JPH02229751A - Production of inorganic plate - Google Patents

Production of inorganic plate

Info

Publication number
JPH02229751A
JPH02229751A JP4928489A JP4928489A JPH02229751A JP H02229751 A JPH02229751 A JP H02229751A JP 4928489 A JP4928489 A JP 4928489A JP 4928489 A JP4928489 A JP 4928489A JP H02229751 A JPH02229751 A JP H02229751A
Authority
JP
Japan
Prior art keywords
plate
rolls
compressing
compound
molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4928489A
Other languages
Japanese (ja)
Inventor
Atsushi Matsukawa
松川 淳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP4928489A priority Critical patent/JPH02229751A/en
Publication of JPH02229751A publication Critical patent/JPH02229751A/en
Pending legal-status Critical Current

Links

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

PURPOSE:To obtain high strength and high density by compressing the specified cement compound by the rolls, compressing and molding the obtained compressed plate by a pressure device with the oppositely arranged rigid discoid bodies. CONSTITUTION:Dry powdery cement compound is obtained by blending 0-1wt.% (hereinafter wt.%) asbestos, 40-55% cement, 25-40% fine powder silica, 3-7% pulp fiber, 0.01-0.5% synthetic fiber and 10-30% fine aggregate. Then a compressed molded plate G having required thickness is obtained by supplying this compound A on a belt conveyor 2 for molding wetted by water in a laminar state and successively compressing this compound by back rolls 3, middle rolls 4 and front rolls 5. Thereafter an inorganic plate is produced by compressing and molding this compressed molded plate G at 150-250kg/cm<2> by a pressure device 6 wherein caterpillars 6A, 6B made of steel material are oppositely arranged and thereafter aging and curing the molded plate.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は無4!!質板材の製造方法に関し、詳しくは
不燃性無機質板材の製造方法に関する.〔従来の技術〕 セメント配合物で無8l質成形品を製造する場合、石綿
繊維は補強繊維として非常に存用であることが知られて
いる。
[Detailed Description of the Invention] [Industrial Field of Application] This invention is unique! ! Regarding the manufacturing method of quality board materials, in detail, it relates to the manufacturing method of noncombustible inorganic board materials. [Prior Art] It is known that asbestos fibers are very useful as reinforcing fibers when manufacturing 8L-free molded products from cement mixtures.

この石綿繊維は成形体の強度向上に寄与する他、成形直
後の保形性をも付与すると言った利点を有する. しかしながら、石綿繊維は公害原因となることより使用
の制限、ないしは全廃が強く要請され、石綿に代わる補
強繊維が種々模索され、あるいは石綿の使用制限に伴う
強度低下をセメントマトリックスの結合強度を高めて補
うことが種々提案されている。
This asbestos fiber not only contributes to improving the strength of the molded product, but also has the advantage of providing shape retention immediately after molding. However, as asbestos fibers cause pollution, there is a strong demand for their use to be restricted or completely abolished, and various reinforcing fibers are being explored to replace asbestos, and efforts are being made to improve the bonding strength of the cement matrix to overcome the decrease in strength due to restrictions on the use of asbestos. Various supplements have been proposed.

(従来技術の問題点〕 石綿代替繊維としてはバルブ繊維が種々の理由より有望
であり広く用いられているが、バルブ繊維によって石綿
添加に見合う補強効果を得るにはかなり大量の添加を必
要とするため、建材の不燃性が阻害され、従ってパルプ
繊維の添加量を低下せざるを得す、強度向上には、セメ
ントマトリックスの結合強度を高めることによるしかな
い。
(Problems with the prior art) Bulb fibers are promising and widely used as asbestos substitute fibers for various reasons, but in order to obtain a reinforcing effect commensurate with the addition of asbestos, bulb fibers must be added in a fairly large amount. Therefore, the non-combustibility of the building material is inhibited, and therefore the amount of pulp fiber added must be reduced.The only way to improve the strength is to increase the bonding strength of the cement matrix.

