JPH02229414A - Formation of magnetic-garnet thin film - Google Patents

Formation of magnetic-garnet thin film

Info

Publication number
JPH02229414A
JPH02229414A JP4951689A JP4951689A JPH02229414A JP H02229414 A JPH02229414 A JP H02229414A JP 4951689 A JP4951689 A JP 4951689A JP 4951689 A JP4951689 A JP 4951689A JP H02229414 A JPH02229414 A JP H02229414A
Authority
JP
Japan
Prior art keywords
substrate
thin film
magnetic
bias voltage
magnetic garnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4951689A
Other languages
Japanese (ja)
Inventor
Masato Funahashi
舟橋 真人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP4951689A priority Critical patent/JPH02229414A/en
Publication of JPH02229414A publication Critical patent/JPH02229414A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thin Magnetic Films (AREA)

Abstract

PURPOSE:To form a magnetic-garnet thin film whose Curie temperature is proper and whose recording sensitivity is excellent by a method wherein a high-frequency sputtering operation is executed while a bias voltage is being applied to a substrate. CONSTITUTION:An oxide containing a component element of a magnetic garnet is used as a target; while a bias voltage is being applied to a substrate, a high- frequency sputtering operation is executed. When the bias voltage is applied to the substrate, argon ions or oxygen ions, which are provided with a positive charge, in a plasma are attracted by a potential of the substrate and hit the surface of the substrate. The ions which have collided give a kinetic energy to sputtering atoms composed of Fe and rare-earth element which have reached the substrate. Thereby, it is possible to enhance a crystal property and a crystal orientation property of a formed thin film without heating the substrate as well as the magnetic characteristic and a photomagnetic characteristic can be improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、主として光磁気ディスクの記録材料として使
われる磁性ガーネ・ット薄膜の成膜方法に関するもので
あり、特にスパン夕方法の改良により該磁性ガーネット
薄膜の特性特に磁気光学特性を向上させることに関する
ものである.〔従来技術及びその問題点〕 光磁気ディスクは、記録容量の大きい記録材料として近
年活発に開発が進められ、実用化されている.光磁気デ
ィスクの記録材料として最も有望視され実用化されよう
としているのは、TbFsC ’ SG d C o等
に代表される非品質希土類遷移金属である.この材料は
磁気光学効果が優れており、感度やC/Nにおいて良好
な光磁気ディスクを得ることができる.しかし、非品質
希土類遷移金属は化学的に不安定でこの材料を用いた光
磁気ディスクは耐候性がよくないという問題があった.
さらに、非晶質希土類金属遷移金属は、高価であるとい
う問題もあった。一方、磁性ガーネットである希土類・
鉄ガーネット(以下、RIGと称する.)に代表される
酸化物磁性材料は比較的化学的に安定でありかつ安価で
もあり、前記非品質希土類遷移金属の材料の持つ問題が
なく、かつ磁気光学効果も優れておるので光磁気ディス
ク用材料として研究が行われている. 前記RIG薄膜を作成する方法としては、例えば、特開
昭60−200887号公報に開示されているように、
前記RIGをターゲットとして用いたスパンタ法による
もの、あるいは特開昭61−222109号公報に開示
されているように、前記RIGの成分の金属元素を含む
溶液を塗布して得られた被膜を乾燥、熱分解させる方法
、あるいは特開昭60−103603号公報に開示され
ているように単結晶基板上に単結晶膜を作成する液相エ
ピタキシャル法等がある。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a method for forming a magnetic garnet thin film mainly used as a recording material for magneto-optical disks, and in particular, it relates to a method for forming a magnetic garnet thin film mainly used as a recording material for magneto-optical disks. This invention relates to improving the properties, particularly the magneto-optical properties, of the magnetic garnet thin film. [Prior art and its problems] Magneto-optical disks have been actively developed and put into practical use as a recording material with a large recording capacity in recent years. The most promising recording materials for magneto-optical disks that are about to be put into practical use are non-quality rare earth transition metals such as TbFsC'SGdCo. This material has an excellent magneto-optic effect and can produce a magneto-optical disk with good sensitivity and C/N. However, poor quality rare earth transition metals are chemically unstable, and magneto-optical disks using these materials have poor weather resistance.
Furthermore, amorphous rare earth transition metals have the problem of being expensive. On the other hand, rare earth metals, which are magnetic garnets,
Oxide magnetic materials, such as iron garnet (hereinafter referred to as RIG), are relatively chemically stable and inexpensive, do not have the problems associated with non-quality rare earth transition metal materials, and have excellent magneto-optical effects. Because of its excellent properties, it is being researched as a material for magneto-optical disks. As a method for creating the RIG thin film, for example, as disclosed in Japanese Patent Application Laid-Open No. 60-200887,
Drying a film obtained by applying a solution containing a metal element as a component of the RIG, by a spunter method using the RIG as a target, or as disclosed in Japanese Patent Application Laid-open No. 61-222109, There is a method of thermal decomposition, or a liquid phase epitaxial method of forming a single crystal film on a single crystal substrate as disclosed in Japanese Unexamined Patent Publication No. 103603/1983.

