 500b on the back surface and the reflection portions 510 and 520 correspond to the patterns 104 and 114 of Examples 1 to 3. It is simpler than that.
さらに、 スケール円板 500は裏面がスケール円板 20 1と同様に平 らでパターンが形成されておらず、 表面が第 7図に示すようにトラック 5 0 0 a , 5 0 0 bと反射部 5 1 0, 5 2 0とから成るパターンでも良 い。 Furthermore, the back side of the scale disk 500 is flat like the scale disk 201. In this case, the pattern may not be formed, and the surface may be composed of tracks 500a and 500b and reflecting portions 5100 and 520 as shown in FIG.
このようなスケール円板 5 0 0と実施例 2又は 3に示すスケール円板 2 1 0とを接着剤により接合したり、 スケール円板 2 0 1とスケール円 板 5 0 0とを並設してモー夕の軸 2に接合したりしてスケール部材を構 成しても良い。  Such a scale disk 500 and the scale disk 210 shown in Example 2 or 3 are joined by an adhesive, or the scale disk 201 and the scale disk 500 are juxtaposed. The scale member may be formed by joining to the shaft 2 of the motor or the like.
このようにして得られたスケール部材に れば、 スケール円板 2 0 1 のパターン 2 0 4, 2 1 4とスケール円板 5 0 0とのパターンとを一致 させる手間がスリット部が存在しない分だけ容易となる。  According to the scale member obtained in this manner, the time required to match the pattern 204 of the scale disk 201 and the pattern of the scale disk 214 with the pattern of the scale disk 500 is the same as that of the absence of the slit portion. Only easier.
なお、 スケール円板 5 0 0又は実施例 4のスケール部材によれば、 実 施例 1〜3のように、 隣接するスリット部 4 a , 1 4 aなどを透過した 斜め光を反射部により遮断することはできない。  According to the scale disk 500 or the scale member of the fourth embodiment, as in the first to third embodiments, the oblique light transmitted through the adjacent slit portions 4a and 14a is blocked by the reflection portion. I can't.
以上記載した実施例 1〜4のパターン 4 , 1 4などはスケール円板 1 0 1などの表面、 裏面に設けられたが、 スケール円板 1 0 1などの内部 に設けられても良い。  The patterns 4, 14, etc. of the above-described Examples 1 to 4 are provided on the front and back surfaces of the scale disk 101, etc., but may be provided inside the scale disk 101, etc.
この発明は、 以上説明したように構成されているので、 以下に示すよ うな効果を奏する。  The present invention is configured as described above, and has the following effects.
この発明によれば、 第 2の透過部は、 例えばスリット状、 連続したト ラック状でも良く、 スリット状であれば、 第 1の透過部からの斜め光を 受光素子が受光しにくい。 一方、 トラック状であれば、 第 1のパターン 層が複数になると、 異なるパターンによる第 1の透過部からの斜め光を 受光素子が受光しにくい。 よって、 発光素子から出射された平行光のみ を受光素子が受けるので、 受光素子の出力信号が歪みにく くなり、 同一 パターンにおけるスリット部間の距離を短くでき、 ひいてはエンコーダ が小型になるという効果がある。 次の発明によれば、 隣接された第 1のパターンにおける内側パターン と外側パターンとの第 1の透過部から出射される斜め光を第 2のパ夕一 ンの第 2の反射部により遮蔽されるので、 内側パターンと外側パターン との距離を短くでき、 ひいてはエンコーダが小型になるという効果があ る。 According to the present invention, the second transmitting portion may have, for example, a slit shape or a continuous track shape. If the second transmitting portion has the slit shape, it is difficult for the light receiving element to receive oblique light from the first transmitting portion. On the other hand, in the case of a track shape, if there are a plurality of first pattern layers, it is difficult for the light receiving element to receive oblique light from the first transmitting portion in different patterns. Therefore, since the light receiving element receives only the parallel light emitted from the light emitting element, the output signal of the light receiving element is less likely to be distorted, the distance between the slits in the same pattern can be reduced, and the encoder can be reduced in size. There is. According to the next invention, oblique light emitted from the first transmitting portion of the inner pattern and the outer pattern in the adjacent first pattern is shielded by the second reflecting portion of the second pattern. As a result, the distance between the inner pattern and the outer pattern can be shortened, which has the effect of reducing the size of the encoder.
次の発明によれば、 第 1のスケール板に第 1のパターン層を設け、 第 2のスケール板に第 2のパターン層を設けたので、 第 1及び第 2のパタ 一ン層を有するスケール部材を備える必要がなくなり、 スケール部材の 製作が容易になるという効果がある。  According to the following invention, since the first pattern layer is provided on the first scale plate and the second pattern layer is provided on the second scale plate, the scale having the first and second pattern layers is provided. There is no need to provide a member, which has the effect of facilitating the manufacture of the scale member.
次の発明によれば、 発光素子から受光素子までの距離が短くなり、 ェ ンコーダが小型化になるという効果がある。  According to the next invention, there is an effect that the distance from the light emitting element to the light receiving element is shortened, and the encoder is downsized.
次の発明によれば、 スケール部材の第 2のパターン層を簡易に形成で きるという効果がある。  According to the following invention, there is an effect that the second pattern layer of the scale member can be easily formed.
しかも、 スケール部材を第 1及び第 2のスケール板で構成する場合に は、 第 1のスケール板に設けられた第 1のパターン層と、 第 2のスケー ル板に設けられた第 2のパターン層を一致させる時に、 簡易に一致でき るという効果がある。  Moreover, when the scale member is composed of the first and second scale plates, the first pattern layer provided on the first scale plate and the second pattern layer provided on the second scale plate are provided. When matching layers, there is an effect that matching can be easily performed.
次の発明によれば、 隣接された第 1のパターンにおける内側パターン と外側パターンとの第 1の透過部から出射される斜め光を第 2のパター ンの光吸収部により吸収されるので、 内側パターンと外側パターンとの 距離を短くでき、 ひいてはエンコーダが小型になるという効果がある。 産業上の利用可能性  According to the next invention, oblique light emitted from the first transmitting portion between the inner pattern and the outer pattern in the adjacent first pattern is absorbed by the light absorbing portion of the second pattern. This has the effect of reducing the distance between the pattern and the outer pattern, and consequently the encoder becomes smaller. Industrial applicability
以上のように、 この発明に係る光学式エンコーダは、 可動部の位置を 検出する用途に適している。  As described above, the optical encoder according to the present invention is suitable for use in detecting the position of a movable part.

