JP5098484B2 - Porous materials for ceramics building materials, ceramics building materials and methods for producing them - Google Patents

Porous materials for ceramics building materials, ceramics building materials and methods for producing them Download PDF

Info

Publication number
JP5098484B2
JP5098484B2 JP2007193123A JP2007193123A JP5098484B2 JP 5098484 B2 JP5098484 B2 JP 5098484B2 JP 2007193123 A JP2007193123 A JP 2007193123A JP 2007193123 A JP2007193123 A JP 2007193123A JP 5098484 B2 JP5098484 B2 JP 5098484B2
Authority
JP
Japan
Prior art keywords
porous material
pressure
volume reduction
volume
pearlite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007193123A
Other languages
Japanese (ja)
Other versions
JP2009029643A (en
Inventor
靖彦 戸田
雅之 橋村
靖弘 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP2007193123A priority Critical patent/JP5098484B2/en
Publication of JP2009029643A publication Critical patent/JP2009029643A/en
Application granted granted Critical
Publication of JP5098484B2 publication Critical patent/JP5098484B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Panels For Use In Building Construction (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Producing Shaped Articles From Materials (AREA)
  • Press-Shaping Or Shaping Using Conveyers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a porous material for ceramic building materials used for producing a ceramic building material having a large surface unevenness and a sharp pattern by a sheet-forming method, a ceramic building material using the same, and methods for producing them. <P>SOLUTION: The ceramic building material is produced from the porous material by a method comprising a first compression step of compressing the porous material by a first pressure and a second compression step of compressing the porous material by a second pressure which is higher than the first pressure. The porous material for ceramic building materials comprises at least two types of porous materials having different volume reduction ratios by the first pressure and the second pressure. The volume reduction ratio is the ratio of the volume of the part reduced by applying a predetermined pressure to the volume at the original pressure. <P>COPYRIGHT: (C)2009,JPO&amp;INPIT

Description

本発明は、湿式抄造法により製造される窯業建材の原料に好適に用いられる多孔質材料、それを用いた窯業建材およびそれらの製造方法に関する。   The present invention relates to a porous material suitably used as a raw material for ceramic building materials produced by a wet papermaking method, a ceramic building material using the same, and a method for producing them.

建築物の外壁用の外装材には、従来から、窯業建材が広く使用されている。窯業建材の製造方法の一つである湿式抄造法では、原料に、セメント等の水硬性粉末、パルプやビニロン等の補強繊維、軽量化や抄造時の濾水性を改善するとともに、窯業建材の軽量化をはかるためのパーライト等の多孔質材料である軽量骨材を使用する。これら原料の混合物を水に分散させてスラリーとし、このスラリーを抄造して、グリーンシートを形成する。このグリーンシートをメーキングロールと呼ばれるドラム状の脱水機等で脱水する。更に成型機により高圧プレスして意匠性を高めるために模様を付ける。その後、養生、乾燥、裁断、塗装仕上げの工程を経て、窯業建材が製造される。このような抄造法による建材の製造方法は、例えば特許文献1に記載されている。   Conventionally, ceramic building materials have been widely used as exterior materials for outer walls of buildings. In wet papermaking, which is one of the methods for manufacturing ceramic building materials, the raw materials are hydraulic powder such as cement, reinforcing fibers such as pulp and vinylon, weight reduction and drainage during papermaking are improved, and the weight of ceramic building materials is reduced. Lightweight aggregate, which is a porous material such as pearlite, is used. A mixture of these raw materials is dispersed in water to form a slurry, and this slurry is made to form a green sheet. The green sheet is dehydrated with a drum-shaped dehydrator called a making roll. Furthermore, a high-pressure press is applied by a molding machine to give a pattern in order to improve the design. Thereafter, ceramic building materials are manufactured through curing, drying, cutting, and painting finishing processes. A method for manufacturing a building material by such a papermaking method is described in Patent Document 1, for example.

メーキングロールで加圧・脱水する工程において、グリーンシートが受ける圧力は、概ね1.0N/mmである。この工程では、多孔質材料ができるだけ圧潰しないことが望ましい。多孔質材料が圧潰すると、多孔質材料の使用目的である濾水性の改善効果が損なわれ、グリーンシート内に、局所的な水の抜け道が形成され、その後の養生、乾燥工程で、厚さ方向の層間剥離が発生する割合が高くなる等の問題が生じることが多い。さらに、多孔質材料による窯業建材の軽量化の効果も不十分となる。 In the step of pressurizing and dewatering with the making roll, the pressure received by the green sheet is approximately 1.0 N / mm 2 . In this step, it is desirable that the porous material is not crushed as much as possible. When the porous material is crushed, the effect of improving the drainage, which is the intended use of the porous material, is impaired, and a local water drainage path is formed in the green sheet. In the subsequent curing and drying process, the thickness direction In many cases, a problem such as a high rate of occurrence of delamination occurs. Furthermore, the effect of reducing the weight of the ceramic building material by the porous material becomes insufficient.

また、窯業建材は、近年、意匠性の高い製品が望まれるようになり、表面の凹凸が大きく、シャープな模様を有するものの需要が大幅に増大している。表面の凹凸が大きく、シャープな模様を付けるためには、成型機で型付けする際の圧力を高くする必要がある。しかしながら、このような成型を行うことができる成型機の設備コストは高いという問題がある。それに加えて、抄造法で得られるグリーンシートは比較的含水率が高いため、加圧の圧力が高すぎると脱水による水の抜け道が形成されるために、その後の養生、乾燥工程において厚さ方向に層間剥離が発生する割合が高くなるという問題がある。さらに、グリーンシートを高圧で加圧した場合、圧力による変形が元に戻る現象(いわゆるスプリングバック)が発生して、シャープな凹凸模様を形成することが困難であるという問題もある。   In recent years, products with high design properties have been demanded for ceramic building materials, and the demand for products having large surface irregularities and sharp patterns has been greatly increased. In order to create a sharp pattern with large irregularities on the surface, it is necessary to increase the pressure when molding with a molding machine. However, there is a problem that the equipment cost of a molding machine capable of performing such molding is high. In addition, since the green sheet obtained by the papermaking method has a relatively high water content, if the pressure of the pressurization is too high, a water drainage path is formed by dehydration. There is a problem that the rate of occurrence of delamination increases. Furthermore, when the green sheet is pressed at a high pressure, there is a problem that it is difficult to form a sharp concavo-convex pattern due to a phenomenon (so-called springback) in which deformation due to pressure is restored.