前記したいずれの従来方法においても、基板上に成膜さ
れた薄膜の結晶性を高め充分な磁気特性、光磁気特性を
得るためには、成膜中もしくは成膜後基板を500℃以
上の高温で加熱する必要があった。そのため基板に耐熱
性が要求され基板の選択が大きな制約を受け特に高分子
系の基板を使用するのに大きな障害となっていた. 2方、比較的低温度で良質の酸化物被膜の成膜が可能な
方法として特願昭63−156388号公報開示されて
いるように、基板にイオンビームを照射しながら蒸着、
スパソタ法で成膜する方法がある。しかしながら、この
方法ではイオンガンが高価であるため製造コストの上昇
をもたらすという問題がある. また、これらのいずれの方法においても基板にはバイア
ス電圧は印加されていない. 〔発明が解決しようとする問題点〕 本発明は、以上のような従来技術の問題点を解決し、光
磁気特性が良好で高いC/Nをもった光磁気ディスクを
得るために基板の高温加熱処理を必要とせずに磁気ヒス
テリシス曲線における角型比及び抗磁力が優れた結晶性
の良い磁性ガーネット薄膜を成膜する方法を提供するこ
とを目的とするものである. さらに、本発明は適当なキューリー温度を有し記録感度
の優れた磁性ガーネソト薄膜の成膜方法を提供すること
をも目的としている。
In any of the conventional methods described above, in order to improve the crystallinity of the thin film formed on the substrate and obtain sufficient magnetic and magneto-optical properties, the substrate must be heated to a high temperature of 500°C or higher during or after film formation. It had to be heated. For this reason, heat resistance was required for the substrate, which greatly restricted the selection of substrates, which was a major obstacle in particular to using polymer-based substrates. On the other hand, as disclosed in Japanese Patent Application No. 63-156388, a method capable of forming a high-quality oxide film at a relatively low temperature involves vapor deposition while irradiating the substrate with an ion beam.
There is a method of forming a film using the super sota method. However, this method has the problem of increasing manufacturing costs because the ion gun is expensive. In addition, no bias voltage is applied to the substrate in any of these methods. [Problems to be Solved by the Invention] The present invention solves the problems of the prior art as described above, and in order to obtain a magneto-optical disk with good magneto-optical characteristics and a high C/N, The purpose of this study is to provide a method for forming a magnetic garnet thin film with good crystallinity and excellent squareness in the magnetic hysteresis curve and coercive force without requiring heat treatment. A further object of the present invention is to provide a method for forming a magnetic Garnet thin film having an appropriate Curie temperature and excellent recording sensitivity.