Claims

請 求 の 範 囲 The scope of the claims
1 . 光を出射する発光素子と、 1. a light emitting element for emitting light,
この発光素子から出射した光を所定の距離を隔てて受けると共に、 該 光量に基づいて信号を出力する受光素子と、  A light receiving element that receives light emitted from the light emitting element at a predetermined distance and outputs a signal based on the light amount;
上記発光素子からの出射光を受光する受光素子への光の経路に設けら れると共に、 移動可能な可動部に連結固定された少なくとも一つの板状 のスケール部材とを備え、  At least one plate-shaped scale member provided in a light path to a light-receiving element that receives light emitted from the light-emitting element and connected and fixed to a movable movable portion;
該スケール部材には、 上記発光素子から出射した光を反射する第 1の 反射部を有し、 該第 1の反射部内において、 上記光を透過する多数のス リット状の第 1の透過部を所定の間隔で有すると共に、 表側に設けられ た第 1のパターン層と、  The scale member has a first reflecting portion for reflecting light emitted from the light emitting element, and a plurality of slit-shaped first transmitting portions for transmitting the light in the first reflecting portion. A first pattern layer having at a predetermined interval and provided on the front side,
該第 1のパターン層に対向して裏側に設けられると共に、 上記発光素 子から出射された光を反射する第 2の反射部を有し、 該第 2の反射部内 において、 上記第 1の透過部を通過した光を透過する第 2の透過部を有 すると共に、 裏側に設けられた第 2のパターン層と、  A second reflection portion provided on the back side to face the first pattern layer and configured to reflect light emitted from the light emitting element, wherein the first transmission portion is provided in the second reflection portion; A second pattern layer provided on the back side, having a second transmission portion for transmitting light passing through the portion;
を有することを特徴とする光学式エンコーダ。  An optical encoder comprising:
2 . 上記第 1のパターン層は、 表面に設けられると共に、 互いに並設 された内側パターンと外側パターンとを有しており、  2. The first pattern layer has an inner pattern and an outer pattern which are provided on the surface and are juxtaposed with each other.
上記第 2のパターン層は、 裏面に設けられ、  The second pattern layer is provided on the back surface,
上記第 2の透過部は、 上記第 1の透過部と同一の形状であると共に、 上記第 1の透過部と対向して設けられている、  The second transmission section has the same shape as the first transmission section, and is provided to face the first transmission section.
ことを特徴とする請求の範囲 1に記載の光学式エンコーダ。  2. The optical encoder according to claim 1, wherein:
3 . 上記スケール部材は、 少なくとも第 1及び第 2のスケール板から 成り、  3. The scale member includes at least first and second scale plates,
上記第 1のスケール板には、 上記第 1のパターン層が設けられており - 上記第 2のスケール板には、 上記第 2のパターン層が設けられており、 上記第 1のスケール板と上記第 2のスケール板とを平行に並べた、 ことを特徴とする請求の範囲 1に記載の光学式エンコーダ。 The first scale plate is provided with the first pattern layer, The second scale plate is provided with the second pattern layer, and the first scale plate and the second scale plate are arranged in parallel with each other, wherein the first scale plate and the second scale plate are arranged in parallel. The optical encoder according to 1.
4 . 上記第 1のスケール板と上記第 2のスケール板とを接着剤を介し て接合した、  4. The first scale plate and the second scale plate are joined via an adhesive,
ことを特徴とする請求の範囲 3に記載の光学式エンコーダ。  4. The optical encoder according to claim 3, wherein:
5 . 上記第 2の透過部は、 トラック状に連続して設けられており、 上記第 1のパターン層は複数有している、  5. The second transmission portion is provided continuously in a track shape, and has a plurality of the first pattern layers.
ことを特徴とする請求の範囲 1又は 4に記載の光学式エンコーダ。 The optical encoder according to claim 1 or 4, wherein:
6 . 上記発光素子から出射された光を反射する上記第 1、 第 2の反射部 のうち、 少なくとも第 2の反射部の代わりに、 上記発光素子から出射さ れた光を吸収する光吸収部を設けた、 6. A light absorbing portion that absorbs light emitted from the light emitting element, instead of at least the second reflecting portion, of the first and second reflecting portions that reflect light emitted from the light emitting element. ,
ことを特徴とする請求の範囲 1又は 2に記載の光学式エンコーダ。  3. The optical encoder according to claim 1, wherein:
PCT/JP2000/006276 2000-09-13 2000-09-13 Optical encoder WO2002023130A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2002527730A JPWO2002023130A1 (en) 2000-09-13 2000-09-13 Optical encoder
PCT/JP2000/006276 WO2002023130A1 (en) 2000-09-13 2000-09-13 Optical encoder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2000/006276 WO2002023130A1 (en) 2000-09-13 2000-09-13 Optical encoder