一方、特許文献2には、塗装に頼ることなく、高い意匠性を備えた凹凸模様を付与することができる無機質板の製造方法と、それにより製造された表面に凹凸模様を有する無機質板に関する技術が開示されている。具体的には、セメントおよび骨材を主成分とするグリーンシートを加圧成型して、グリーンシート表面に凹凸模様を付与する無機質板の製造方法において、骨材の一部として、加圧成型時にグリーンシートの凹凸模様の凹部における加圧圧力により破壊する模様付け軽量骨材を用いる無機質板の製造方法が開示されている。
特開2001−130946号公報 特開2003−236820号公報
On the other hand, Patent Document 2 discloses a method for manufacturing an inorganic board capable of imparting a concavo-convex pattern having high design without depending on coating, and a technique related to an inorganic board having a concavo-convex pattern on the surface manufactured thereby. Is disclosed. Specifically, in a method of manufacturing an inorganic plate that press-molds a green sheet mainly composed of cement and aggregate to give a concavo-convex pattern on the surface of the green sheet, A method for manufacturing an inorganic board using a patterned lightweight aggregate that is broken by a pressure applied to a concave portion of a concave and convex pattern of a green sheet is disclosed.
JP 2001-130946 A JP 2003-236820 A

本発明は、上記の問題を鑑みてなされたものであり、軽量で、表面の凹凸が大きく、シャープな模様を有する窯業建材を抄造法によって製造するために使用される窯業建材用多孔質材料、それを用いた窯業建材およびそれらの製造方法を提供することを目的とする。   The present invention has been made in view of the above problems, and is a porous material for ceramics building materials used for producing ceramic building materials that are lightweight, have large surface irregularities, and have a sharp pattern by a papermaking method, An object of the present invention is to provide a ceramic building material using the same and a manufacturing method thereof.

本発明者らは、次のような特性を有する多孔質材料を、抄造法で製造される窯業建材の原料の軽量骨材として使用することにより、軽量性を保ちつつ、表面の凹凸が大きく、シャープな模様を有する窯業建材を製造することができることを見出し、本発明を完成するに至った。   By using a porous material having the following characteristics as a lightweight aggregate of a ceramic building material produced by a papermaking method, the inventors have large surface irregularities while maintaining light weight, The inventors have found that ceramic building materials having a sharp pattern can be produced, and have completed the present invention.

すなわち、本発明は、多孔質材料が、第1の圧力により圧縮される第1圧縮工程と、
多孔質材料が、第1の圧力より高い第2の圧力により圧縮される第2圧縮工程と、
を含んで製造される窯業建材の、製造材料用の多孔質材料であって、
少なくとも2種類の、第1の圧力および第2の圧力による体積縮小率が異なる多孔質材料を含み、体積縮小率が、元の圧力のときの体積に対する所定の圧力を載荷することによって縮小した部分の体積の比である、窯業建材用多孔質材料である。
That is, the present invention includes a first compression step in which a porous material is compressed by a first pressure;
A second compression step in which the porous material is compressed by a second pressure higher than the first pressure;
Porous materials for manufacturing materials of ceramics building materials manufactured including
A portion including at least two kinds of porous materials having different volume reduction ratios by the first pressure and the second pressure, and the volume reduction ratio is reduced by loading a predetermined pressure with respect to the volume at the original pressure. Is a porous material for ceramic building materials.

好ましくは、多孔質材料が、
第1の圧力による体積縮小率が30%以下、かつ、第2の圧力による体積縮小率が50%以下である多孔質材料Aと、
第1の圧力による体積縮小率が35%以上、かつ、第2の圧力による体積縮小率が60%以上である多孔質材料Bと、
を含み、体積縮小率が、元の圧力のときの体積に対する所定の圧力を載荷することによって縮小した部分の体積の比である、窯業建材用多孔質材料である。
Preferably, the porous material is
A porous material A having a volume reduction ratio of 30% or less by the first pressure and a volume reduction ratio of 50% or less by the second pressure;
A porous material B having a volume reduction ratio of 35% or more by the first pressure and a volume reduction ratio of 60% or more by the second pressure;
The volume reduction ratio is a ratio of the volume of the portion reduced by loading a predetermined pressure to the volume at the original pressure, and is a porous material for ceramic building materials.

また、好ましくは、第1の圧力が、0.8〜1.2N/mmであり、第2の圧力が、3.5〜4.5N/mmである、窯業建材用多孔質材料である。 Moreover, Preferably, it is a porous material for ceramics building materials in which the first pressure is 0.8 to 1.2 N / mm 2 and the second pressure is 3.5 to 4.5 N / mm 2. is there.

また、好ましくは、多孔質材料が、
圧力1.0N/mmの載荷による体積縮小率が30%以下、かつ、圧力4.0N/mmの載荷による体積縮小率が50%以下である多孔質材料Aと、
圧力1.0N/mmの載荷による体積縮小率が35%以上、かつ、圧力4.0N/mmの載荷による体積縮小率が60%以上である多孔質材料Bと、
を含む、窯業建材用多孔質材料である。
Also preferably, the porous material is
A porous material A having a volume reduction rate of 30% or less by loading at a pressure of 1.0 N / mm 2 and a volume reduction rate by loading of a pressure of 4.0 N / mm 2 of 50% or less;
A porous material B having a volume reduction rate of 35% or more due to loading at a pressure of 1.0 N / mm 2 and a volume reduction rate of 60% or more due to loading at a pressure of 4.0 N / mm 2 ;
It is a porous material for ceramics building materials.

また、好ましくは、多孔質材料Aと多孔質材料Bとの合計質量100質量%に対して、多孔質材料Aの割合が、20〜90質量%である、窯業建材用多孔質材料である。また、好ましくは、多孔質材料が、パーライト、珪藻土、シラスバルーン、石炭ガス化スラグを加熱発泡させた軽量骨材、ガラスバルーン、アルミナバブル、フライアッシュバルーンおよび焼成ひる石から選択される少なくとも1つである、窯業建材用多孔質材料である。また、好ましくは、多孔質材料が、単位容積質量0.02〜0.5kg/リットルのパーライトである、窯業建材用多孔質材料である。また、好ましくは、パーライトが、黒曜石、真珠岩および松脂岩系パーライトから選択される少なくとも1つである、窯業建材用多孔質材料である。   In addition, a porous material for ceramics building materials in which the ratio of the porous material A is 20 to 90% by mass with respect to 100% by mass of the total mass of the porous material A and the porous material B is preferable. Preferably, the porous material is at least one selected from pearlite, diatomaceous earth, shirasu balloon, lightweight aggregate obtained by heating and foaming coal gasification slag, glass balloon, alumina bubble, fly ash balloon, and calcined granite. It is a porous material for ceramics building materials. Further, preferably, the porous material is a porous material for ceramic building materials, which is pearlite having a unit volume mass of 0.02 to 0.5 kg / liter. Preferably, the perlite is at least one selected from obsidian, pearlite, and pine sebaceous perlite.

また、本発明は、窯業建材用多孔質材料を含む、窯業建材である。   Moreover, this invention is a ceramic industry building material containing the porous material for ceramic industry building materials.

また、本発明は、圧力1.0N/mmの載荷による体積縮小率が、30%以下、かつ、圧力4.0N/mmの載荷による体積縮小率が、50%以下である多孔質材料A、および
圧力1.0N/mmの載荷による体積縮小率が、35%以上、かつ、圧力4.0N/mmの載荷による体積縮小率が、60%以上である多孔質材料Bを、それぞれ選別する選別工程と、
多孔質材料Aと多孔質材料Bとを混合する混合工程と
を含み、体積縮小率が、元の圧力のときの体積に対する所定の圧力を載荷することによって縮小した部分の体積の比である、窯業建材用多孔質材料の製造方法である。
The present invention also provides a porous material having a volume reduction rate of 30% or less due to loading at a pressure of 1.0 N / mm 2 and a volume reduction rate of 50% or less due to loading at a pressure of 4.0 N / mm 2. A and a porous material B having a volume reduction rate of 35% or more by loading at a pressure of 1.0 N / mm 2 and a volume reduction rate of 60% or more by loading at a pressure of 4.0 N / mm 2 , A sorting process for sorting each;
A mixing step of mixing the porous material A and the porous material B, and the volume reduction ratio is a ratio of the volume of the portion reduced by loading a predetermined pressure with respect to the volume at the original pressure, It is the manufacturing method of the porous material for ceramics building materials.