〔問題点を解決するための手段〕[Means for solving problems]

かかる本発明の目的は、スバッタ法により基板上に磁性
ガーネッ}薄膜を成膜する方法において、磁性ガーネッ
トの成分元素を含有する酸化物をタ一ゲントとし、前記
基板にバイアス電圧を加えながら高周波スパッタを行う
ことを特徴とする磁性ガーネット薄膜を成膜方法により
達成される.〔実施態様〕 通常、基板にはバイアス電圧を加えない従来の方法とは
異なり、本発明の方法では、基板にバイアス電圧を加え
ることにより、スパッタリング中にプラズマ中の正電荷
をもったアルゴンイオンや酸素イオンが前記基板の電位
に引き付けられて前記基板表面を叩く。そして、この衝
突したイオンは前記基板に到達したFeや希土類元素を
主体としたスパソタ原子に運動エネルギーを与え、その
結果、前記基板を加熱せずとも成膜される薄膜の結晶性
及び結晶配同性を高めることができ磁気特性及び光磁気
特性の優れた磁性ガーネット薄膜を得ることができる. 本発明の方法において、前記基板にバイアス電圧を印加
するためには、直流定電圧電源の出力端子と基板ホルダ
ーを接続し、基板を接地電位に対して所定の電位に保つ
.また、スバンタ中に基板を通して流れる電流は印加し
たバイアス電圧やRF放電電力やターゲット面積に比例
する。
The object of the present invention is to form a thin film of magnetic garnet on a substrate by a sputtering method, in which an oxide containing a component element of magnetic garnet is used as a target and high-frequency sputtering is performed while applying a bias voltage to the substrate. This is achieved by a method of forming a magnetic garnet thin film that is characterized by the following properties. [Embodiment] Unlike conventional methods in which a bias voltage is not usually applied to the substrate, the method of the present invention applies a bias voltage to the substrate so that positively charged argon ions and Oxygen ions are attracted to the potential of the substrate and strike the surface of the substrate. The collided ions give kinetic energy to the supersota atoms mainly composed of Fe and rare earth elements that have reached the substrate, and as a result, the crystallinity and crystal conformation of the thin film that is formed without heating the substrate are improved. It is possible to obtain a magnetic garnet thin film with excellent magnetic and opto-magnetic properties. In the method of the present invention, in order to apply a bias voltage to the substrate, the output terminal of a DC constant voltage power supply and the substrate holder are connected, and the substrate is maintained at a predetermined potential with respect to ground potential. Furthermore, the current flowing through the substrate during the Svanter is proportional to the applied bias voltage, RF discharge power, and target area.

例えば81φターゲット、RF電力600W,バイアス
電圧200ボルトで約IAの電流となる。
For example, with an 81φ target, RF power of 600 W, and bias voltage of 200 volts, the current will be approximately IA.

従って、使用する直流電源の容量にも注意する必要があ
る. また、バイアス電圧を印加したときに基板及び基板ホル
ダーの表面に突起があると異常放電をもたらすのででき
るだけ平坦な表面にしておくことが望ましい。
Therefore, it is necessary to pay attention to the capacity of the DC power supply used. Further, when a bias voltage is applied, if there are protrusions on the surfaces of the substrate and substrate holder, abnormal discharge will occur, so it is desirable to keep the surfaces as flat as possible.

