JP4283484B2 - Wood cement board and manufacturing method thereof - Google Patents

Wood cement board and manufacturing method thereof Download PDF

Info

Publication number
JP4283484B2
JP4283484B2 JP2002068594A JP2002068594A JP4283484B2 JP 4283484 B2 JP4283484 B2 JP 4283484B2 JP 2002068594 A JP2002068594 A JP 2002068594A JP 2002068594 A JP2002068594 A JP 2002068594A JP 4283484 B2 JP4283484 B2 JP 4283484B2
Authority
JP
Japan
Prior art keywords
weight
hydraulic material
foam
wood
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002068594A
Other languages
Japanese (ja)
Other versions
JP2003267769A (en
Inventor
貞行 富安
信一 日下
盛仁 中谷
春樹 大橋
秀明 五十嵐
和夫 小西
博明 斉藤
吉雄 松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichiha Corp
Mitsubishi Materials Corp
Ube Corp
Original Assignee
Nichiha Corp
Mitsubishi Materials Corp
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichiha Corp, Mitsubishi Materials Corp, Ube Industries Ltd filed Critical Nichiha Corp
Priority to JP2002068594A priority Critical patent/JP4283484B2/en
Publication of JP2003267769A publication Critical patent/JP2003267769A/en
Application granted granted Critical
Publication of JP4283484B2 publication Critical patent/JP4283484B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