Publications (1)

Publication Number Publication Date
WO2002023130A1 true WO2002023130A1 (en) 2002-03-21

Family

ID=11736455

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/006276 WO2002023130A1 (en) 2000-09-13 2000-09-13 Optical encoder

Country Status (2)

Country Link
JP (1) JPWO2002023130A1 (en)
WO (1) WO2002023130A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008249646A (en) * 2007-03-30 2008-10-16 Mitsutoyo Corp Photoelectric encoder, and manufacturing method for scale thereof
JP2012202952A (en) * 2011-03-28 2012-10-22 Olympus Corp Optical encoder
JP2016211901A (en) * 2015-05-01 2016-12-15 多摩川精機株式会社 Rotary encoder

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0271118A (en) * 1988-09-07 1990-03-09 Hitachi Ltd Apparatus for optically detecting position or speed of moving body
JPH02231526A (en) * 1989-03-03 1990-09-13 Canon Inc Encoder
JPH0481612A (en) * 1990-07-25 1992-03-16 Sokkia Co Ltd Scale plate of optical encoder and optical encoder using the scale plate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0271118A (en) * 1988-09-07 1990-03-09 Hitachi Ltd Apparatus for optically detecting position or speed of moving body
JPH02231526A (en) * 1989-03-03 1990-09-13 Canon Inc Encoder
JPH0481612A (en) * 1990-07-25 1992-03-16 Sokkia Co Ltd Scale plate of optical encoder and optical encoder using the scale plate

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008249646A (en) * 2007-03-30 2008-10-16 Mitsutoyo Corp Photoelectric encoder, and manufacturing method for scale thereof
JP2012202952A (en) * 2011-03-28 2012-10-22 Olympus Corp Optical encoder
JP2016211901A (en) * 2015-05-01 2016-12-15 多摩川精機株式会社 Rotary encoder

Also Published As

Publication number Publication date
JPWO2002023130A1 (en) 2004-01-22

Similar Documents

Publication Publication Date Title
US7430076B2 (en) Diffraction element
JP3633376B2 (en) Method for manufacturing polarization separation device
JP5064049B2 (en) Reflective encoder with reduced background noise
JPH04211202A (en) Reflection type diffraction grating and device by use of same deffraction grating
JPH06194144A (en) Rotational information detecting device
JP2005156549A (en) Optical encoder
JP2007172817A (en) Information carrier
WO2002023130A1 (en) Optical encoder
KR20050035185A (en) Dew sensor
US6084844A (en) Optical head assembly
JP2012021802A (en) Diffraction grating
JPH03291523A (en) Encoder
JPH102761A (en) Photoelectric encoder
JPH0451201A (en) Transmission type diffraction grating and encoder formed by using this diffraction grating
JP3738722B2 (en) Optical detector
JP2752669B2 (en) Double diffraction grating
JP2958654B2 (en) Scale disk of optical encoder
JP2004037341A (en) Manufacturing method of photoelectric encoder and scale
JP3808192B2 (en) Movement amount measuring apparatus and movement amount measuring method
JPH0721581A (en) Optical pickup
JP2839250B2 (en) Concentrator
JP3490128B2 (en) Photoelectric encoder
JPH10132507A (en) Interferometer
JPS6139289Y2 (en)
JPH0933221A (en) Length measuring scale

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2002 527730

Kind code of ref document: A

Format of ref document f/p: F

AK Designated states

Kind code of ref document: A1

Designated state(s): DE JP US

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642