本発明の方法を、第1図の高周波マグネトロンスパッタ
装置を用いた例で以下に説明する.真空ボンプlにより
排気を行い、チャンバー2内の真空度を1 0−”To
rr以下にした後、前記チャンバー2の内側壁に設置さ
れた不活性ガス用導入口3及び酸化性ガス導入口4より
アルゴンガス等の不活性ガスと必要に応じて酸素ガス等
の酸化性ガスをマスフローコントローラーを介して流量
を゛制御して所定量の不活性ガス及び酸化性ガスを前記
チャンバー2内に送りスパッタ時の前記チャンパー2内
のガス圧が’l wTorr乃至3 Q aaTorr
となるようにする. 次いで基板ホルダー5に固定された基板6に直流電源ユ
ニット7より所定のバイアス電圧を望ましくは−100
ボルト以下、特に望ましくは−200ボルト以下加えて
おき、しかる後、裏面に磁石8を配した磁性ガーネット
の成分元素を主体とするターゲット9にスパッタ用高周
波電源IOより所定のスパッタ電力を印加して前記基板
6上にスパッタにより磁性ガーネット薄膜を成膜する.
なお、成膜中に前記基板6の温度があまり高くならない
よう前記基板ホルダー5には、冷却用の水が通されてい
る. 本発明でいう磁性ガーネットは、一般式R3−xAxF
e5−yMyo12 (Rは、イットリウム又は希土類
元素のうちの少なくとも1種類の元素.Aは、Rを置換
しうるBi,Pb、S r s C a % B a 
SC dのうちの少なくとも1種類の元素.Mは、Fe
を置換しうるA I SG a sS C s  I 
n s C r % C u SZ n % N I 
SS l sC’ e ST I、Zr等の元素のうち
少なくとも1種類の元素.0≦x<3、0≦yく5)で
あらわすことができる. そして、ターゲットとしては、具体的には、Y!.ll
B l +,OFe 4,@Qal,601gD Y 
t.aB l l.oF 13 4.@A j! +.
oO+t等のRIG焼結体またはDy.o. 、B i
.o, 、Fe,Os、A7!!03等の酸化物の混合
体またはFe+Dy+ D y+.*B i z.aF
 e a.eG a I.oO+t等の金属とRIG焼
結体の組み合わせ等が使用できる.また注意すべきこと
は、基板に印加されるバイアス電圧により、基板表面の
原子の運動エネルギーが増大するため、他の原子との結
合力の弱い原子は、容易に再スパンタされ膜面より飛び
出すことがある点である. このため基板上に成膜される磁性ガーネント薄膜に組成
のずれが生ずることがあるのでこの点を考慮して前記タ
ーゲットの組成を決めることである. 本発明の方法における前記酸化性ガスとしては、通常ア
ルゴンなどの不活性ガス中に酸素を混入した混合ガスが
使用できる.目的を充分に達成させるには成皇中の酸化
度が重要であり、そのために混合ガス中の酸素量と成膜
速度を制御する必要がある.すなわち、酸素量が多くな
ると酸化度は高くなり、成膜速度が大きくなると酸化度
は低下する.酸化度があまり高いと薄膜中に非磁性相が
現れ磁気特性及び光磁気特性が損なわれて好ましくない
。一方、酸化度が低すぎると磁気異方性が小さくなり充
分な磁気ヒステリシス曲線における角型比が得られない
。スパッタリング中のガス圧としては2乃至3 0 m
mTorrであることが望ましい。
The method of the present invention will be explained below using an example using the high frequency magnetron sputtering apparatus shown in FIG. Exhaust the chamber 2 using a vacuum pump 1, and reduce the degree of vacuum in the chamber 2 to 10-”To
After reducing the temperature to below rr, an inert gas such as argon gas and an oxidizing gas such as oxygen gas as necessary are introduced through the inert gas inlet 3 and oxidizing gas inlet 4 installed on the inner wall of the chamber 2. A predetermined amount of inert gas and oxidizing gas are sent into the chamber 2 by controlling the flow rate through a mass flow controller so that the gas pressure in the chamber 2 during sputtering ranges from 'lwTorr to 3QaaTorr.
Make it so that Next, a predetermined bias voltage, preferably -100, is applied to the substrate 6 fixed to the substrate holder 5 from the DC power supply unit 7.
volts or less, preferably -200 volts or less, and then a predetermined sputtering power is applied from a high frequency power source IO for sputtering to a target 9 mainly composed of a component element of magnetic garnet with a magnet 8 arranged on the back side. A magnetic garnet thin film is formed on the substrate 6 by sputtering.
Note that cooling water is passed through the substrate holder 5 so that the temperature of the substrate 6 does not become too high during film formation. The magnetic garnet referred to in the present invention has the general formula R3-xAxF
e5-yMyo12 (R is at least one element selected from yttrium and rare earth elements. A is Bi, Pb, S r s C a % B a
At least one element of SC d. M is Fe
A I SG a sS C s I that can replace
n s C r % C u SZ n % N I
SS l sC' e ST At least one element among elements such as I and Zr. It can be expressed as 0≦x<3, 0≦y5). And specifically, as a target, Y! .. ll
B l +, OFe 4, @Qal, 601gD Y
t. aB l l. oF 13 4. @A j! +.
RIG sintered body such as oO+t or Dy. o. , B i
.. o, , Fe, Os, A7! ! 03 or a mixture of oxides such as Fe+Dy+ Dy+. *B i z. aF
e a. eG a I. Combinations of metals such as oO+t and RIG sintered bodies can be used. It should also be noted that the bias voltage applied to the substrate increases the kinetic energy of atoms on the substrate surface, so atoms with weak bonding forces with other atoms are easily re-spuntered and ejected from the film surface. There is a certain point. For this reason, a compositional deviation may occur in the magnetic garnant thin film formed on the substrate, so this point should be taken into consideration when determining the composition of the target. As the oxidizing gas in the method of the present invention, a mixed gas in which oxygen is mixed in an inert gas such as argon can be used. The degree of oxidation during deposition is important to fully achieve the purpose, and for this purpose it is necessary to control the amount of oxygen in the mixed gas and the deposition rate. That is, as the amount of oxygen increases, the degree of oxidation increases, and as the film formation rate increases, the degree of oxidation decreases. If the degree of oxidation is too high, a nonmagnetic phase will appear in the thin film, impairing the magnetic properties and magneto-optical properties, which is undesirable. On the other hand, if the degree of oxidation is too low, the magnetic anisotropy becomes small and a sufficient squareness ratio in the magnetic hysteresis curve cannot be obtained. The gas pressure during sputtering is 2 to 30 m.
It is desirable that it be mTorr.