【0001】
【発明の属する技術分野】
軽量で高強度の木質セメント板およびその製造方法を提供することにある。
【0002】
【従来の技術と発明が解決しようとする課題】
従来、無機質成形体としては防火性,耐久性に優れた窯業系サイディングが用いられている。例えば、硬質木片セメント板は木片をバインダーであるセメントで一体成形し、常温養生でサイディング板としての強度を発現しているが、多量のセメントを必要とするので、高比重である。このため、軽量化を図るために特開平3−218955号公報で開示するようにパーライトを添加したものもあるが、強度が低下するためにパーライトの添加量が制限され、軽量化に限界があった。そこで、特願平11−72036号(特開2000−264701号公報)のように、多量の無機質発泡体を添加しつつ、軽量の無機質成形体を得る方法が提案されているが、より一層優れた曲げ強度を有する木質セメント板が望まれていた。
【0003】
本発明は、前記問題点に鑑み、高強度で軽量の木質セメント板およびその製造方法を提供することを目的とする。
【0004】
【課題を解決するための手段】
本発明にかかる木質セメント板は、前記目的を達成するため、非晶質の珪酸質原料を含有する水硬性材料、無機質発泡体および木質材料を混合した後、水を添加,混合して得た混合物を加圧成形し、オートクレーブ養生した木質セメント板において、前記水硬性材料は、カルシウム/シリカのモル比が0.6〜1.8、ブレーン比表面積が3800cm/g以上、アルカリ含有量が前記水硬性材料100重量部に対して0.6〜1.0重量部であり、前記水硬性材料に添加剤として硫酸アルカリが添加されており、前記無機質発泡体は、5Mpaの水圧下での嵩密度が0.4のパーライト、黒曜石発泡体、シラス発泡体からなる群から選択された少なくとも1種であり、前記混合物の固形成分は、前記水硬性材料を35〜70重量%、前記無機質発泡体を10〜25重量%含む構成としてある。
【0005】
また、前記水硬性材料としては、ポルトランドセメントおよびフライアッシュからなり、ポルトランドセメント中の3CaO・SiOの含有量が63%以上であることがより好ましい。
【0006】
また、本発明にかかる木質セメント板の製造方法は、非晶質の珪酸質原料を含有する水硬性材料、無機質発泡体および木質材料を混合した後、水を添加,混合して混合物を得、この混合物を加圧成形した後、オートクレーブ養生する木質セメント板の製造方法において、前記水硬性材料は、カルシウム/シリカのモル比を0.6〜1.8、ブレーン比表面積を3800cm/g以上、アルカリ含有量を前記水硬性材料100重量部に対して0.6〜1.0重量部とし、前記水硬性材料に添加剤として硫酸アルカリが添加されており、前記無機質発泡体は、5Mpaの水圧下での嵩密度が0.4のパーライト、黒曜石発泡体、シラス発泡体からなる群から選択された少なくとも1種とし、前記混合物の固形成分は、前記水硬性材料を35〜70重量%、前記無機質発泡体を10〜25重量%混合してなる工程である。
【0007】
【発明の実施の形態】
本発明に係る木質セメント板は、非晶質の珪酸質原料を含有する水硬性材料、無機質発泡体および木質材料を混合した後、水を添加,混合して得た混合物を加圧,成形し、オートクレーブ養生したものである。
【0008】
水硬性材料は、後述する無機質発泡体および木質材料の結合剤として用いられ、セメントにフライアッシュ,高炉スラグ微粉末,珪藻土,シラス,シリカフューム等の非晶質の珪酸質原料からなるものである。
【0009】
そして、前記水硬性材料はカルシウム/シリカのモル比が0.6〜1.8、ブレーン比表面積が3800cm/g以上、および、水硬性材料中のアルカリ含有量が0.6〜1.0重量部であることを必要とする。
【0010】
カルシウム/シリカのモル比が0.6〜1.8であれば、水和物の生成物が最も多くなり、特に、モル比が1.2付近で最も高い強度が得られる。そして、モル比が0.6未満であると、カルシウムが不足して水和が進まず、モル比が1.8を越えると、カルシウム分の高い水和物が生成してシリカの反応が進まないからである。
また、ブレーン比表面積が3800cm/g以上であれば、反応が高まって強度が発現するが、3800cm/g未満であると、所望の強度が得られないからである。
さらに、適量のアルカリは、非晶質の珪酸質原料の反応性を高め、得られる木質セメント板の強度を高めるため、その含有量は0.6〜1.0重量部が好ましい。含有量が0.6重量部未満であると、アルカリが非晶質の珪酸質原料の反応性を高めることができず、アルカリ含有量が1.0重量部を越えると、水和物の強度を低下させるからである。
【0011】
前記水硬性材料に用いるセメントとしては普通ポルトランドセメント、早強ポルトランドセメント等のポルトランドセメントやアルミナセメントが挙げられ、水硬性材料としての添加量は35〜70重量%が好適である。添加量が35重量%未満であると、成形体としての強度を保持できず、70重量%を越えると、無機質発泡体や木質材料の添加量が相対的に低くなり、所望の木質セメント板が得られないからである。
【0012】
特に、前記水硬性材料としてはポルトランドセメントおよびフライアッシュからなり、ポルトランドセメント中のCS(3CaO・SiOの総称)の含有量が63%以上であることが望ましい。また、フライアッシュは適量のアルカリを含み、反応性に富むために好ましい。ポルトランドセメント中のCSの含有量が63%以上であれば、初期反応性が高く、最終強度を高めるからである。
【0013】
水硬性材料中のアルカリ量を調整するために添加剤を利用できる。添加剤としては、例えば、硫酸ナトリウム、硫酸カリウム等の硫酸アルカリが挙げられる。
【0014】
前記無機質発泡体は、木質セメント板を軽量化すると共に、表面性を良くするためのものであり、例えば、パーライト、黒曜石発泡体、シラス発泡体等が挙げられる。
【0015】
前記無機質発泡体の添加量は10〜25重量%であることが好ましい。添加が10重量%未満であると、十分に軽量化できないからである。一方、添加量が25重量%を越えると、セメントや木質材料の添加量が相対的に低くなり、所望の強度が得られないからである。
【0016】
また、前記無機質発泡体は、無機質発泡体の大きさが平均粒径50〜300μm、5Mpaの水圧下での嵩密度が0.5以下のものを使用することが好ましい。
無機質発泡体の平均粒径が50μm未満であると、発泡体の殻の膜厚が粒径に対して厚くなるので、嵩密度が高くなり、重くなるからである。また、平均粒径が300μmを超えると、発泡体の殻の膜厚が薄くなって破壊しやすくなるからである。
【0017】
さらに、5Mpaの水圧をかけて圧縮した際の嵩密度を0.5以下としたのは、嵩密度が0.5を越えるものでは添加しても軽量化に寄与しないからである。なお、5Mpaを基準圧力とするのは、これが木質セメント板をプレス成形する際の圧力にほぼ等しく、プレス成形時の圧力で無機質発泡体が破壊されないようにするためである。したがって、本発明によれば、プレス成形時にも無機質発泡体は破壊されず、軽量化を維持しつつ、平滑でシャープなエンボス面を持つ木質セメント板が得られる。
【0018】
これら無機質発泡体の嵩密度および体積圧縮率の測定方法は、以下のように行われる。
無機質発泡体の嵩密度を測定する場合には、無機質発泡体を100ccのステンレス製容器に入れ、上下に180回タッピングした後、専用の測定装置であるパウダーテスター(ホソカワミクロン社製)で嵩密度を測定する。
次に、嵩密度を測定した発泡体をビニール袋等に入れて真空ポンプで袋内の空気を抜いた後、シールして密封状態とする。そして、この袋を3リットルの水を満たした加圧タンクに入れ、水圧ポンプにて静水圧5Mpaで60秒間加圧する。ついで、袋から無機質発泡体を取り出し、前述と同様にタッピングして嵩密度を測定する。
【0019】
なお、木質セメント板には、必要に応じ、塩化アルミニウム、塩化マグネシウム、塩化カルシウムなどの硬化促進剤1〜5重量%を添加してもよい。
【0020】
前記木質材料は、脆い無機質成形体の強度を高めるために添加するものであり、木質繊維、木片等が挙げられるが、その樹種は問わない。そして、木質材料の添加量は10〜25重量%であることが好ましい。添加量が10重量%未満であると、補強効果が不十分であり、25重量%を越えると、防火性の点で問題となるからである。
【0021】
本願発明にかかる木質セメント板の製造方法について説明する。
まず、水硬性材料、無機質発泡体および木質材料を乾式で混合し、前記木質材料間に無機質発泡体および水硬性材料を均一に混合した混合物を得る。そして、この混合物に水30〜50重量%を添加して更に混合する。ついで、加圧成形する方法としては、得られた混合物をプレート上に散布してマット状に堆積させ、これをプレス成型した後、1次養生して硬化させる。さらに、オートクレーブで2次養生し、カルシウムとシリカとを反応させることにより、珪酸カルシウム水和物を生成し、強度を発現させた木質セメント板が得られる。
【0022】
本実施形態によれば、水硬性材料、無機質発泡体、および、木質材料をミキサーに投入して乾式で混合するので、木質材料間に無機質発泡体および水硬性材料を均一に混合した混合物が得られる。
また、均一に混合された前記混合物に水30〜50重量%を添加し、混合するので、水は木質材料だけに過剰に吸着されることなく、無機質発泡体やその隙間にも均一に吸着される。このため、木質材料がダマにならず、木質材料,無機質発泡体および水硬性材料が均一に混合された混合物が得られる。
【0023】
前記混合物に添加する水の添加量を30〜50重量%とするのは、添加量が30重量%未満であると、水硬性材料に対する水分量が少なくなりすぎ、所定の強度が得られないからである。一方、50重量%を越えると、水分が過剰になって木質材料がダマになりやすいと共に、水硬性材料が硬化した後の成形体の吸水率が高くなるからである。
【0024】
前記混合物をプレート上に散布して厚さ30〜100mmのマット状に堆積させた後、上面にエンボスプレートを載せてプレス機で成型し、そのままの状態で1次養生し、取り扱える程度の強度まで硬化させる。1次養生は温度50〜80℃で8時間以上で行うことが好ましい。
また、1次養生は蒸気養生で行ってもよく、蒸気養生時間は蒸気養生温度を高くすれば短くなるが、温度を高くしすぎると、ボードが乾燥して所定の強度が得られなくなる。このため、蒸気養生温度としては50〜80℃が好ましいが、生産性の見地より、蒸気養生時間は通常24時間以内であることが好ましい。
【0025】
前記エンボスプレートを外した後にオートクレーブで行う2次養生は、主として水硬性材料のカルシウムとシリカとを反応させ、珪酸カルシウム水和物を生成し、実用強度を発現する最終の木質セメント板を得るための工程である。1次養生でセメントを水和硬化させた後、オートクレーブで2次養生するので、水硬性材料中のセメントのカルシウムと、水硬性材料中のフライアッシュ等の非晶質珪酸原料や、さらには無機質発泡体の非晶質成分とが反応し、珪酸カルシウム水和物が生成され、所望の強度を有する木質セメント板が得られる。オートクレーブによる2次養生は温度150〜220℃が好ましい。オートクレーブ養生温度を高くすれば、短い時間で高強度の木質セメント板を製造できるが、220℃を越えると、木片や木質繊維等の木質材料が劣化し、強度が低下するので好ましくない。また、150℃未満では十分な強度を得るために養生時間が著しく長くなって好ましくない。オートクレーブ養生時間は温度によって異なるが、1〜24時間の条件、好ましくは3〜8時間が好適である。