好ましくは、混合工程が、多孔質材料Aと多孔質材料Bとの合計質量100質量%に対して、多孔質材料Aを20〜90質量%の割合で混合する工程である、窯業建材用多孔質材料の製造方法である。また、好ましくは、体積縮小率が、直径40mm、高さ80mmの円筒容器に多孔質材料を充填した後、プランジャーを用いて多孔質材料に圧力を加えたときの多孔質材料の体積変化に基づき測定される、窯業建材用多孔質材料の製造方法である。   Preferably, the mixing step is a step for mixing the porous material A at a ratio of 20 to 90% by mass with respect to the total mass of 100% by mass of the porous material A and the porous material B. It is a manufacturing method of a quality material. Preferably, the volume reduction rate is a change in volume of the porous material when pressure is applied to the porous material using a plunger after filling the porous material into a cylindrical container having a diameter of 40 mm and a height of 80 mm. It is the manufacturing method of the porous material for ceramics building materials measured based on.

また、好ましくは、多孔質材料が、パーライト、珪藻土、シラスバルーン、石炭ガス化スラグを加熱発泡させた軽量骨材、ガラスバルーン、アルミナバブル、フライアッシュバルーンおよび焼成ひる石から選択される少なくとも1つである、窯業建材用多孔質材料の製造方法である。また、好ましくは、多孔質材料が、単位容積質量0.02〜0.5kg/リットルのパーライトである、窯業建材用多孔質材料の製造方法である。また、好ましくは、パーライトが、黒曜石、真珠岩および松脂岩系パーライトから選択される少なくとも1つである、窯業建材用多孔質材料の製造方法である。   Preferably, the porous material is at least one selected from pearlite, diatomaceous earth, shirasu balloon, lightweight aggregate obtained by heating and foaming coal gasification slag, glass balloon, alumina bubble, fly ash balloon, and calcined granite. It is the manufacturing method of the porous material for ceramics building materials. Preferably, the method is a method for producing a porous material for ceramic building materials, wherein the porous material is pearlite having a unit volume mass of 0.02 to 0.5 kg / liter. Moreover, it is preferable that the perlite is at least one selected from obsidian, nacre, and pine sebaceous perlite, and a method for producing a porous material for ceramic building materials.

また、本発明は、多孔質材料が、第1の圧力により圧縮される第1圧縮工程と、
多孔質材料が、第1の圧力より高い第2の圧力により圧縮される第2圧縮工程と、
を含む窯業建材の製造方法であって、
多孔質材料が、多孔質材料である、窯業建材の製造方法である。
The present invention also includes a first compression step in which the porous material is compressed by a first pressure;
A second compression step in which the porous material is compressed by a second pressure higher than the first pressure;
A method for manufacturing ceramic building materials including
A method for producing a ceramic building material, wherein the porous material is a porous material.

本発明の窯業建材用多孔質材料、それを用いた窯業建材およびそれらの製造方法により、軽量で、表面の凹凸が大きく、シャープな模様を有する窯業建材を抄造法によって製造することができることとなる。   With the porous material for ceramic building materials according to the present invention, the ceramic building materials using the same, and the manufacturing method thereof, a ceramic building material that is lightweight, has large surface irregularities, and has a sharp pattern can be manufactured by papermaking. .

本発明は、窯業建材を抄造法によって製造するのに適した窯業建材用多孔質材料、それを用いた窯業建材およびそれらの製造方法である。   The present invention relates to a porous material for ceramic industry building materials suitable for producing ceramic industry building materials by a papermaking method, ceramic industry building materials using the same, and methods for producing them.

湿式抄造法、特に長網法を用いた窯業建材の製造方法では、パーライト等の多孔質材料を含む原料スラリーを抄造し、得られたグリーンシートを、メーキングロールと呼ばれるドラム状の脱水機等で加圧・脱水する。その後、さらに成型機を用いて、高圧で加圧することによりグリーンシート表面に凹凸模様を形成する。その後、養生、乾燥、裁断、塗装仕上げして、窯業建材が製造される。メーキングロールで加圧・脱水する工程でグリーンシートが受ける圧力は、概ね1.0N/mmであり、この工程では、多孔質材料ができるだけ圧潰しないことが望ましい。多孔質材料が圧潰すると、多孔質材料の使用目的である濾水性の改善効果が損なわれ、グリーンシート内に、局所的な水の抜け道が形成され、その後の養生、乾燥工程で、厚さ方向の層間剥離が発生する割合が高くなる等の問題が生じてしまうためである。さらに、多孔質材料による軽量化の効果も不十分となる。 In the wet papermaking method, particularly in the manufacturing method of ceramic building materials using the long net method, the raw material slurry containing porous material such as pearlite is made, and the obtained green sheet is transferred to a drum-shaped dehydrator called making roll. Pressurize and dehydrate. Then, using a molding machine, a concavo-convex pattern is formed on the surface of the green sheet by pressing at a high pressure. Then, curing, drying, cutting, painting finish, and ceramic building materials are manufactured. The pressure received by the green sheet in the step of pressurizing and dewatering with a making roll is approximately 1.0 N / mm 2 , and in this step, it is desirable that the porous material is not crushed as much as possible. When the porous material is crushed, the effect of improving the drainage, which is the intended use of the porous material, is impaired, and a local water drainage path is formed in the green sheet. In the subsequent curing and drying process, the thickness direction This is because a problem such as a high rate of occurrence of delamination occurs. Furthermore, the effect of weight reduction by the porous material becomes insufficient.

一方、成型機を用いて、高圧で加圧することによりグリーンシート表面に凹凸模様を付ける工程では、概ね4.0N/mmの圧力がグリーンシートに加わる。この工程では、特にグリーンシートの凹部に成型圧力が加わり、その部分に含まれる多孔質材料が一気に圧潰する特性を有することが望ましい。このような特性を有すると、グリーンシートのスプリングバックが無く、シャープな凹凸模様を有する窯業建材を製造することが可能となる。さらに、成型機の能力を過剰に高める必要が無いため、設備コストの低減にもつながる。しかしながら、一種類の多孔質材料おいては、加える圧力と圧潰量との間には、一般的に、直線的な相関関係しかないため、上記のような特性を得ることができなかった。 On the other hand, in the step of forming a concavo-convex pattern on the surface of the green sheet by pressurizing with a high pressure using a molding machine, a pressure of approximately 4.0 N / mm 2 is applied to the green sheet. In this step, it is particularly desirable that the molding material has a characteristic that a molding pressure is applied to the concave portion of the green sheet and the porous material contained in the concave portion is crushed at once. With such characteristics, it is possible to produce a ceramic building material having a sharp uneven pattern without a green sheet springback. Furthermore, it is not necessary to increase the capacity of the molding machine excessively, which leads to a reduction in equipment costs. However, in one kind of porous material, since there is generally only a linear correlation between the applied pressure and the amount of crushing, the above characteristics cannot be obtained.