また、前記基板に加えるバイアス電圧には、特に制限は
ないが、−200ボルト以下であることにより得られる
薄膜の磁気特性はより一層改良される.また、−100
ボルトよりも大きくなり0に近づくに従って次第に磁気
特性並びに光磁気特性が低下してくる. 本発明の方法で採用する前記高周波スバソタ法における
その他の条件は、従来より知られている通常の方法にお
けるのと同様であり、本発明の目的を達成するために特
別な条件は必要でない。
Further, although there is no particular limit to the bias voltage applied to the substrate, the magnetic properties of the obtained thin film are further improved by setting it to -200 volts or less. Also, -100
As it becomes larger than the volt and approaches 0, the magnetic properties and magneto-optical properties gradually decrease. Other conditions in the high frequency subasota method employed in the method of the present invention are the same as those in conventionally known conventional methods, and no special conditions are necessary to achieve the object of the present invention.

本発明の方法は、基板が樹脂基板である場合に特に有効
である. 〔発明の効果〕 前述したように、本発明は基板にバイアス電圧を印加す
るので、成膜後基板を加熱せずとも磁性ガーネットのf
IWAの結晶性及び結晶配向性を上げることができる、
耐熱温度があまり高くない樹脂基板においても特性の優
れた磁性ガーネット薄膜を得ることができる。
The method of the present invention is particularly effective when the substrate is a resin substrate. [Effects of the Invention] As mentioned above, since the present invention applies a bias voltage to the substrate, the f of magnetic garnet can be increased without heating the substrate after film formation.
It is possible to increase the crystallinity and crystal orientation of IWA,
A magnetic garnet thin film with excellent properties can be obtained even on a resin substrate whose heat resistance is not very high.