【0026】
本発明によれば、軽量で繊維が均一に分布した高強度の成形体が得られる。このため、従来のように密度の低い芯層を密度が高く高強度の表裏層で挟んだ複数層の無機質成形体とする必要がなく、単層構成でよいので、生産性を高めることができる。しかし、本発明においても表裏層と芯層との組成の配合割合を変え、三層構造としても良いことは勿論である。
【0027】
【実施例】
(実施例1から実施例10)
図1に示した組成比で原料、特に、水硬性材料のセメントとしてCS量の異なるポルトランドセメント、水硬性材料の非晶質の珪酸質原料としてフライアッシュ、添加剤としては硫酸カリウム、無機質発泡体としてシラス発泡体あるいはパーライト、リターン材として木質セメント板の廃材からなる粉体物、木質材料として木片、および、硬化促進剤として塩化カルシウムを配合した。そして、前記原料をミキサーで2分間混合した後、固形成分100重量部に対して水45重量部を添加し、更に30秒間混合して混合物を得た。
【0028】
ついで、前記混合物をステンレスプレート上に散布して厚さ40mmのマット状に堆積した後、上面に樹脂製プレートを載せて挟み、この状態のマットを複数段積み重ねた。そして、約5Mpaの圧力で加圧し、そのままの状態でクランプ固定した後、温度70℃、10時間の条件で1次養生し、取り扱える程度の強度を得られるまで前記マットを硬化させた。そして、プレートを外した後、オートクレーブにて温度165℃、6時間の条件で2次養生し、最終の木質セメント板を得た。得られた木質セメント板からサンプルを切り出し、比重、曲げ強度の測定を行った。測定結果を図1に示す。なお、曲げ強度の測定は、JIS−A−1408に準じて行った。
【0029】
(比較例1〜7)
比較例1〜7についても図2に示す組成比で原料を配合する点、および、結晶質の珪酸質原料として珪石粉を一部使用する点を除き、実施例1と同様の方法で木質セメント板を得、その物性を測定した。測定結果を図2に示す。
【0030】
図1および図2から、実施例および比較例の比重は全て同等であるが、比較例のいずれもが曲げ強度10(N/mm)を越えないことが明かとなった。
そして、実施例1〜10と比較例1との比較から、珪酸質原料が結晶質のものであると、所望の曲げ強度が得られず、反応性が低下することが判った。
比較例2および3から、カルシウム/シリカのモル比が0.6よりも小さいと、セメントが不足するために所望の強度が得られず、1.8よりも大きいと、珪酸質が不足するために所望の強度が得られないことが判明した。
実施例7と比較例4との比較から、混合セメントのブレーン比が3500cm/g以下であると、所定の強度が得られないことが判った。
比較例5,6から、アルカリ量が0.6以上、1.0以下でないと、所望の強度が得られず、比較例7から、無機質発泡体の圧縮強度が低いもの、すなわち、圧縮後の嵩密度が0.5以上であると、所望の強度を確保できないことが判明した。
【0031】
【発明の効果】
本発明にかかる木質セメント板によれば、所望の強度を有する軽量な木質セメント板を得られるという効果がある。
【図面の簡単な説明】
【図1】 本願発明に係る木質セメント板の実施例を示す図表である。
【図2】 本願発明に係る木質セメント板の比較例を示す図表である
[0001]
BACKGROUND OF THE INVENTION
The object is to provide a lightweight and high-strength wood cement board and a method for producing the same.
[0002]
[Prior art and problems to be solved by the invention]
Conventionally, ceramic siding excellent in fire resistance and durability has been used as an inorganic molded body. For example, a hard wood piece cement board is formed by integrally molding a piece of wood with cement as a binder and exhibits strength as a siding board by curing at room temperature, but requires a large amount of cement, so it has a high specific gravity. For this reason, some pearlite is added to reduce the weight as disclosed in JP-A-3-218955, but the amount of pearlite is limited because the strength is reduced, and there is a limit to the weight reduction. It was. Therefore, as in Japanese Patent Application No. 11-72036 (Japanese Patent Laid-Open No. 2000-264701), a method for obtaining a lightweight inorganic molded body while adding a large amount of an inorganic foam has been proposed. A wood cement board having high bending strength has been desired.
[0003]
In view of the above problems, an object of the present invention is to provide a high-strength and lightweight wood cement board and a method for producing the same.
[0004]
[Means for Solving the Problems]
In order to achieve the above object, a wood cement board according to the present invention is obtained by mixing a hydraulic material containing an amorphous siliceous material, an inorganic foam and a wood material, and then adding and mixing water. In the wood cement board obtained by pressure-molding the mixture and curing in an autoclave, the hydraulic material has a calcium / silica molar ratio of 0.6 to 1.8, a brain specific surface area of 3800 cm 2 / g or more, and an alkali content. 0.6 to 1.0 part by weight with respect to 100 parts by weight of the hydraulic material, alkali sulfate is added as an additive to the hydraulic material, and the inorganic foam is under a water pressure of 5 Mpa. The bulk density is at least one selected from the group consisting of pearlite, obsidian foam, and shirasu foam, and the solid component of the mixture is 35 to 70% by weight of the hydraulic material. It is constituted comprising inorganic foam 10 to 25 wt%.
[0005]
The hydraulic material is made of Portland cement and fly ash, and the content of 3CaO.SiO 2 in Portland cement is more preferably 63% or more.
[0006]
Further, the method for producing a wood cement board according to the present invention comprises mixing a hydraulic material containing an amorphous siliceous raw material, an inorganic foam and a wood material, and then adding and mixing water to obtain a mixture, In the method for producing a wood cement board for autoclave curing after pressure-molding the mixture, the hydraulic material has a calcium / silica molar ratio of 0.6 to 1.8 and a brain specific surface area of 3800 cm 2 / g or more. The alkali content is 0.6 to 1.0 parts by weight with respect to 100 parts by weight of the hydraulic material, alkali sulfate is added as an additive to the hydraulic material, and the inorganic foam is 5 Mpa. At least one selected from the group consisting of pearlite, obsidian foam, and shirasu foam with a bulk density under water pressure of 0.4, and the solid component of the mixture includes 35 to 35 of the hydraulic material. 0 wt%, the inorganic foam is a process comprising mixing 10 to 25 wt%.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