一方、石綿の添加麗の低減及び徽粉シリカの使用に伴い
、いわゆる乾式製法時における板材の圧縮伸び率も上昇
し、ロールとロールとの間で成形板材を圧縮する場合で
は伸び率が10〜15%にも達する場合が有る。
On the other hand, with the reduction of the addition of asbestos and the use of powdered silica, the compression elongation rate of the plate material during the so-called dry manufacturing process also increases, and when the formed plate material is compressed between rolls, the elongation rate is 10 to 10%. It can reach up to 15%.

このため、単層板の場合主として成形板裏面に多数の微
小クランクが発生し、これが板材の強度、たわみ性を著
るしく低下させることとなり、また表面化粧層を設けた
積層板の場合は各層の伸び率の相違により眉間剥離が生
じ易くなり、また前記と同様な強度低下も生じる問題が
ある.従って、石綿使用を廃した成形板材では、ロール
による圧縮率を高くできないため、比重が小さく、吸水
率の大きい、従って凍結融解性の低い板材しか成形出来
ないと言った問題が有った.〔発明が解決しようとする
課題〕 この発明は上記問題点に鑑み、乾式製法において無石綿
、ないしは低石綿配合のセメント配合物でも、単NFi
ないしは積層板の何れの板材をもクランクの発生、ない
しは眉間剥離のおそれ無く、充分に高い圧縮力で加圧で
き、もって、耐凍結融解性に優れる無機質板材の製造方
法を得ることを目的としてなされたものである. 〔課題を解決するための技術〕 即ら、この発明の無ii板材の製造方法は石綿配合量が
1重■%以下とされ、パルプ繊維の添加量が3〜7重量
%とされた乾燥粉末状のセメント配合物を、成形ヘル1
・へ層状に供給し、常法によりロール圧縮し、所定厚さ
に圧縮成仮した後、最終的に該成形板を剛性の有る盤状
体を対面配置した加圧装置で圧縮成形し、以後常法によ
り養生硬化することを特徴とするものである. 〔作用〕 この発明において使用されるセメント配合物は、石綿配
合量が1重同%以下、ないしは無添加とされる以外は常
法と同じであり、例えば下記のような配合とされる。
For this reason, in the case of a single-layer board, a large number of minute cranks occur mainly on the back side of the formed board, which significantly reduces the strength and flexibility of the board, and in the case of a laminate with a decorative surface layer, each layer Due to the difference in the elongation rate, peeling between the eyebrows is likely to occur, and there is also the problem that the strength decreases as described above. Therefore, with molded plate materials that do not use asbestos, the compression ratio by rolls cannot be increased, so there is a problem that only plate materials with low specific gravity, high water absorption, and therefore low freeze-thaw properties can be formed. [Problems to be Solved by the Invention] In view of the above-mentioned problems, the present invention has been made in view of the above-mentioned problems.
The purpose of this invention is to obtain a method for producing an inorganic board material that can press any board material of a laminate board with a sufficiently high compressive force without the risk of cranking or glabellar peeling, and thereby has excellent freeze-thaw resistance. It is something. [Technology for Solving the Problems] That is, the method for producing II-free board materials of the present invention uses dry powder in which the amount of asbestos added is 1% by weight or less and the amount of pulp fiber added is 3 to 7% by weight. The cement mixture is molded into
・After supplying the sheet in a layered manner and compressing it with rolls using a conventional method to compress it to a predetermined thickness, the molded plate is finally compressed and molded using a pressurizing device with rigid plate-like bodies arranged facing each other. It is characterized by curing and hardening using conventional methods. [Function] The cement mixture used in this invention is the same as the conventional method except that the amount of asbestos is less than 1 weight % or no additives are added, and for example, the cement mixture is as follows.