従って、本発明の方法において使用する基板としては、
ガラスはもとより、ポリカーボネート、ポリメチルメタ
クリレート、ポリオレフィン、エポキシ等の樹脂基板が
使用できる。
Therefore, the substrate used in the method of the present invention is
In addition to glass, resin substrates such as polycarbonate, polymethyl methacrylate, polyolefin, and epoxy can be used.

次に、本発明の新規な効果を以下の実施例により明確化
する. 〔実施例〕 第1図に示すマグネトロンスパッタ装置の前記ターゲッ
ト9としてDy2BlIFe4CalOl2の組成のタ
ーゲットを使用して、前記基板6としては、50nX5
0nで厚さが11一のバリウム硼珪酸ガラスである。コ
ーニング社製#7059のガラス基板を使用して、以下
の条件で磁性ガーネット薄膜を成膜した. まず、前記真空ボンプ1による排気により前記チャンバ
ー2内の真空度を1 0−”Torr以下にした後、前
記チャンバー2内に、前記不活性ガス用のガス導入口3
及び前記酸化性ガス用ガス導入口4から、それぞれマス
フローコントローラーにより流量を制御して、アルゴン
ガス及び酸素ガスを導入し、スバッタ時のスパッタガス
圧が1 0 mTorrとなるようにした. 一方、前記ガラス基板6には、前記直流電源ユニット7
より−90ボルト、−180ボルト、220ボルトの電
圧を加えておき、そして磁性ガーネソトの前記ターゲッ
ト9には、前記スパソタ用高周波電源10より500W
のスパッタ電力を印加してガラス基板6上にスバソタに
より0,5μmの膜厚の磁性ガーネット薄膜を成膜した
.なお、ガスの流量をスパソタガス中の酸素の量を1.
0体積%とした. 以上のようにして得られたガラス基板6上に成膜した磁
性ガーネット薄膜の各サンプルのファラデーヒステリシ
ス曲線を次のような条件で測定した.その結果を第2図
(前記基板6にかけた印加電圧−90ボルトの場合)、
第3図(前記基板6にかけた印加電圧−130ボルトの
場合)及び第4図(前記基板6にかけた印加電圧−22
0ボルトの場合)に示す. ファラデーヒステリシスの測定は、波長830nmの半
導体レーザーを前記磁性ガーネソト薄膜の膜面倒から人
射させ、最大磁場を16kOeにして外部磁場を印加し
た.なお、みやすくするために図にはファラデー回転角
の符号を通常とは逆にした. 第3図では角型比が0.76を示し、第4図では角型比
がほとんど1.0に近くの値を示し極めて特性の良好な
磁性ガーネット薄膜が得られたことが分かった.一方、
第2図の基板のバイアス電圧が−90ボルトの場合は、
ファラデーヒステリシス特性はいくらか低下したことが
分かった.このことから、前記基板6に印加するバイア
ス電圧としては−100ボルト以下であることが望まし
いことが分かった. 〔比較例〕 前記ガラス基板6には、バイアス電圧を加えなかった以
外は実施例と同一の条件で磁性ガーネット薄膜を成膜を
行った.得られたサンプルのファラデーヒステリシス曲
線が第5図である。
Next, the novel effects of the present invention will be clarified by the following examples. [Example] A target having a composition of Dy2BlIFe4CalOl2 was used as the target 9 of the magnetron sputtering apparatus shown in FIG.
It is a barium borosilicate glass with a thickness of 0 nm and a thickness of 11 mm. A magnetic garnet thin film was formed using a Corning #7059 glass substrate under the following conditions. First, after reducing the degree of vacuum in the chamber 2 to 10-'' Torr or less by evacuation using the vacuum pump 1, the gas inlet 3 for the inert gas is inserted into the chamber 2.
Argon gas and oxygen gas were introduced from the oxidizing gas inlet 4 with flow rates controlled by mass flow controllers so that the sputtering gas pressure during sputtering was 10 mTorr. On the other hand, the glass substrate 6 includes the DC power supply unit 7.
Voltages of -90 volts, -180 volts, and 220 volts are applied to the target 9 of the magnetic Garnesoto.
A magnetic garnet thin film with a thickness of 0.5 μm was formed on the glass substrate 6 by applying a sputtering power of 0.5 μm. In addition, the flow rate of the gas and the amount of oxygen in the Supasota gas are 1.
It was set to 0% by volume. The Faraday hysteresis curve of each sample of the magnetic garnet thin film formed on the glass substrate 6 obtained as described above was measured under the following conditions. The results are shown in Figure 2 (in the case of an applied voltage of -90 volts applied to the substrate 6).
3 (applied voltage applied to the substrate 6 -130 volts) and FIG. 4 (applied voltage applied to the substrate 6 -22 volts)
(in case of 0 volts) is shown. To measure Faraday hysteresis, a semiconductor laser with a wavelength of 830 nm was irradiated from the surface of the magnetic Garnet thin film, and an external magnetic field was applied with a maximum magnetic field of 16 kOe. In order to make it easier to read, the sign of the Faraday rotation angle is reversed in the figure. In Figure 3, the squareness ratio was 0.76, and in Figure 4, the squareness ratio was almost 1.0, indicating that a magnetic garnet thin film with extremely good properties was obtained. on the other hand,
If the substrate bias voltage in Figure 2 is -90 volts, then
It was found that the Faraday hysteresis characteristics were somewhat reduced. From this, it has been found that the bias voltage applied to the substrate 6 is desirably -100 volts or less. [Comparative Example] A magnetic garnet thin film was formed on the glass substrate 6 under the same conditions as in the example except that no bias voltage was applied. FIG. 5 shows the Faraday hysteresis curve of the obtained sample.