The wood cement board according to the present invention is obtained by mixing a hydraulic material containing an amorphous siliceous material, an inorganic foam and a wood material, and then adding and mixing water, and then pressing and molding the mixture obtained. , Autoclave cured.
[0008]
The hydraulic material is used as a binder for inorganic foam and wood material, which will be described later, and is made of amorphous siliceous material such as fly ash, fine powder of blast furnace slag, diatomaceous earth, shirasu, and silica fume.
[0009]
The hydraulic material has a calcium / silica molar ratio of 0.6 to 1.8, a Blaine specific surface area of 3800 cm 2 / g or more, and an alkali content in the hydraulic material of 0.6 to 1.0. It needs to be part by weight.
[0010]
If the calcium / silica molar ratio is 0.6 to 1.8, the product of hydrate is the largest, and the highest strength is obtained particularly when the molar ratio is around 1.2. When the molar ratio is less than 0.6, calcium is insufficient and hydration does not proceed. When the molar ratio exceeds 1.8, a hydrate with a high calcium content is generated and the reaction of silica proceeds. Because there is no.
Moreover, if the Blaine specific surface area is 3800 cm 2 / g or more, the reaction is enhanced and the strength is developed, but if it is less than 3800 cm 2 / g, the desired strength cannot be obtained.
Furthermore, an appropriate amount of alkali increases the reactivity of the amorphous siliceous raw material and increases the strength of the obtained wood cement board, so that its content is preferably 0.6 to 1.0 parts by weight. When the content is less than 0.6 parts by weight, the reactivity of the amorphous silicic acid raw material cannot be increased, and when the alkali content exceeds 1.0 parts by weight, the strength of the hydrate It is because it reduces.
[0011]
Examples of the cement used for the hydraulic material include Portland cement such as ordinary Portland cement and early-strength Portland cement, and alumina cement. The addition amount as the hydraulic material is preferably 35 to 70% by weight. If the addition amount is less than 35% by weight, the strength as a molded body cannot be maintained. If the addition amount exceeds 70% by weight, the addition amount of the inorganic foam or wood material becomes relatively low, and the desired wood cement board is obtained. It is because it cannot be obtained.
[0012]
In particular, the hydraulic material is composed of Portland cement and fly ash, and the content of C 3 S (generic name for 3CaO · SiO 2 ) in Portland cement is preferably 63% or more. Fly ash is preferable because it contains an appropriate amount of alkali and is highly reactive. This is because if the content of C 3 S in Portland cement is 63% or more, the initial reactivity is high and the final strength is increased.
[0013]
Additives can be used to adjust the amount of alkali in the hydraulic material. Examples of the additive include alkali sulfates such as sodium sulfate and potassium sulfate.
[0014]
The inorganic foam is for reducing the weight of the wood cement board and improving the surface property, and examples thereof include perlite, obsidian foam, and shirasu foam.
[0015]
The addition amount of the inorganic foam is preferably 10 to 25% by weight. This is because if the addition is less than 10% by weight, the weight cannot be reduced sufficiently. On the other hand, if the addition amount exceeds 25% by weight, the addition amount of cement or wood material becomes relatively low, and a desired strength cannot be obtained.
[0016]
Moreover, it is preferable to use the said inorganic foam that the bulk density under the water pressure of the average particle diameter of 50-300 micrometers and 5 Mpa is 0.5 or less.
This is because if the average particle diameter of the inorganic foam is less than 50 μm, the film thickness of the shell of the foam becomes thicker than the particle diameter, so that the bulk density increases and becomes heavy. Further, if the average particle diameter exceeds 300 μm, the film thickness of the foam shell becomes thin and it is easy to break.
[0017]
Furthermore, the reason why the bulk density when compressed by applying a water pressure of 5 MPa is 0.5 or less is that if the bulk density exceeds 0.5, even if added, it does not contribute to weight reduction. The reason why 5 Mpa is used as the reference pressure is to prevent the inorganic foam from being destroyed by the pressure at the time of press molding, which is substantially equal to the pressure at the time of press molding the wood cement board. Therefore, according to the present invention, the inorganic foam is not destroyed even during press molding, and a wooden cement board having a smooth and sharp embossed surface can be obtained while maintaining weight reduction.
[0018]