記 石綿   ′       0〜1   重量%セメン
ト        40.0〜55.0  重量%微粉
シリカ       25.0〜40.0(プレーン値
6000〜12000ca+”/g)パルプ繊維   
    3.0〜7.0  重量%合成繊維     
   0.01〜0.5〃細骨材         l
O〜30 また、上記配合材料による単層のはかこの層上に下記材
料よりなる化粧層を積層.した積層体であっても良い。
Asbestos 0-1% by weight Cement 40.0-55.0% by weight Finely divided silica 25.0-40.0 (plain value 6000-12000ca+''/g) Pulp fiber
3.0-7.0 wt% synthetic fiber
0.01~0.5〃Fine aggregate l
O ~ 30 Additionally, a decorative layer made of the following material was laminated on the single-layer frame layer made of the above compounded material. It may also be a laminate.

記 セメント        40.0〜60.0  重量
%微粉シリカ       20.0〜60.0   
〃(ブレーン値6000〜l2000cIl2/g)パ
ルプ繊維       0.5〜5.0  重量%合成
繊維        0.Ol〜0.5〃顛料    
      2.0〜8.0この発明における無機質板
材の製造方法は、乾燥粉末状のセメント配合材料を成形
ベルト上へ層状に供給し、圧縮成板していく、いわゆる
乾式法を前提としている。
Cement 40.0-60.0 Weight% Finely divided silica 20.0-60.0
(Blaine value 6000-12000cIl2/g) Pulp fiber 0.5-5.0 wt% Synthetic fiber 0. Ol ~ 0.5〃Fees
2.0 to 8.0 The method for producing an inorganic plate material in the present invention is based on a so-called dry method in which a dry powder cement compound material is supplied in layers onto a forming belt and compression-formed.

この発明において、上記乾燥粉末原料を成形ベルト上へ
il1層に或いは積層し、供給後は通常のバンクロール
、ミドルロール、及びフロントロールにて順次圧縮成仮
していくが、最終的に成板体を対面配置した剛性の有る
盤状体の間、例えば構成部材を鋼材としたキャタピラベ
ルトを対面配置した装置などによワて加圧圧縮する。
In this invention, the above-mentioned dry powder raw material is placed on a forming belt in one layer or laminated, and after being supplied, it is compressed and formed one by one using ordinary bank rolls, middle rolls, and front rolls, but finally it is formed into a plate. Pressurization is carried out between rigid plate-shaped bodies arranged facing each other, for example, by a device in which caterpillar belts whose structural members are made of steel are arranged facing each other.

このとき、成形された板状体は表裏面が平らな面で均一
に圧縮されるため、加圧力をかなり高くしても材料の伸
びが少なくクランクの発生或いは伸び率の相違に基づく
眉間剥離は完全に防止される。
At this time, the molded plate is compressed uniformly with flat front and back surfaces, so even if the pressing force is considerably high, there is little elongation of the material, and there is no possibility of cracking or peeling between the eyebrows due to differences in the elongation rate. Completely prevented.

このため、添加の微粉シリカによるセメントマトリノク
スの結合強度の向上と相俟って、強度、たわみ性及び耐
凍結融解性に優れた板材が製造可能となる。
Therefore, together with the improvement in the bonding strength of the cement matrix due to the addition of finely divided silica, it is possible to manufacture a plate material with excellent strength, flexibility, and freeze-thaw resistance.

以後は常法により養生硬化されるが、オートクレープに
よる高温、高圧養生を行なえばさらに強度に優れた板材
が得られるのである。
Thereafter, the material is cured and hardened using conventional methods, but a plate material with even greater strength can be obtained by curing at high temperature and high pressure using an autoclave.

〔実施例〕〔Example〕

次に、この発明の実施例を説明する。 Next, embodiments of the invention will be described.

(実施例1) 表1に示す配合にて、夫々の原料を乾燥状態で混合し、
次いで、これら原料を第1図に示す乾式製造装置1にて
[1′L層板を成形した。
(Example 1) In the formulation shown in Table 1, each raw material was mixed in a dry state,
Next, these raw materials were molded into a [1'L laminate] using a dry manufacturing apparatus 1 shown in FIG.