基板にバイアス電圧を加えないと角型比は著しく低下し
てしまいもはや実用に耐えないことが分かった.
It was found that if no bias voltage was applied to the substrate, the squareness ratio would drop significantly, making it no longer practical.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の方法で使用する高周波マグネトロン
スパソタ装置の要部を示す概念図.第2図は、実施例に
おいて基板に印加するバイアス電圧が−90ボルトであ
る場合得られた磁性ガーネット薄膜のファラデーヒステ
リシス曲線を示すグラフ. 第3図は、実施例において基板に印加するバイアス電圧
が−180ボルトである場合得られた磁性ガーネット薄
膜のファラデーヒステリシス曲線を示すグラフ. 第4図は、実施例において基板に印加するバイアス電圧
が−220ボルトである場合得られた磁性ガーネット薄
膜のファラデーヒステリシス曲線を示すグラフ. 第5図は、実施例において基板にバイアス電圧を印加し
なかった比較例で得られた磁性ガーネソIJiWI!の
ファラデーヒステリシス曲線を示すグラフである。 1 ・・・・・・ スバッタ用高周波電源2 ・・・・
・・ チャンバー 3 ・・・・・・ 不活性ガス導入口 4 ・・・・・・ 酸化性ガス導入口 5 ・・・・・・ 基板ホルダー 6 ・・・・・・ 基板 7 ・・・・・・ 直流電源ユニット 8 ・・・・・・ 磁石 F6とCOの合金ターゲット スパンタ用高周波電源
FIG. 1 is a conceptual diagram showing the main parts of a high-frequency magnetron spasota device used in the method of the present invention. FIG. 2 is a graph showing the Faraday hysteresis curve of the magnetic garnet thin film obtained in the example when the bias voltage applied to the substrate was -90 volts. FIG. 3 is a graph showing the Faraday hysteresis curve of the magnetic garnet thin film obtained in the example when the bias voltage applied to the substrate was -180 volts. FIG. 4 is a graph showing the Faraday hysteresis curve of the magnetic garnet thin film obtained in the example when the bias voltage applied to the substrate was -220 volts. FIG. 5 shows the magnetic garneso IJiWI! obtained in a comparative example in which no bias voltage was applied to the substrate in the example. It is a graph which shows the Faraday hysteresis curve of. 1 ... High frequency power supply for spatter 2 ...
...Chamber 3 ...Inert gas inlet 4 ... Oxidizing gas inlet 5 ...Substrate holder 6 ...Substrate 7 ...・ DC power supply unit 8 ... High frequency power supply for alloy target spanner of magnet F6 and CO

Claims (2)

【特許請求の範囲】[Claims] (1)スパッタ法により基板上に磁性ガーネット薄膜を
成膜する方法において、磁性ガーネットの成分元素を含
有する酸化物をターゲットとして、前記基板にバイアス
電圧を加えながら高周波スパッタを行うことを特徴とす
る磁性ガーネット薄膜を成膜方法。
(1) A method for forming a magnetic garnet thin film on a substrate by sputtering, which is characterized by performing high-frequency sputtering while applying a bias voltage to the substrate using an oxide containing component elements of magnetic garnet as a target. Method for forming magnetic garnet thin film.
(2)前記基板に加えるバイアス電圧が−200ボルト
以下であることを特徴とする請求項1記載の磁性ガーネ
ット薄膜を成膜方法。
(2) The method of forming a magnetic garnet thin film according to claim 1, wherein the bias voltage applied to the substrate is -200 volts or less.
JP4951689A 1989-03-01 1989-03-01 Formation of magnetic-garnet thin film Pending JPH02229414A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4951689A JPH02229414A (en) 1989-03-01 1989-03-01 Formation of magnetic-garnet thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4951689A JPH02229414A (en) 1989-03-01 1989-03-01 Formation of magnetic-garnet thin film

Publications (1)

Publication Number Publication Date
JPH02229414A true JPH02229414A (en) 1990-09-12

Family

ID=12833303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4951689A Pending JPH02229414A (en) 1989-03-01 1989-03-01 Formation of magnetic-garnet thin film

Country Status (1)

Country Link
JP (1) JPH02229414A (en)

Similar Documents

Publication Publication Date Title
US4927513A (en) Method and arrangement for fabricating magneto-optical, storable, and/or deletable data carriers
US3102048A (en) Magnetic films
EP0410627A1 (en) Oxide film with preferred crystal orientation, method of manufacturing the same, and magneto-optical recording medium
US5607781A (en) Oxide film with preferred crystal orientation, method of manufacturing the same, and magneto-optical recording medium
AU4716593A (en) Magneto-optical recording materials system
JPS6324030A (en) Anisotropic rare earth magnet material and its production
JPH02229414A (en) Formation of magnetic-garnet thin film
JPH01309305A (en) Amorphous oxide magnetic substance and magnetic core and magnetic recording medium
JP3360139B2 (en) Gate insulating film forming method
Yin et al. High coercivity Co-ferrite thin films on SiO/sub 2/(100) substrate prepared by sputtering and PLD
EP0324854A1 (en) Optomagnetic recording medium and process for its manufacture
JPH027250A (en) Formation of thin oxide film
JP2728715B2 (en) Garnet-based magnetic material
JP2553145B2 (en) Magneto-optical recording medium
JPS62267950A (en) Magneto-optical recording medium
JPH0221440A (en) Magneto-optical recording medium
JPH03178105A (en) Thin garnet film for magneto-optical recording medium
JPH0684213A (en) Magneto-optical recording medium and its production
Kotnala Magneto-optical properties of barium ferrite sputtered films
JPS61296551A (en) Photomagnetic recording element and its production
Katayama Preparation and some magnetic properties of amorphous rare earth-transition metal films with perpendicular anisotropy for bubble memory
JPS6347359A (en) Production of thin cobalt-ferritic spinel film
JPH03273540A (en) Magnetic recording medium and magnetic recording device and spin glass magnetic material
Yamamoto et al. High‐rate‐deposition of Ni–Zn ferrite thin‐films using ECR sputtering with conic target
JPS60173745A (en) Photoelectromagnetic recording medium