The method for measuring the bulk density and volume compressibility of these inorganic foams is performed as follows.
When measuring the bulk density of an inorganic foam, put the inorganic foam in a 100 cc stainless steel container, tapping it up and down 180 times, and then measuring the bulk density with a powder tester (manufactured by Hosokawa Micron), a dedicated measuring device. taking measurement.
Next, the foam whose bulk density has been measured is put into a plastic bag or the like, and the air in the bag is evacuated with a vacuum pump, followed by sealing and sealing. And this bag is put into the pressurization tank filled with 3 liters of water, and it pressurizes for 60 second with a hydrostatic pressure of 5 Mpa with a hydraulic pump. Next, the inorganic foam is taken out from the bag and tapped in the same manner as described above to measure the bulk density.
[0019]
In addition, you may add 1-5 weight% of hardening accelerators, such as aluminum chloride, magnesium chloride, and calcium chloride, to a wooden cement board as needed.
[0020]
The wood material is added to increase the strength of the fragile inorganic molded body, and examples thereof include wood fibers and wood pieces, but the tree species is not limited. And it is preferable that the addition amount of a wood material is 10 to 25 weight%. This is because if the addition amount is less than 10% by weight, the reinforcing effect is insufficient, and if it exceeds 25% by weight, there is a problem in terms of fire resistance.
[0021]
The manufacturing method of the wood cement board concerning this invention is demonstrated.
First, a hydraulic material, an inorganic foam, and a wood material are mixed in a dry manner to obtain a mixture in which the inorganic foam and the hydraulic material are uniformly mixed between the wood materials. Then, 30 to 50% by weight of water is added to this mixture and further mixed. Next, as a method of pressure molding, the obtained mixture is sprayed on a plate and deposited in a mat shape, and this is press-molded, followed by primary curing and curing. Furthermore, secondary curing is carried out in an autoclave, and calcium silicate hydrate is produced by reacting calcium and silica, thereby obtaining a wood cement board exhibiting strength.
[0022]
According to this embodiment, since the hydraulic material, the inorganic foam, and the wooden material are put into a mixer and mixed in a dry manner, a mixture in which the inorganic foam and the hydraulic material are uniformly mixed between the wooden materials is obtained. It is done.
In addition, 30 to 50% by weight of water is added to the uniformly mixed mixture and mixed, so that water is not adsorbed excessively only on the wood material, but also adsorbed uniformly on the inorganic foam and the gaps between them. The For this reason, the wood material does not become lumpy, and a mixture in which the wood material, the inorganic foam and the hydraulic material are uniformly mixed is obtained.
[0023]
The reason why the amount of water added to the mixture is 30 to 50% by weight is that when the amount added is less than 30% by weight, the amount of water with respect to the hydraulic material becomes too small and a predetermined strength cannot be obtained. It is. On the other hand, if it exceeds 50% by weight, the water content becomes excessive and the woody material tends to become lumpy, and the water absorption rate of the molded article after the hydraulic material is cured increases.
[0024]
After spraying the mixture onto the plate and depositing it in a 30-100 mm thick mat, place the embossed plate on the top surface and mold it with a press machine. Harden. The primary curing is preferably performed at a temperature of 50 to 80 ° C. for 8 hours or longer.
The primary curing may be performed by steam curing, and the steam curing time is shortened by increasing the steam curing temperature. However, if the temperature is excessively increased, the board is dried and a predetermined strength cannot be obtained. For this reason, the steam curing temperature is preferably 50 to 80 ° C., but from the viewpoint of productivity, the steam curing time is usually preferably within 24 hours.
[0025]
Secondary curing in the autoclave after removing the embossed plate is mainly to react calcium and silica, which are hydraulic materials, to produce calcium silicate hydrate, and to obtain the final wood cement board that exhibits practical strength. It is this process. Since cement is hydrated and hardened by primary curing and then secondary curing is performed by autoclave, the calcium of cement in the hydraulic material, amorphous silicic acid raw material such as fly ash in the hydraulic material, and inorganic The amorphous component of the foam reacts to produce calcium silicate hydrate, and a wood cement board having a desired strength is obtained. The secondary curing by autoclave is preferably at a temperature of 150 to 220 ° C. If the autoclave curing temperature is raised, a high-strength wood cement board can be produced in a short time, but if it exceeds 220 ° C., wood materials such as wood chips and wood fibers will deteriorate and the strength will be lowered. Moreover, if it is less than 150 degreeC, in order to obtain sufficient intensity | strength, a curing time becomes remarkably long and is unpreferable. The autoclave curing time varies depending on the temperature, but is preferably 1 to 24 hours, preferably 3 to 8 hours.