表1 まず、混合原料Aを、水で冫冨潤させた成形ベルトコン
ベヤ2上へ層状に供給し、該層状原料をバンクロール3
、ミドルロール4、及びフロントロール5で順次圧縮し
ていき、最終的に、構成部材を鋼材としたキャタピラ6
A、6Bを対面配置した加圧装置6にて成形板Gを圧力
150kg/cd〜250kg/cdに変化させて圧縮
成板した。
Table 1 First, the mixed raw material A is supplied in a layered manner onto the forming belt conveyor 2 enriched with water, and the layered raw material is transferred to the bank roll 3.
, middle roll 4 and front roll 5, and finally a caterpillar 6 whose structural members are made of steel.
The molded plate G was compression molded using a pressure device 6 in which A and 6B were arranged facing each other, while changing the pressure from 150 kg/cd to 250 kg/cd.

なお、上記加圧装置6は第2図に示すように成形板Gを
受ける下面キャタピラ6Aと成形Fic上面を押圧する
上面キャタピラ6Bのそれぞれをアイドラ7・・・7で
押圧し、これにより所定の面圧を得られるように構成さ
れている。
As shown in FIG. 2, the pressurizing device 6 presses the lower caterpillar 6A that receives the molding plate G and the upper caterpillar 6B that presses the upper surface of the molded Fic with idlers 7...7, thereby producing a predetermined result. It is constructed to obtain surface pressure.

また、第1図中8は板材を所定寸法毎に裁断するカノク
を示す。
Further, reference numeral 8 in FIG. 1 indicates a cutter for cutting the plate material into predetermined dimensions.

このときの層状原料の伸び率を測定したところ、表2の
結果となった。
When the elongation rate of the layered raw material at this time was measured, the results are shown in Table 2.

なお、従来のロール/ロール圧縮の場合、表2比較例に
示す通りで、加圧力に比例して伸び率が上昇しているの
が判明した。
In addition, in the case of conventional roll/roll compression, as shown in Table 2 Comparative Example, it was found that the elongation rate increased in proportion to the pressing force.

次に、上記で得た厚さ5鰭、中27cm、長さ70cm
  の成形仮Gを8.5atmXl5時間の条件でオー
トクレープ養生を行い、試験片を得た。
Next, the thickness of 5 fins obtained above, medium 27 cm, length 70 cm
The molded temporary G was autoclaved for 5 hours at 8.5 atmXl to obtain a test piece.

これらの試験片につき、曲げ強度、曲げたわみ、乾燥見
掛比重を測定したところ表2右欄に示す結果となった. なお曲げ強度および撓み試験は中270111、スパン
58cm, RRスピード16amの条件で行った。
The bending strength, bending deflection, and dry apparent specific gravity of these test pieces were measured, and the results are shown in the right column of Table 2. The bending strength and deflection tests were conducted under the conditions of medium 270111, span 58 cm, and RR speed 16 am.

表2より明らかなように、本発明方法によれば従来に比
し物性の優れた無機質板材が製造できる.表2 第1図はこの発明の方法を実施する装置の側面図、第2
図はキャタピラによる加圧装置の側面図である。
As is clear from Table 2, according to the method of the present invention, an inorganic board material with superior physical properties compared to the conventional method can be produced. Table 2 Figure 1 is a side view of the apparatus for carrying out the method of this invention;
The figure is a side view of a pressurizing device using caterpillars.

(伸び率は加圧後の長さと加圧前の長さの差を加圧前の
長さで除した値に100%を乗じた値を言う.)〔効果
〕 この発明は以上説明したように、成形板の最終加圧を、
平盤により表裏面より同時に行なうため、板材の伸びが
非常に低く抑えられ、従って石綿繊維の使用を低く制限
しても、単層、積層体を問わず高強度、高密度の板材が
製造できるのである.
(Elongation rate is the value obtained by dividing the difference between the length after pressurization and the length before pressurization by the length before pressurization, multiplied by 100%.) [Effect] This invention is as explained above. The final pressure of the molded plate is
Since the process is carried out simultaneously on both the front and back sides using a flat plate, the elongation of the board material is kept to a very low level. Therefore, even if the use of asbestos fibers is limited to a low level, high-strength, high-density board materials can be manufactured regardless of whether they are single-layered or laminated. It is.