そこで、本発明者は、圧潰強度の異なる二種類の多孔質材料を混合することにより、メーキングロールを用いて加圧・脱水する工程での圧力では圧潰しにくく、成型機の圧力で一気に圧潰する特性を有する多孔質材料を得ることができることを見出した。   Therefore, the present inventor mixes two kinds of porous materials having different crushing strengths so that it is difficult to crush by the pressure in the pressurizing / dehydrating process using the making roll, and crushes at once by the pressure of the molding machine. It has been found that a porous material having characteristics can be obtained.

すなわち、窯業建材の製造のために用いる多孔質材料が、2種類の多孔質材料(圧潰強度が高い多孔質材料Aと圧潰強度が低い多孔質材料B)を混合して含む場合、グリーンシートの脱水を行なうために加圧する1.0N/mm程度の低い圧力を載荷した時には、圧潰強度が低い多孔質材料Bが潰れることにより、圧潰強度の高い多孔質材料Aの潰れを緩和することができる。また、圧潰強度が低い多孔質材料Bは、全体の多孔質材料の一部しか混合されていないため、多孔質材料Aと多孔質材料Bの混合物が潰れる絶対量は、多孔質材料Bを単独で使用した場合に比べて、大幅に少なくすることができる。 That is, when the porous material used for the production of ceramic building materials includes a mixture of two kinds of porous materials (a porous material A having a high crushing strength and a porous material B having a low crushing strength), When a low pressure of about 1.0 N / mm 2 is applied to perform dehydration, the porous material B having a low crushing strength may be crushed, thereby reducing the crushing of the porous material A having a high crushing strength. it can. Further, since the porous material B having a low crushing strength is mixed with only a part of the entire porous material, the absolute amount by which the mixture of the porous material A and the porous material B is crushed is the same as that of the porous material B. Compared to the case of using in, it can be greatly reduced.

一方、凹凸模様を付ける4.0N/mm程度の高圧を載荷する過程でグリーンシートの凹部では、圧潰強度が低い多孔質材料Bの大部分が潰れるのに加え、多孔質材料Bによる緩衝効果がなくなり、圧潰強度が高い多孔質材料Aも単独で使用した場合と同程度潰れるため、多孔質材料Bによる潰れも加わる。そのため、多孔質材料Aと多孔質材料Bの混合物が潰れる絶対量は、多孔質材料Aを単独で使用した場合よりも大幅に増大することとなる。多孔質材料がこのような圧潰特性を有すると、シャープな凹凸模様を有する窯業建材を製造することが可能となる。また、高圧を載荷する過程でグリーンシートの凸部には凹部のような高圧が載荷されないため、先工程の低圧の載荷によっても破壊せずに残存していた多孔質材料Aは、高圧の載荷過程でも破壊せずに大半が残存し、窯業建材に良好な軽量性を保持させることが可能となる。 On the other hand, in the process of loading a high pressure of about 4.0 N / mm 2 to which the uneven pattern is applied, in the concave portion of the green sheet, in addition to crushing most of the porous material B having low crushing strength, the buffering effect by the porous material B Since the porous material A having high crushing strength is crushed to the same extent as when used alone, the porous material B is also crushed. Therefore, the absolute amount by which the mixture of the porous material A and the porous material B is crushed is significantly increased as compared with the case where the porous material A is used alone. When the porous material has such a crushing characteristic, it becomes possible to manufacture a ceramic building material having a sharp concavo-convex pattern. Further, in the process of loading high pressure, since the high pressure as in the concave portion is not loaded on the convex portion of the green sheet, the porous material A that remains without being broken by the low-pressure loading in the previous step is loaded with high pressure. Most of them remain without being destroyed even in the process, and it becomes possible to maintain good lightness in the ceramic building materials.

以下、本発明について、具体的に説明する。なお、本明細書では、元の圧力(圧力を載荷しない状態)のときの体積と、所定の圧力を載荷することによって縮小した部分の体積との比を「体積縮小率」という。すなわち、体積縮小率は、圧力の載荷により縮小した部分の体積を、元の圧力のときの体積で割った値である。体積縮小率と圧潰強度とは直接的な関係があり、体積縮小率が小さい場合には、所定の圧力を載荷したときの体積の収縮は小さく、したがって圧潰強度が高いといえる。また、体積縮小率が大きい場合には、所定の圧力を載荷したときの体積の収縮は大きく、したがって圧潰強度が小さいといえる。   Hereinafter, the present invention will be specifically described. In this specification, the ratio between the volume at the original pressure (in a state where no pressure is loaded) and the volume of the portion reduced by loading a predetermined pressure is referred to as “volume reduction ratio”. That is, the volume reduction rate is a value obtained by dividing the volume of the portion reduced by the load of pressure by the volume at the original pressure. There is a direct relationship between the volume reduction rate and the crushing strength. When the volume reduction rate is small, it can be said that the shrinkage of the volume when a predetermined pressure is loaded is small, and thus the crushing strength is high. In addition, when the volume reduction rate is large, it can be said that the volume shrinkage when a predetermined pressure is loaded is large, and therefore the crushing strength is small.

本発明は、窯業建材用の多孔質材料に関するものである。窯業建材を製造する際に、その原料となる多孔質材料は、ある圧力(以下、「第1の圧力」という)により圧縮される工程(以下、「第1圧縮工程」という)において、脱水のために圧縮される。その後、その多孔質材料は、第1の圧力より高い圧力(以下、「第2の圧力」という)により圧縮される工程(以下、「第2圧縮工程」という)において圧縮され、凹凸模様が形成される。本発明は、これらの工程を経て製造される窯業建材において、その窯業建材の製造材料用の多孔質材料が、少なくとも2種類の、異なる体積縮小率を有する多孔質材料を含むことに特徴がある。そのため本発明の多孔質材料は、上述のような、シャープな凹凸模様を有する窯業建材を製造することが可能となるような圧潰特性を有することとなる。   The present invention relates to a porous material for ceramic building materials. In the production of ceramic building materials, the porous material as the raw material is subjected to dehydration in a process (hereinafter referred to as “first compression process”) compressed by a certain pressure (hereinafter referred to as “first pressure process”). To be compressed. Thereafter, the porous material is compressed in a step (hereinafter referred to as “second compression step”) that is compressed by a pressure higher than the first pressure (hereinafter referred to as “second pressure”) to form an uneven pattern. Is done. The present invention is characterized in that in the ceramic building material manufactured through these steps, the porous material for the manufacturing material of the ceramic building material includes at least two kinds of porous materials having different volume reduction ratios. . Therefore, the porous material of the present invention has such a crushing characteristic that it is possible to produce a ceramic building material having a sharp concavo-convex pattern as described above.