[0026]
According to the present invention, it is possible to obtain a high-strength molded body that is lightweight and in which fibers are uniformly distributed. For this reason, it is not necessary to use a multi-layered inorganic molded body in which a core layer having a low density is sandwiched between front and back layers having a high density and a high strength as in the prior art, and a single-layer structure may be used, thereby increasing productivity. . However, in the present invention, it is a matter of course that the composition ratio of the front and back layers and the core layer may be changed to have a three-layer structure.
[0027]
【Example】
(Example 1 to Example 10)
The raw materials in the composition ratio shown in FIG. 1, especially Portland cement with different C 3 S amount as cement of hydraulic material, fly ash as amorphous siliceous raw material of hydraulic material, potassium sulfate as an additive, inorganic material Shirasu foam or perlite as the foam, powdered material made of waste wood cement board as the return material, wood chips as the wood material, and calcium chloride as the hardening accelerator were blended. And after mixing the said raw material with a mixer for 2 minutes, 45 weight part of water was added with respect to 100 weight part of solid components, and also mixed for 30 seconds, and the mixture was obtained.
[0028]
Next, the mixture was spread on a stainless steel plate and deposited in a mat shape having a thickness of 40 mm, and then a resin plate was placed on the upper surface and sandwiched, and a plurality of mats in this state were stacked. And after pressurizing with the pressure of about 5 Mpa and clamp-fixing as it is, primary curing was carried out on conditions of temperature 70 degreeC and 10 hours, and the said mat was hardened until the intensity | strength which can be handled was obtained. And after removing the plate, it was subjected to secondary curing in an autoclave at a temperature of 165 ° C. for 6 hours to obtain a final wood cement board. A sample was cut out from the obtained wood cement board, and specific gravity and bending strength were measured. The measurement results are shown in FIG. In addition, the measurement of bending strength was performed according to JIS-A-1408.
[0029]
(Comparative Examples 1-7)
Regarding Comparative Examples 1 to 7, wood cement is produced in the same manner as in Example 1 except that the raw materials are blended at the composition ratio shown in FIG. 2 and that a part of the silica powder is used as the crystalline siliceous raw material. A plate was obtained and its physical properties were measured. The measurement results are shown in FIG.
[0030]
From FIG. 1 and FIG. 2, it is clear that the specific gravity of the example and the comparative example are all equal, but none of the comparative examples exceeds the bending strength of 10 (N / mm 2 ).
Then, from comparison between Examples 1 to 10 and Comparative Example 1, it was found that when the siliceous raw material was crystalline, desired bending strength could not be obtained and the reactivity decreased.
From Comparative Examples 2 and 3, when the calcium / silica molar ratio is smaller than 0.6, the cement is insufficient, so that a desired strength cannot be obtained. When the calcium / silica molar ratio is larger than 1.8, the silicic acid is insufficient. It was found that the desired strength could not be obtained.
From a comparison between Example 7 and Comparative Example 4, it was found that when the brain ratio of the mixed cement was 3500 cm 2 / g or less, a predetermined strength could not be obtained.
From Comparative Examples 5 and 6, if the alkali amount is not 0.6 or more and 1.0 or less, the desired strength cannot be obtained, and from Comparative Example 7, the inorganic foam has low compression strength, that is, after compression. It has been found that the desired strength cannot be secured when the bulk density is 0.5 or more.
[0031]
【The invention's effect】
According to the wood cement board concerning this invention, there exists an effect that the lightweight wood cement board which has desired intensity | strength can be obtained.
[Brief description of the drawings]
FIG. 1 is a chart showing an example of a wood cement board according to the present invention.
FIG. 2 is a chart showing a comparative example of a wood cement board according to the present invention.