【図面の簡単な説明】[Brief explanation of the drawing]

Claims (1)

【特許請求の範囲】[Claims] (1)石綿配合量が1重量%以下とされ、パルプ繊維の
添加量が3〜7重量%とされた乾燥粉末状のセメント配
合物を、成形ベルトへ層状に供給し、常法によりロール
圧縮し、所定厚さに圧縮成板した後、最終的に該成形板
を剛性の有る盤状体を対面配置した加圧装置で圧縮成形
し、以後常法により養生硬化することを特徴とする無機
質板材の製造方法。
(1) A dry powdered cement mixture with an asbestos content of 1% by weight or less and a pulp fiber content of 3 to 7% by weight is supplied in layers to a forming belt, and is rolled and compressed by a conventional method. After compression molding to a predetermined thickness, the molded plate is finally compression molded using a pressure device in which rigid plate-like bodies are arranged facing each other, and then cured and hardened by a conventional method. Method of manufacturing plate materials.
JP4928489A 1989-02-28 1989-02-28 Production of inorganic plate Pending JPH02229751A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4928489A JPH02229751A (en) 1989-02-28 1989-02-28 Production of inorganic plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4928489A JPH02229751A (en) 1989-02-28 1989-02-28 Production of inorganic plate

Publications (1)

Publication Number Publication Date
JPH02229751A true JPH02229751A (en) 1990-09-12

Family

ID=12826582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4928489A Pending JPH02229751A (en) 1989-02-28 1989-02-28 Production of inorganic plate

Country Status (1)

Country Link
JP (1) JPH02229751A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013011174A1 (en) * 2011-07-18 2013-01-24 Jordi Codina Mir Installation for moulding stone-conglomerate panels

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013011174A1 (en) * 2011-07-18 2013-01-24 Jordi Codina Mir Installation for moulding stone-conglomerate panels

Similar Documents

Publication Publication Date Title
SE502272C2 (en) Process for making lignocellulosic discs
JPH02233213A (en) Manufacture of large-sized ceramic sheet
DE2141615B2 (en) Process for the production of polyurethane composite foams
US4150185A (en) Building materials in the form of woodstone panels or sheets and processes for their production
JPH02229751A (en) Production of inorganic plate
JPH02227206A (en) Manufacture of inorganic sheet material
JP4283484B2 (en) Wood cement board and manufacturing method thereof
JPH1110617A (en) Manufacture of fiber-reinforced cement plate
JP3110162B2 (en) Molding method of fiber-reinforced thermoplastic resin porous molded article
JPH08175861A (en) Formed plate of inorganic material and its production
JPH03112841A (en) Production of fiber-reinforced cement board
JPS59156705A (en) Manufacture of light thick cured body
JP4163367B2 (en) Wood cement board
JP2619945B2 (en) Manufacturing method of inorganic plate material
JPH01242475A (en) Lightweight concrete panel and production thereof
JPS6186209A (en) Manufacture of inorganic board material
JP4198889B2 (en) Manufacturing method of wood cement board
JPS6218455Y2 (en)
SU1599193A1 (en) Method of producing laminated asbestos-cement articles
JP4163366B2 (en) Wood cement board and manufacturing method thereof
JP3307673B2 (en) Manufacturing method of cement mortar molding
JPH02185405A (en) Manufacture of lightweight high strength cement product
JPH05154817A (en) Method for molding inorganic slab
JPH068220A (en) Water supplying method and device in dry manufacture of inorganic plate
JPH03120008A (en) Manufacture of fiber-reinforced cement plate