また、別の態様において、本発明の窯業建材用多孔質材料には、所定の2種類の多孔質材料、すなわち多孔質材料Aおよび多孔質材料Bが含まれる。ここで、多孔質材料Aは、第1の圧力による体積縮小率が30%以下、かつ、第2の圧力による体積縮小率が50%以下である。また、多孔質材料Bは、第1の圧力による体積縮小率が35%以上、かつ、第2の圧力による体積縮小率が60%以上である。このように、2種類の多孔質材料において、所定の圧力を載荷した場合における体積縮小率がそれぞれ所定の値であると、上記のような2つの圧縮工程の際に、多孔質材料がそれぞれ所定の圧潰をすることができる。   In another aspect, the porous material for ceramic building materials of the present invention includes two kinds of predetermined porous materials, that is, porous material A and porous material B. Here, the porous material A has a volume reduction rate of 30% or less due to the first pressure and a volume reduction rate due to the second pressure of 50% or less. The porous material B has a volume reduction ratio of 35% or more due to the first pressure and a volume reduction ratio of 60% or more due to the second pressure. As described above, when the volume reduction ratio when a predetermined pressure is loaded in each of the two types of porous materials is a predetermined value, the porous material is predetermined in the two compression processes as described above. Can be crushed.

第1の圧力および第2の圧力の具体的な値は、窯業建材の種類により異なる。しかし、脱水を適切に行い、所定の模様を有する窯業建材を得るためには、一般的に、第1の圧力が、0.8〜1.2N/mm(1.0±0.2N/mm)であり、第2の圧力が、3.5〜4.5N/mm(4.0±0.5N/mm)であることが好ましい。 The specific values of the first pressure and the second pressure vary depending on the type of ceramic building material. However, in order to appropriately perform dehydration and obtain a ceramic building material having a predetermined pattern, generally, the first pressure is 0.8 to 1.2 N / mm 2 (1.0 ± 0.2 N / a mm 2), the second pressure is preferably a 3.5~4.5N / mm 2 (4.0 ± 0.5N / mm 2).

また、別の態様において、本発明の窯業建材用多孔質材料には、2種類の多孔質材料、すなわち多孔質材料Aおよび多孔質材料Bが含まれる。このとき、多孔質材料Aは、圧力1.0N/mmの載荷による体積縮小率が30%以下、かつ、圧力4.0N/mmの載荷による体積縮小率が50%以下である。また、多孔質材料Bは、圧力1.0N/mmの載荷による体積縮小率が35%以上、かつ、圧力4.0N/mmの載荷による体積縮小率が60%以上である。このように、2種類の多孔質材料において、所定の圧力を載荷した場合における体積縮小率がそれぞれ所定の値であると、上記のような2つの圧縮工程の際に、多孔質材料がそれぞれ所定の圧潰をすることができる。 In another aspect, the porous material for ceramic building materials according to the present invention includes two types of porous materials, that is, porous material A and porous material B. At this time, the porous material A has a volume reduction rate of 30% or less due to loading at a pressure of 1.0 N / mm 2 and a volume reduction rate of 50% or less due to loading at a pressure of 4.0 N / mm 2 . Further, the porous material B has a volume reduction rate of 35% or more due to loading at a pressure of 1.0 N / mm 2 and a volume reduction rate of 60% or more due to loading at a pressure of 4.0 N / mm 2 . As described above, when the volume reduction ratio when a predetermined pressure is loaded in each of the two types of porous materials is a predetermined value, the porous material is predetermined in the two compression processes as described above. Can be crushed.

また、多孔質材料Aと多孔質材料Bとの割合は、多孔質材料Aと多孔質材料Bとの合計質量(100質量%)に対して、多孔質材料Aの割合が、20〜90質量%であることが好ましい。多孔質材料Aの割合は、好ましくは、30〜90質量%、さらに好ましくは、40〜85質量%、より好ましくは、50〜80質量%、特に好ましくは、55〜75質量%である。多孔質材料中の多孔質材料Aの割合が、このような、より好ましい割合の場合、上記のような2つの圧縮工程の際に、多孔質材料のそれぞれ所定の圧潰を、より確実に行うことができ、より表面の凹凸が大きく、よりシャープな凹凸模様を形成することができる。   The ratio of the porous material A to the porous material B is 20 to 90 mass% of the porous material A with respect to the total mass (100 mass%) of the porous material A and the porous material B. % Is preferred. The ratio of the porous material A is preferably 30 to 90% by mass, more preferably 40 to 85% by mass, more preferably 50 to 80% by mass, and particularly preferably 55 to 75% by mass. When the ratio of the porous material A in the porous material is such a more preferable ratio, the predetermined crushing of the porous material is more reliably performed in the two compression steps as described above. It is possible to form an uneven pattern having a larger surface unevenness and a sharper surface.

多孔質材料は、窯業建材用に用いることができるものであれば、その種類は問わない。例えば、多孔質材料として、パーライト、珪藻土、シラスバルーン、ガラスバルーン、アルミナバブル、フライアッシュバルーンおよび焼成ひる石を用いることができる。シラスバルーンとは、シラスと呼ばれる白色砂質堆積物を特殊な条件で加熱し、微細中空ガラス球としたものであり、安価で軽いために、超高層ビルに用いられるコンクリート建材の軽量化材などに用いられている。また、多孔質材料として、石炭ガス化スラグを加熱発泡させた軽量骨材を用いることもできる。また、多孔質材料は、上記の材料から1種類を選択して用いてもよいし、複数の材料を混合して用いてもよい。   The porous material is not limited as long as it can be used for ceramic building materials. For example, pearlite, diatomaceous earth, shirasu balloon, glass balloon, alumina bubble, fly ash balloon, and calcined granite can be used as the porous material. Shirasu balloons are white sandy sediments called shirasu that are heated under special conditions to form fine hollow glass spheres, which are cheap and light, so that light weight materials for concrete building materials used in high-rise buildings, etc. It is used for. Moreover, the lightweight aggregate which heat-foamed coal gasification slag can also be used as a porous material. Moreover, a porous material may select and use one type from said material, and may mix and use a some material.

材料調達の容易性およびコストの観点から、多孔質材料は、パーライトであることが好ましい。窯業建材は軽量であることが好ましいので、多孔質材料は単位容積質量0.02〜0.5kg/リットルの多孔質材料、特にパーライトであることが好ましい。パーライトは黒曜石、真珠岩、松脂岩等の天然ガラスを急速加熱し発泡させて得られる粉粒体であり、左官材やボード等の建材用途の分野において、軽量骨材として広く使用されている。しかし、パーライトは発泡体であるため、軽量ではあるが強度が弱い。そのため、1種類のパーライトを用いる場合、製造工程において加圧成形等を行うと、パーライトが容易に潰れてしまう欠点がある。本発明のように、少なくとも2種類の異なる体積縮小率を有する多孔質材料(パーライト)を窯業建材の材料として用いることにより、このような1種類のパーライトを用いる場合に生じていた欠点を克服することができる。   From the viewpoint of ease of material procurement and cost, the porous material is preferably pearlite. Since the ceramic building material is preferably lightweight, the porous material is preferably a porous material having a unit volume mass of 0.02 to 0.5 kg / liter, particularly pearlite. Perlite is a granular material obtained by rapidly heating and foaming natural glass such as obsidian, pearlite, and pine stone, and is widely used as a lightweight aggregate in the field of building materials such as plastering materials and boards. However, since pearlite is a foam, it is lightweight but weak in strength. Therefore, when one kind of pearlite is used, there is a drawback that the pearlite is easily crushed if pressure molding or the like is performed in the manufacturing process. By using a porous material (pearlite) having at least two different volume reduction ratios as a material for ceramic building materials as in the present invention, the drawbacks that have arisen when using one kind of pearlite are overcome. be able to.