Claims (3)

非晶質の珪酸質原料を含有する水硬性材料、無機質発泡体および木質材料を混合した後、水を添加,混合して得た混合物を加圧成形し、オートクレーブ養生した木質セメント板において、
前記水硬性材料は、カルシウム/シリカのモル比が0.6〜1.8、ブレーン比表面積が3800cm/g以上、アルカリ含有量が前記水硬性材料100重量部に対して0.6〜1.0重量部であり、前記水硬性材料に添加剤として硫酸アルカリが添加されており、
前記無機質発泡体は、5Mpaの水圧下での嵩密度が0.4のパーライト、黒曜石発泡体、シラス発泡体からなる群から選択された少なくとも1種であり、
前記混合物の固形成分は、前記水硬性材料を35〜70重量%、前記無機質発泡体を10〜25重量%含むことを特徴とする木質セメント板。
After mixing the hydraulic material containing the amorphous siliceous raw material, the inorganic foam and the wooden material, water is added and the mixture obtained by mixing is pressure-molded and autoclaved in the wooden cement board,
The hydraulic material has a calcium / silica molar ratio of 0.6 to 1.8, a Blaine specific surface area of 3800 cm 2 / g or more, and an alkali content of 0.6 to 1 with respect to 100 parts by weight of the hydraulic material. 0.0 part by weight, alkali sulfate is added as an additive to the hydraulic material,
The inorganic foam is at least one selected from the group consisting of pearlite, obsidian foam, and shirasu foam having a bulk density of 0.4 at a water pressure of 5 Mpa,
The solid component of the mixture contains 35 to 70% by weight of the hydraulic material and 10 to 25% by weight of the inorganic foam.
水硬性材料がポルトランドセメントおよびフライアッシュからなり、前記ポルトランドセメント中の3CaO・SiOの含有量が63%以上であることを特徴とする請求項1に記載の木質セメント板。 2. The wood cement board according to claim 1, wherein the hydraulic material is made of Portland cement and fly ash, and the content of 3CaO.SiO 2 in the Portland cement is 63% or more. 非晶質の珪酸質原料を含有する水硬性材料、無機質発泡体および木質材料を混合した後、水を添加,混合して混合物を得、この混合物を加圧成形した後、オートクレーブ養生する木質セメント板の製造方法において、
前記水硬性材料は、カルシウム/シリカのモル比を0.6〜1.8、ブレーン比表面積を3800cm/g以上、アルカリ含有量を前記水硬性材料100重量部に対して0.6〜1.0重量部とし、前記水硬性材料に添加剤として硫酸アルカリが添加されており、
前記無機質発泡体は、5Mpaの水圧下での嵩密度が0.4のパーライト、黒曜石発泡体、シラス発泡体からなる群から選択された少なくとも1種とし、
前記混合物の固形成分は、前記水硬性材料を35〜70重量%、前記無機質発泡体を10〜25重量%混合してなることを特徴とする木質セメント板の製造方法。
After mixing hydraulic material, inorganic foam and wood material containing amorphous siliceous raw material, water is added and mixed to obtain a mixture. After this mixture is pressure-molded, wood cement is cured by autoclave In the manufacturing method of a board,
The hydraulic material has a calcium / silica molar ratio of 0.6 to 1.8, a Blaine specific surface area of 3800 cm 2 / g or more, and an alkali content of 0.6 to 1 with respect to 100 parts by weight of the hydraulic material. 0.0 part by weight, alkali sulfate is added as an additive to the hydraulic material,
The inorganic foam is at least one selected from the group consisting of pearlite, obsidian foam, and shirasu foam having a bulk density of 0.4 at a water pressure of 5 Mpa,
A solid component of the mixture is obtained by mixing 35 to 70% by weight of the hydraulic material and 10 to 25% by weight of the inorganic foam.
JP2002068594A 2002-03-13 2002-03-13 Wood cement board and manufacturing method thereof Expired - Lifetime JP4283484B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002068594A JP4283484B2 (en) 2002-03-13 2002-03-13 Wood cement board and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002068594A JP4283484B2 (en) 2002-03-13 2002-03-13 Wood cement board and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2003267769A JP2003267769A (en) 2003-09-25
JP4283484B2 true JP4283484B2 (en) 2009-06-24