また、パーライトは、黒曜石、真珠岩および松脂岩系パーライトから選択される少なくとも1つであることが好ましい。パーライトの圧潰強度は、パーライト原石の種類や産地に由来する。そのため、黒曜石、真珠岩、松脂岩の中から、前記特性を有するパーライトを選定し、使用することができる。   The pearlite is preferably at least one selected from obsidian, pearlite, and pine sebaceous pearlite. The crushing strength of pearlite is derived from the type of pearlite or locality. Therefore, pearlite having the above properties can be selected and used from obsidian, pearlite, and rosinite.

上述した本発明の窯業建材用多孔質材料は、窯業建材の原料として用いることができる。その際、本発明の窯業建材は、本発明の窯業建材用多孔質材料を2〜20%含むことができる。また、本発明の窯業建材には、必要に応じて、珪砂、珪石粉等の混和材、増粘剤、消泡剤、減水剤、遅延剤等の混和剤、アクリル粉末やEVA等の樹脂、フライアッシュ、シリカフューム等の潜在水硬性材料、寒水石粉や石灰石粉等の増量剤等を含んでもよい。本発明の窯業建材は、具体的には、セメントを20〜50%、フライアッシュを10〜50%、有機繊維を0〜5%、再生粉を0〜20%、パルプを0〜20%含むことができる。   The porous material for ceramic building materials of the present invention described above can be used as a raw material for ceramic building materials. At that time, the ceramic building material of the present invention can contain 2 to 20% of the porous material for ceramic building material of the present invention. In addition, the ceramic building materials of the present invention include admixtures such as silica sand and silica stone powder, thickeners, antifoaming agents, water reducing agents, admixtures such as retarders, resins such as acrylic powder and EVA, if necessary. It may contain latent hydraulic materials such as fly ash and silica fume, and bulking agents such as cold water stone powder and limestone powder. Specifically, the ceramic building material of the present invention contains 20-50% cement, 10-50% fly ash, 0-5% organic fiber, 0-20% recycled powder, and 0-20% pulp. be able to.

次に、本発明の窯業建材用多孔質材料の製造方法について述べる。窯業建材用多孔質材料の製造方法は、多孔質材料Aと多孔質材料Bとを混合する混合工程を含む。ここで多孔質材料Aは、圧力1.0N/mmの載荷による体積縮小率が30%以下、かつ、圧力4.0N/mmの載荷による体積縮小率が50%以下である。また、多孔質材料Bは、圧力1.0N/mmの載荷による体積縮小率が35%以上、かつ、圧力4.0N/mmの載荷による体積縮小率が60%以上である。 Next, the manufacturing method of the porous material for ceramics building materials of this invention is described. The manufacturing method of the porous material for ceramic industry building materials includes a mixing step of mixing the porous material A and the porous material B. Here, the porous material A has a volume reduction rate of 30% or less due to loading at a pressure of 1.0 N / mm 2 and a volume reduction rate of 50% or less due to loading at a pressure of 4.0 N / mm 2 . Further, the porous material B has a volume reduction rate of 35% or more due to loading at a pressure of 1.0 N / mm 2 and a volume reduction rate of 60% or more due to loading at a pressure of 4.0 N / mm 2 .

また、この混合工程において、多孔質材料Aと多孔質材料Bとの合計質量(100質量%)に対して、多孔質材料Aを20〜90質量%の割合で混合することが好ましい。   Moreover, in this mixing process, it is preferable to mix the porous material A at a ratio of 20 to 90% by mass with respect to the total mass (100% by mass) of the porous material A and the porous material B.

また、体積縮小率は、直径40mm、高さ80mmの円筒容器に多孔質材料を充填した後、プランジャーを用いて多孔質材料に圧力を加えたときの多孔質材料の体積変化に基づき測定された値を用いることが好ましい。プランジャーで試料に圧力を加えて、圧力毎の試料の沈下量を測定し、下式により体積縮小率を算出することができる。なお、円筒容器の断面積は一定なので、沈下量は体積変化量と同等である。
体積縮小率(%)=〔試料の沈下量(mm)/80(mm)〕×100
The volume reduction ratio is measured based on the volume change of the porous material when a cylindrical material having a diameter of 40 mm and a height of 80 mm is filled with the porous material and pressure is applied to the porous material using a plunger. It is preferable to use a different value. By applying pressure to the sample with a plunger and measuring the amount of subsidence of the sample for each pressure, the volume reduction rate can be calculated by the following equation. Since the cross-sectional area of the cylindrical container is constant, the amount of settlement is equal to the volume change.
Volume reduction ratio (%) = [sinking amount of sample (mm) / 80 (mm)] × 100

本発明の製造方法に用いる多孔質材料は、窯業建材用に用いることができるものであれば、その種類は問わない。例えば、多孔質材料として、パーライト、珪藻土及びシラスバルーン、ガラスバルーン、アルミナバブル、フライアッシュバルーンおよび焼成ひる石等を用いることができる。また、多孔質材料として、石炭ガス化スラグを加熱発泡させた軽量骨材を用いることもできる。多孔質材料は、上記の材料から1種類を選択して用いることができ、また、これらのうちの複数を混合して用いてもよい。   The porous material used in the production method of the present invention is not limited as long as it can be used for ceramic building materials. For example, pearlite, diatomaceous earth and shirasu balloons, glass balloons, alumina bubbles, fly ash balloons, calcined granite, and the like can be used as the porous material. Moreover, the lightweight aggregate which heat-foamed coal gasification slag can also be used as a porous material. The porous material can be used by selecting one type from the above materials, or a plurality of these materials may be used in combination.

窯業建材は、軽量であることが好ましいので、本発明の製造方法に用いる多孔質材料は、単位容積質量0.02〜0.5kg/リットルの多孔質材料、特にパーライトであることが好ましい。   Since the ceramic building material is preferably lightweight, the porous material used in the production method of the present invention is preferably a porous material having a unit volume mass of 0.02 to 0.5 kg / liter, particularly pearlite.

パーライトを本発明の製造方法に用いる場合には、黒曜石、真珠岩および松脂岩系パーライトから選択される少なくとも1つであることが好ましい。   When pearlite is used in the production method of the present invention, it is preferably at least one selected from obsidian, pearlite, and pine sebaceous pearlite.

次に、本発明の窯業建材の製造方法について説明する。本発明の多孔質材料は、窯業建材の製造方法が、第1の圧力により圧縮される第1圧縮工程と、第1の圧力より高い第2の圧力により圧縮される第2圧縮工程とを有する場合に、優れた効果を発揮する。このような製造方法の具体例としては、湿式抄造法の一種である丸網抄造法や長網抄造法が知られている。   Next, the manufacturing method of the ceramic building materials of this invention is demonstrated. The porous material of the present invention includes a first compression step in which the ceramic building material manufacturing method is compressed by a first pressure, and a second compression step in which the method is compressed by a second pressure higher than the first pressure. In some cases, it has an excellent effect. As a specific example of such a manufacturing method, a round netting method and a long net papermaking method, which are a kind of wet papermaking method, are known.

丸網抄造法や長網抄造法では、パーライト等の多孔質材料を含む原料スラリーを抄造し、得られたグリーンシートを、メーキングロールと呼ばれるドラム状の脱水機等で加圧・脱水する。このときに多孔質材料の受ける圧力が、「第1の圧力」に相当する。その後、さらに成型機を用いて、高圧で加圧成型することによりグリーンシート表面に凹凸模様を形成する。この加圧成型の際の圧力が、「第2の圧力」に相当する。   In the round net making method or the long net paper making method, a raw material slurry containing a porous material such as pearlite is made, and the obtained green sheet is pressurized and dehydrated with a drum-like dehydrator called a making roll. The pressure received by the porous material at this time corresponds to the “first pressure”. Then, using a molding machine, an uneven pattern is formed on the surface of the green sheet by pressure molding at high pressure. The pressure at the time of the pressure molding corresponds to a “second pressure”.

以上、本発明について述べたが、本発明の範囲は上記内容にとどまらず、当業者にとって容易な、様々な変更を含むものである。例えば、三回以上の圧縮工程を有するような場合には、3種類以上の異なった体積縮小率を有する多孔質材料を用いることもできる。   Although the present invention has been described above, the scope of the present invention is not limited to the above contents, and includes various modifications that are easy for those skilled in the art. For example, in the case of having three or more compression steps, three or more kinds of porous materials having different volume reduction ratios can be used.

以下に実施例および比較例を挙げて、本発明の多孔質材料の製造について具体的に説明する。   The production of the porous material of the present invention will be specifically described below with reference to examples and comparative examples.

原料となる多孔質材料Aとして、中国産松脂岩を0.6mm以下に粉砕して、竪型気流焼成炉で焼成・発泡させて、JISA5007に準拠して測定した単位容積質量が0.256kg/リットルのパーライトAを製造した。得られたパーライトAを、直径40mm、高さ80mmの円筒容器に充填した後、プランジャーで試料に圧力を加えて、圧力毎の試料の沈下量を測定し、下式により体積縮小率を算出した。
体積縮小率(%)=〔試料の沈下量(mm)/80(mm)〕×100
As a porous material A as a raw material, a Chinese pine sebite is ground to 0.6 mm or less, fired and foamed in a vertical airflow firing furnace, and a unit volume mass measured in accordance with JIS A5007 is 0.256 kg / 1 liter of perlite A was produced. After filling the obtained pearlite A into a cylindrical container with a diameter of 40 mm and a height of 80 mm, pressure is applied to the sample with a plunger, the amount of settling of the sample for each pressure is measured, and the volume reduction rate is calculated by the following formula did.
Volume reduction ratio (%) = [sinking amount of sample (mm) / 80 (mm)] × 100

パーライトAの、プランジャーによる圧力1.0N/mmを載荷したときの体積縮小率は23.2%、圧力4.0N/mmを載荷したときの体積縮小率は45.8%であった。 The volume reduction rate of pearlite A when loaded with a plunger pressure of 1.0 N / mm 2 was 23.2%, and the volume reduction rate when loaded with pressure 4.0 N / mm 2 was 45.8%. It was.

原料となる多孔質材料Bとして、大分県産真珠岩を0.6mm以下に粉砕して、竪型気流焼成炉で焼成・発泡させて、単位容積質量0.217kg/リットルのパーライトBを製造した。上記と同様にして、圧力毎の試料の沈下量を測定し、体積縮小率を求めた。プランジャーによる圧力1.0N/mmを載荷したときの体積縮小率は40.2%、圧力4.0N/mmを載荷したときの体積縮小率は66.2%であった。 Pearlite B produced in Oita Prefecture was pulverized to 0.6 mm or less as a raw material porous material B, and fired and foamed in a vertical airflow firing furnace to produce perlite B having a unit volume mass of 0.217 kg / liter. . In the same manner as described above, the amount of settlement of the sample for each pressure was measured, and the volume reduction rate was obtained. The volume reduction rate when a pressure of 1.0 N / mm 2 by the plunger was loaded was 40.2%, and the volume reduction rate when a pressure of 4.0 N / mm 2 was loaded was 66.2%.

パーライトAとパーライトBを質量比で75:25(実施例1)、50:50(実施例2)および25:75(実施例3)で混合して、上記と同様に単位容積質量および体積縮小率を求めた。その結果を表1に示す。また、表1の数値を用いて、体積縮小率と、パーライトAとパーライトBの質量比との関係を図示したものを図1に示す。なお、図1に示す破線は、2種類のパーライト(多孔質材料)を混合した際に、その相乗効果が得られないと仮定した場合の理論直線である。この理論直線と実測値の乖離dが大きいほど、2種類のパーライト(多孔質材料)を混合した効果、すなわち本発明の優れた効果を発揮することができることを示している。また、これらのことから、多孔質材料A(パーライトA)と多孔質材料B(パーライトB)との質量比が少なくとも20:80〜90:10の範囲において、本発明の効果の発揮が比較的顕著であることが明らかである。   Perlite A and Perlite B are mixed at a mass ratio of 75:25 (Example 1), 50:50 (Example 2) and 25:75 (Example 3), and the unit volume mass and volume reduction are performed in the same manner as described above. The rate was determined. The results are shown in Table 1. FIG. 1 shows the relationship between the volume reduction ratio and the mass ratio of pearlite A and pearlite B using the numerical values shown in Table 1. In addition, the broken line shown in FIG. 1 is a theoretical line when it is assumed that the synergistic effect cannot be obtained when two kinds of pearlite (porous material) are mixed. It is shown that the larger the difference d between the theoretical line and the actual measurement value, the more the effect of mixing two kinds of pearlite (porous material), that is, the excellent effect of the present invention. In addition, from these facts, the effect of the present invention is relatively exhibited when the mass ratio of the porous material A (pearlite A) to the porous material B (pearlite B) is at least 20:80 to 90:10. It is clear that it is remarkable.

表1および図1に示すように、体積縮小率が小さい、すなわち圧潰強度の高いパーライトAと、体積縮小率が大きい、すなわち圧潰強度の低いパーライトBを混合して使用することにより、窯業建材用多孔質材料として好適に使用することができることがわかる。この窯業建材用多孔質材料を用いて窯業建材を抄造法によって製造すると、軽量性を保ちつつ、表面の凹凸が大きく、シャープな模様を有する窯業建材を得ることができる。   As shown in Table 1 and FIG. 1, by using a mixture of pearlite A having a small volume reduction rate, that is, high crushing strength, and pearlite B having a large volume reduction rate, that is, a low crushing strength, for ceramic building materials. It turns out that it can be used conveniently as a porous material. When a ceramic building material is manufactured by the paper making method using the porous material for a ceramic building material, a ceramic building material having a large surface and a sharp pattern can be obtained while maintaining lightness.

Figure 0005098484
Figure 0005098484

体積縮小率と、パーライトAとパーライトBの質量比との関係を示した図である。It is the figure which showed the relationship between the volume reduction rate and the mass ratio of pearlite A and pearlite B.