Family

ID=29199656

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002068594A Expired - Lifetime JP4283484B2 (en) 2002-03-13 2002-03-13 Wood cement board and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4283484B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4412909B2 (en) * 2003-03-18 2010-02-10 ニチハ株式会社 Wood cement board and manufacturing method thereof
JP5129941B2 (en) * 2006-09-26 2013-01-30 ニチハ株式会社 Inorganic molded body and method for producing the same
JP5098484B2 (en) * 2007-07-25 2012-12-12 宇部興産株式会社 Porous materials for ceramics building materials, ceramics building materials and methods for producing them

Also Published As

Publication number Publication date
JP2003267769A (en) 2003-09-25

Similar Documents

Publication Publication Date Title
US8007697B2 (en) Method for manufacturing articles in the form of thin slabs of composite stone and resultant articles
JP2006062883A (en) Wooden cement board and its manufacturing method
KR100853754B1 (en) The refractory material of high strength for construction and the making method thereof
JP3386225B2 (en) Method for producing carbonic acid-cured molded product and precursor thereof, and moisture absorbing / releasing material comprising the molded product
JP4287943B2 (en) Lightweight inorganic molded body and method for producing the same
JP3374515B2 (en) Manufacturing method of inorganic plate
JP4283484B2 (en) Wood cement board and manufacturing method thereof
JP3245487B2 (en) Method for producing inorganic multilayer molded article
JP4180861B2 (en) Wood cement board and manufacturing method thereof
JP5129941B2 (en) Inorganic molded body and method for producing the same
JP3211204B2 (en) Wood cement board manufacturing method
JP2004026629A (en) Carbonated hardened body and method of manufacturing the same
JP2943844B2 (en) Wood cement board
JPH09328350A (en) Backing material for roof and its production
JP7133946B2 (en) Calcium silicate board and manufacturing method thereof
JPH02141454A (en) Production of high-strength calcium silicate molded body
JP3279897B2 (en) Wood cement board manufacturing method
JP2002187759A (en) Production process for cemented wood board
JP3037683B1 (en) Wood cement board and method for producing the same
JP2652774B2 (en) Manufacturing method of inorganic plate
JP2574212B2 (en) Method and apparatus for producing inorganic plate
JP4198889B2 (en) Manufacturing method of wood cement board
JP3225025B2 (en) Wood cement board and method for producing the same
WO1982002195A1 (en) Cementitious article
JP3980183B2 (en) Manufacturing method of inorganic board

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20041028

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20041028

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050310

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050310

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050310

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080404

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090116

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090224

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090319

R150 Certificate of patent or registration of utility model

Ref document number: 4283484

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130327

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140327

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term