Claims (3)

多孔質材料が、第1の圧力による圧潰により圧縮される第1圧縮工程と、
凹凸模様を形成するために、多孔質材料が、第1の圧力より高い第2の圧力による圧潰により圧縮される第2圧縮工程と、
を含む、湿式抄造法を用いた凹凸模様を有する窯業建材の製造方法であって、
第1の圧力が、0.8〜1.2N/mmであり、
第2の圧力が、3.5〜4.5N/mmであり、
多孔質材料が、少なくとも2種類の、第1の圧力および第2の圧力による体積縮小率が異なる多孔質材料を含み、体積縮小率が、元の圧力のときの体積に対する所定の圧力を載荷することによって縮小した部分の体積の比であり、
多孔質材料が、
圧力1.0N/mmによる体積縮小率が30%以下、かつ、圧力4.0N/mmによる体積縮小率が50%以下である多孔質材料Aと、
圧力1.0N/mmによる体積縮小率が35%以上、かつ、圧力4.0N/mmによる体積縮小率が60%以上である多孔質材料Bと、
を含み、体積縮小率が、元の圧力のときの体積に対する所定の圧力を載荷することによって縮小した部分の体積の比であ
多孔質材料Aと多孔質材料Bとの合計質量100質量%に対して、多孔質材料Aの割合が、20〜80質量%であり、
多孔質材料が、パーライトである、窯業建材の製造方法
A first compression step in which the porous material is compressed by crushing with a first pressure;
A second compression step in which the porous material is compressed by crushing with a second pressure higher than the first pressure to form an uneven pattern ;
The A including method of ceramic building material having an uneven pattern using a wet papermaking method,
The first pressure is 0.8 to 1.2 N / mm 2 ;
The second pressure is 3.5 to 4.5 N / mm 2 ;
The porous material includes at least two kinds of porous materials having different volume reduction ratios due to the first pressure and the second pressure, and the volume reduction ratio loads a predetermined pressure with respect to the volume at the original pressure. Is the ratio of the volume of the part reduced by
Porous material,
30% or less by volume reduction ratio by the pressure 1.0 N / mm 2, and the porous material A volume reduction ratio by the pressure 4.0 N / mm 2 is 50% or less,
Pressure 1.0 N / mm 2 by volume reduction of 35% or more, and the porous material B volume reduction ratio by the pressure 4.0 N / mm 2 is 60% or more,
Hints, volume reduction ratio, Ri Oh volume ratio of the portion reduced by loading a predetermined pressure to the volume when the original pressure,
The ratio of the porous material A to the total mass of 100% by mass of the porous material A and the porous material B is 20 to 80% by mass,
A method for producing a ceramic building material, wherein the porous material is pearlite .
パーライトが、単位容積質量0.02〜0.5kg/リットルのパーライトである、請求項1記載の窯業建材の製造方法 Pearlite, a unit volume mass 0.02~0.5Kg / liter perlite, method for producing a ceramic building material according to claim 1 Symbol placement. パーライトが、黒曜石、真珠岩および松脂岩系パーライトから選択される少なくとも1つである、請求項または記載の窯業建材の製造方法The method for producing a ceramic building material according to claim 1 or 2 , wherein the pearlite is at least one selected from obsidian, pearlite, and pine sebaceous pearlite.
JP2007193123A 2007-07-25 2007-07-25 Porous materials for ceramics building materials, ceramics building materials and methods for producing them Expired - Fee Related JP5098484B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007193123A JP5098484B2 (en) 2007-07-25 2007-07-25 Porous materials for ceramics building materials, ceramics building materials and methods for producing them

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007193123A JP5098484B2 (en) 2007-07-25 2007-07-25 Porous materials for ceramics building materials, ceramics building materials and methods for producing them

Publications (2)

Publication Number Publication Date
JP2009029643A JP2009029643A (en) 2009-02-12
JP5098484B2 true JP5098484B2 (en) 2012-12-12

Family

ID=40400568

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007193123A Expired - Fee Related JP5098484B2 (en) 2007-07-25 2007-07-25 Porous materials for ceramics building materials, ceramics building materials and methods for producing them

Country Status (1)

Country Link
JP (1) JP5098484B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113563058A (en) * 2021-07-16 2021-10-29 深圳市吉迩科技有限公司 Atomizing core, porous ceramic and preparation method of porous ceramic

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5637280A (en) * 1979-08-29 1981-04-10 Matsushita Electric Works Ltd Patterning method
JPH05319952A (en) * 1992-05-14 1993-12-03 Sk Kaken Co Ltd Communicating porous body
JPH07314421A (en) * 1994-05-24 1995-12-05 Kubota Corp Manufacture of light mineral building material having facial uneven pattern
JP3762851B2 (en) * 1999-11-02 2006-04-05 ウベボード株式会社 Humidity control building materials
JP2002192511A (en) * 2000-12-27 2002-07-10 Nitto Boseki Co Ltd Board for building and manufacturing method for board for building
JP2003236820A (en) * 2002-02-20 2003-08-26 Matsushita Electric Works Ltd Method for manufacturing inorganic board and inorganic board manufactured thereby
JP4283484B2 (en) * 2002-03-13 2009-06-24 ニチハ株式会社 Wood cement board and manufacturing method thereof
JP2004143800A (en) * 2002-10-24 2004-05-20 Inax Corp Humidity conditioning building material and method of mounting the same

Also Published As

Publication number Publication date
JP2009029643A (en) 2009-02-12

Similar Documents

Publication Publication Date Title
EP2647610B1 (en) Inorganic material board
Delvasto et al. An appropriate vacuum technology for manufacture of corrugated fique fiber reinforced cementitious sheets
KR20100106569A (en) Acoustic ceiling tiles made with paper processing waste
US6268042B1 (en) High strength low density board for furniture industry
JP5006425B2 (en) Wood cement board and manufacturing method thereof
JP2005343740A (en) Manufacturing process of wood cement board
AU2008264147B2 (en) Wood cement board
JP5098484B2 (en) Porous materials for ceramics building materials, ceramics building materials and methods for producing them
AU2017339076B2 (en) Methods for producing fiber cement products with fiber cement waste
CN109400054A (en) A kind of regeneration concrete and its processing technology
JP2012096944A (en) Woody cement board and method for manufacturing the same
JP4262395B2 (en) Manufacturing method for ceramics exterior materials
JP3436714B2 (en) Manufacturing method of inorganic plate
KR100554222B1 (en) Manufacturing Methods of Soil Board for Interior finishing
JP5426585B2 (en) Wood cement board and manufacturing method thereof
JP3023057B2 (en) Wood cement board and method for producing the same
JP5118737B2 (en) Wood cement board and manufacturing method thereof
CN103304189B (en) High-strength pressed stone pattern combined plate and preparation method thereof
JP4950611B2 (en) Inorganic molded body
US20120231282A1 (en) Inorganic board and inorganic board production method
Lu et al. PORE STRUCTURE AND PROPERTIES OF AEROGEL-CEMENT COMPOSITES
JP5426586B2 (en) Wood cement board and manufacturing method thereof
JP4262393B2 (en) Manufacturing method for ceramics exterior materials
CN108715537A (en) A kind of porous building-brick and preparation method thereof
Lima et al. Paulo R. Lopes Lima1, Alex B. Roque1, Cintia M. Ariani Fontes1

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120424

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120828

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120910

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151005

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees