JPH02229402A - Manufacture of voltage dependent nonlinear resistor - Google Patents

Manufacture of voltage dependent nonlinear resistor

Info

Publication number
JPH02229402A
JPH02229402A JP1048450A JP4845089A JPH02229402A JP H02229402 A JPH02229402 A JP H02229402A JP 1048450 A JP1048450 A JP 1048450A JP 4845089 A JP4845089 A JP 4845089A JP H02229402 A JPH02229402 A JP H02229402A
Authority
JP
Japan
Prior art keywords
compound
bismuth
zinc
terms
resistance layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1048450A
Other languages
Japanese (ja)
Other versions
JPH0812812B2 (en
Inventor
Osamu Imai
修 今井
Ritsu Sato
立 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP1048450A priority Critical patent/JPH0812812B2/en
Publication of JPH02229402A publication Critical patent/JPH02229402A/en
Publication of JPH0812812B2 publication Critical patent/JPH0812812B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Thermistors And Varistors (AREA)

Abstract

PURPOSE:To enhance an electrical characteristic such as a lightning surge strength or the like and a hygroscopic property of a side-face high-resistance layer by a method wherein a side face of a voltage dependent nonlinear resistor raw body which is composed mainly of zinc oxide and which contains a bismuth component, an antimony component and a silicon component is coated with a mixture of compositions which contain amorphous silica, an antimony compound, a bismuth compound and a zinc compound at a specific amounts and a high-resistance layer is formed. CONSTITUTION:A composition of a side-face high-resistance layer is a quaternary system of SiO2-Sb2O3-Bi2O3-ZnO. That is, a side face of a voltage dependent nonlinear resistor raw body which is composed mainly of zinc oxide and which contains a bismuth component, an antimony component and silicon component is coated with a mixture, for insulating coating use, of amorphous silica, an antimony compound, a bismuth compound and a zinc compound; a high-resistance layer containing zinc silicate and spinel is formed on a side face of a sintered substance. A composition of this mixture is as follows: the amorphous silica as expressed in terms of SiO2 is 65 to 91mol%; the antimony compound as expressed in terms of Sb2O3 is 2 to 15mol%; the bismuth compound as expressed in terms of Bi2O3 is 7 to 20mol%; the zinc compound as expressed in terms of ZnO is ZnO/(SiO2+Sb2O3+Bi2O3)=0.1 to 1.0.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は酸化亜鉛を主成分とする電圧非直線抵抗体の製
造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for manufacturing a voltage nonlinear resistor containing zinc oxide as a main component.

?従来の技術) 従来から酸化亜鉛を主成分とし旧tch. Sbt03
,sso., COJ4+ MnO■等の少量の添加物
を含有した抵抗体は、優れた電圧非直線性を示すことが
広く知られており、その性質を利用して避雷器等に使用
されている. この電圧非直線抵抗体では、雷サージ電流が素子に印加
された場合に主として素子側面に沿った放電いわゆる沿
面放電が生じ素子が破壊することがあるため、円周側面
にDi−Sb−Si系化合物または81−Sb−Si−
Zn系化合物よりなる側面高抵抗層を設けるのが一般的
である。
? Conventional technology) Conventionally, zinc oxide is the main component and the former tch. Sbt03
, sso. It is widely known that resistors containing small amounts of additives, such as , COJ4+ MnO■, exhibit excellent voltage nonlinearity, and are used in lightning arresters and the like by taking advantage of this property. In this voltage nonlinear resistor, when a lightning surge current is applied to the element, discharge mainly occurs along the side of the element, so-called creeping discharge, which may destroy the element. compound or 81-Sb-Si-
It is common to provide a side high resistance layer made of a Zn-based compound.

(発明が解決しようとする課題) これらの電圧非直線抵抗体において、抵抗体のバリスタ
電圧(V+−a)を高くしてアレスタ等の機器の小型化
を図ろうとする試みがあり、焼成温度を低下させるとバ
リスタ電圧が高くなることが一般に知られている。しか
しながら、焼成温度を低下させると側面高抵抗層と抵抗
体本体との密着性が低下し、雷サージ耐量等が低下する
問題があ?た。
(Problem to be Solved by the Invention) In these voltage nonlinear resistors, there have been attempts to increase the varistor voltage (V+-a) of the resistor to miniaturize devices such as arresters. It is generally known that lowering the varistor voltage increases the varistor voltage. However, when the firing temperature is lowered, the adhesion between the side high-resistance layer and the resistor body decreases, resulting in a decrease in lightning surge resistance. Ta.

この点を改良するため、本出願人は特開昭631366
03号公報において、側面高抵抗層として所定組成のZ
nO−SiOz−BtzO.−Sb.02系混合物を用
いるとともに、素体中のSi01を7〜11モル%と高
くすることにより、焼成温度を低下させてもバリスタ電
圧が400V/1m以上で良好な特性を有する電圧非直
線抵抗体を得ることができることを開示している。
In order to improve this point, the present applicant has published Japanese Patent Application Laid-Open No. 631366
In Publication No. 03, Z of a predetermined composition is used as a side high resistance layer.
nO-SiOz-BtzO. -Sb. By using a 02-based mixture and increasing the Si01 content in the element body to 7 to 11 mol%, we have created a voltage nonlinear resistor that has good characteristics with a varistor voltage of 400 V/1 m or higher even when the firing temperature is lowered. Disclose what you can get.

しかしながら、上述した特開昭63−136603号公
報記載の技術では、素体中のSift添加量を増加させ
る必要があるため、素子中のケイ酸亜鉛相の均一分散が
難しく、開閉サージ耐量等が低下する問題があった。ま
た、側面高抵抗層中へのSt成分付与として結晶賞のS
iO■等を粉砕せずそのまま使用していたため粒度も粗
く、均一に生成してはじめてその効果のあるケイ酸亜鉛
相が不均一に生成する場合があった。そのような場合は
、雷サージ耐量も向上せずそのバラツキが大となるとと
もに、側面高抵抗層も吸湿を示し長期信頼性に欠ける等
?好な特性を有する電圧非直線抵抗体を得られない問題
があった。
However, in the technique described in JP-A-63-136603 mentioned above, it is necessary to increase the amount of Sift added in the element, which makes it difficult to uniformly disperse the zinc silicate phase in the element, and the switching surge resistance etc. There was a problem with the decline. In addition, the crystal award S
Since iO■ and the like were used as they were without being crushed, the particle size was coarse, and the zinc silicate phase, which is effective only if it is formed uniformly, was sometimes formed unevenly. In such a case, the lightning surge resistance does not improve and its variation becomes large, and the high resistance layer on the side also absorbs moisture, resulting in a lack of long-term reliability. There was a problem in that it was not possible to obtain a voltage nonlinear resistor with good characteristics.

本発明の目的は上述した課題を解消して、良好な雷サー
ジ耐量等の電気特性を高いバリスタ電圧においても得る
ことができるとともに、側面高抵抗層の吸湿性をも改善
できる電圧非直線抵抗体の製造方法を提供しようとする
ものである。
The purpose of the present invention is to solve the above-mentioned problems and provide a voltage nonlinear resistor that can obtain electrical characteristics such as good lightning surge resistance even at high varistor voltages, and can also improve the hygroscopicity of the side high resistance layer. The present invention aims to provide a method for manufacturing.

(課題を解決するための手段) 本発明の電圧非直線抵抗体の製造方法は、酸化亜鉛を主
成分とし、ビスマス成分、アンチモン成分、ケイ素成分
を含有する電圧非直線抵抗体素体の側面に、少なくとも
非晶質シリカ、アンチモン化合物、ビスマス化合物、亜
鉛化合物を、非晶質シリカをSiO■に換算して65〜
91モル%、アンチモン化合物をsb,o,に換算して
2〜15モル%、ビスマス化合物をBi!Oiに換算し
て7〜20モル%、亜鉛化合物をZnOに換算してZn
O / ( Sing + SbzOz+Biz(h 
) =0.1〜1.0となる組成の絶縁被覆用の混合物
を塗布し、焼成体の側面にケイ酸亜鉛(ZnzSiO4
)およびスピネル(Zn7SbzO+ z)を含有する
高抵抗層を形成することを特徴とするものである。
(Means for Solving the Problems) The method for manufacturing a voltage nonlinear resistor of the present invention includes a method for manufacturing a voltage nonlinear resistor element that contains zinc oxide as a main component, a bismuth component, an antimony component, and a silicon component. , at least amorphous silica, an antimony compound, a bismuth compound, a zinc compound, and the amorphous silica is converted to SiO■ from 65 to
91 mol%, antimony compound sb, o, 2 to 15 mol%, bismuth compound Bi! 7 to 20 mol% in terms of Oi, Zn in terms of zinc compound to ZnO
O / (Sing + SbzOz+Biz(h
) = 0.1 to 1.0 is applied, and zinc silicate (ZnzSiO4) is applied to the side surface of the fired body.
) and spinel (Zn7SbzO+ z).

(作 用) 上述した構成において、側面高抵抗層を構成する組成を
所定量のSi02−SbzO+−Bit03−ZnOの
四元系とするとともに、Si02源原料として非晶質シ
リカをSi01に換算して65〜91モル%好ましくは
73〜86モル%、アンチモン化合物をSb!03に換
算して2〜15モル%好ましくは4〜10モル%、ビス
マス化合物をBi.O.に換算して7〜20モル%好ま
しくは10〜17モル%、亜鉛化合物をZnOに換算し
てZoo/ ( SiOz + SbzOi + Bi
zOi)が0.1〜1.0好ましくは0.2〜0.7と
なるよう混合することにより、良好な雷サージ耐量等の
電気的特性を高いバリスタ電圧においても得ることがで
きるとともに、側面高抵抗層の吸湿性をも改善できるこ
とを見出した。
(Function) In the above structure, the composition of the side high resistance layer is a quaternary system of Si02-SbzO+-Bit03-ZnO in a predetermined amount, and amorphous silica is used as the Si02 source material in terms of Si01. 65 to 91 mol%, preferably 73 to 86 mol%, of the antimony compound Sb! 03, preferably 4 to 10 mol%, the bismuth compound is Bi. O. 7 to 20 mol%, preferably 10 to 17 mol%, in terms of ZnO, Zoo/(SiOz + SbzOi + Bi
By mixing so that the zOi) is 0.1 to 1.0, preferably 0.2 to 0.7, electrical characteristics such as good lightning surge resistance can be obtained even at high varistor voltage, and the side It has been found that the hygroscopicity of the high-resistance layer can also be improved.

ここで、非晶質シリカをSin.に換算して65〜91
モル%、アンチモン化合物をSb203に換算して2〜
15モル%、ビスマス化合物をBigO.に換算して7
〜20モル%、亜鉛化合物をZnOに換算してZn0/
( SiOt+Sb!Off+Bi,03)が0.1〜
1.0となる組成に数値限定したのは、いずれかの組成
がこの範囲以外であると、後述する実施例から明らかな
ように雷サージ耐量等の電気的特性が悪化するためであ
る。
Here, amorphous silica is used as Sin. Converting to 65-91
Mol%, antimony compound converted to Sb203: 2~
15 mol% of the bismuth compound was added to BigO. Converting to 7
~20 mol%, Zn0/ in terms of zinc compound as ZnO
(SiOt+Sb!Off+Bi,03) is 0.1~
The reason for numerically limiting the composition to 1.0 is that if any composition is outside this range, electrical characteristics such as lightning surge resistance will deteriorate, as will be clear from the examples described later.

ここで非晶質シリカは焼成により亜鉛化合物と反応して
ケイ酸亜鉛を生成する。また、アンチモン化合物は亜鉛
化合物と反応してスピネルを生成する。これらケイ酸亜
鉛およびスピネルは側面高抵抗層と抵抗体本体との密着
性向上および素子の雷サージ耐量特性等に重要な働きを
すると考えられる.なお、亜鉛化合物は焼成により非晶
質シリカまたはアンチモン化合物と反応する必要があり
、焼成後亜鉛化合物として残存することは好ましくない
。また、ケイ酸亜鉛は連続的に生成すると好ましい。ま
た、ビスマス化合物はフランクスとして上記反応を円滑
に進めるとともに、抵抗体本体中にも拡散し、開閉サー
ジ耐量等の特性向上に重要な働きをしていると考えられ
る。
Here, the amorphous silica reacts with the zinc compound by firing to produce zinc silicate. Antimony compounds also react with zinc compounds to produce spinel. These zinc silicate and spinel are thought to play an important role in improving the adhesion between the side high-resistance layer and the resistor body, and in improving the lightning surge resistance characteristics of the device. Note that the zinc compound needs to react with the amorphous silica or antimony compound during firing, and it is not preferable for the zinc compound to remain as a zinc compound after firing. Moreover, it is preferable that zinc silicate be produced continuously. In addition, the bismuth compound acts as a Franks to facilitate the above reaction, and also diffuses into the resistor body, playing an important role in improving characteristics such as opening/closing surge resistance.

また、Si02源原料として非晶質シリカを使用するの
は、側面高抵抗層中に均一で良好なケイ酸亜鉛相が得ら
れ、雷サージ耐量が向上しそのバラツキが減少するとと
もに、側面高抵抗層の吸湿性も改善されるためである。
In addition, the use of amorphous silica as the Si02 source material allows a uniform and good zinc silicate phase to be obtained in the side high resistance layer, which improves lightning surge resistance and reduces its dispersion. This is because the hygroscopicity of the layer is also improved.

なお、使用する非晶質シリカの製造方法については特に
限定するものではないが、ケイ酸ナトリウムの複分解反
応から得られたものまたは四塩化ケイ素の熱分解により
得られたものを使用すると、各種特性が良好になるため
好ましい。また、その純度はSin.とじて95%以上
であると好ましい。
There are no particular limitations on the manufacturing method of the amorphous silica used, but if one obtained from the metathesis reaction of sodium silicate or the one obtained from the thermal decomposition of silicon tetrachloride is used, various properties will be obtained. This is preferable because it improves. Moreover, its purity is Sin. It is preferable that it is 95% or more.

さらにまた、使用する非晶質シリカ、アンチモン化合物
、ビスマス化合物、亜鉛化合物の平均粒径は、10l!
m以下であることが好ましい。
Furthermore, the average particle size of the amorphous silica, antimony compound, bismuth compound, and zinc compound used is 10 liters!
It is preferable that it is below m.

ここで非晶質シリカ以外の絶縁被覆用混合物の組成とし
て、アンチモン化合物、ビスマス化合物、亜鉛化合物を
規定したが、各化合物とも1000゜C以下、好ましく
は800゜C以下で酸化物に変化するものであればよい
。具体的には炭酸塩、硝酸塩、水酸化物等があげられる
が、酸化物が最も好ましい.また、電圧非直線抵抗体素
体の組成については限定するものでなく、従来から公知
のどのような組成でも使用できるが、特にケイ素成分を
Sin.に換算して0.1〜7モル%さらに好ましくは
0.5〜4モル%とすると好ましい。ケイ素成分はビス
マス成分とともに粒界相に析出しバリスタ電圧(V+−
A)が向上する作用を有する。0.1モル%未満では粒
成長抑制効果が不充分でバリスタ電圧は向上せず、しか
も課電寿命・制限電圧特性が悪化する場合があるととも
に、7モル%を越えると雷サージ耐量が悪化するととも
に雷サージ印加後のバリスタ電圧が低下する場合もある
ためである。
Here, an antimony compound, a bismuth compound, and a zinc compound are specified as the composition of the insulating coating mixture other than amorphous silica, but each compound is one that changes to an oxide at a temperature of 1000°C or less, preferably 800°C or less. That's fine. Specific examples include carbonates, nitrates, hydroxides, etc., but oxides are most preferred. Further, the composition of the voltage nonlinear resistor element is not limited, and any conventionally known composition can be used, but in particular, a silicon component of Sin. The content is preferably 0.1 to 7 mol%, more preferably 0.5 to 4 mol%. The silicon component precipitates in the grain boundary phase together with the bismuth component, and the varistor voltage (V+-
A) has the effect of improving. If it is less than 0.1 mol%, the grain growth suppressing effect will be insufficient and the varistor voltage will not improve, and the charging life and limiting voltage characteristics may deteriorate, and if it exceeds 7 mol%, the lightning surge resistance will deteriorate. This is because the varistor voltage may also decrease after the lightning surge is applied.

より好ましくは、反応を円滑に進めるため非晶質がよい
More preferably, it is amorphous so that the reaction proceeds smoothly.

(実施例) 酸化亜鉛を主成分とする電圧非直線抵抗体を得るには、
まず所定の粒度に調整した酸化亜鉛原料と所定の粒度に
調整した酸化ビスマス、酸化コバルト、酸化マンガン、
酸化アンチモン、酸化クロム、酸化ケイ素、酸化ニッケ
ル、酸化銀、酸化ホウ素等よりなる添加物の所定量を混
合する。酸化銀、酸化ホウ素の代りに硝酸銀、ホウ酸を
用いてもよい。好ましくは銀を含むホウケイ酸ビスマス
ガラスを用いる。この際、これらの原料粉末に対して所
定量のポリビニルアルコール水溶液および酸化アルミニ
ウム源として硝酸アルミニウム溶液の所定量等を加え、
好ましくはディスパーミルにより混合した後、好ましく
はスプレードライヤにより造粒して造粒物を得る。造粒
後、成形圧力800〜1000kg / cm zO下
で所定の形状に成形する。
(Example) To obtain a voltage nonlinear resistor whose main component is zinc oxide,
First, zinc oxide raw material adjusted to a predetermined particle size, bismuth oxide, cobalt oxide, manganese oxide, adjusted to a predetermined particle size,
A predetermined amount of additives such as antimony oxide, chromium oxide, silicon oxide, nickel oxide, silver oxide, boron oxide, etc. are mixed. Silver nitrate or boric acid may be used instead of silver oxide or boron oxide. Preferably, bismuth borosilicate glass containing silver is used. At this time, a predetermined amount of polyvinyl alcohol aqueous solution and a predetermined amount of aluminum nitrate solution as an aluminum oxide source are added to these raw material powders,
After mixing preferably using a disper mill, the mixture is preferably granulated using a spray dryer to obtain a granulated product. After granulation, it is molded into a predetermined shape under a molding pressure of 800 to 1000 kg/cm zO.

その成形体を昇降温速度50〜70゜C/hrで800
〜l000゜C保持時間1〜5時間という条件で仮焼成
する。
The molded body was heated to 800°C at a heating and cooling rate of 50 to 70°C/hr.
Temporary firing is carried out under conditions of holding time at ~1000°C for 1 to 5 hours.

なお、仮焼の前に成形体を昇降温速度10〜100”C
/hrで400 〜600 ’Cで1〜10時間保持し
、結合剤を飛散除去することが好ましい。ここで、本発
明の素体とは成形体または該成形体を前記条件で熱処理
した脱脂体、または仮焼体をいう。
In addition, before calcination, the molded body is heated and cooled at a rate of 10 to 100"C.
It is preferable to hold at 400 to 600'C for 1 to 10 hours to remove the binder by scattering. Here, the element body of the present invention refers to a molded body, a degreased body obtained by heat-treating the molded body under the above-mentioned conditions, or a calcined body.

次に、素体の側面に側面高抵抗層を形成する。Next, a side high resistance layer is formed on the side surface of the element body.

本発明では、ビスマス化合物を旧go3に換算して7〜
20モル%、アンチモン化合物をSbzOzに換算して
2〜15モル%、非晶質シリカをSiO2に換算して6
5〜91モル%、亜鉛化合物をZnOに換算してZnO
 /SiO.+ Sb.O*+BizOs ) =0.
1 〜1.0の所定量に有機結合剤としてエチルセルロ
ース、プチルカルビトール、酢酸nブチル等を加えた側
面高抵抗層用の混合物ペーストを、60〜300 ,l
/II1の厚さに素体の側面に塗布する。この際、本発
明では、平均粒径が10μ涌以下の非晶質シリカを使用
する。
In the present invention, the bismuth compound is calculated from 7 to 7 in terms of old go3.
20 mol%, antimony compound 2 to 15 mol% in terms of SbzOz, amorphous silica 6 in terms of SiO2
5 to 91 mol%, ZnO based on zinc compound converted to ZnO
/SiO. + Sb. O*+BizOs) =0.
60 to 300 l of a mixture paste for the side high resistance layer, which is prepared by adding ethyl cellulose, butyl carbitol, n-butyl acetate, etc. as an organic binder to a predetermined amount of 1 to 1.0 l.
Apply to the side of the element to a thickness of /II1. At this time, in the present invention, amorphous silica having an average particle size of 10 μm or less is used.

次に、これを昇降温速度40〜60゜C/hr, 10
00〜1250゜C好ましくは1050〜1190゜C
,3〜7時間という条件で本焼成する。なお、ガラス粉
末に有機結合剤としてエチルセルロース、プチルカルビ
トール、酢酸nブチル等を加えたガラスペーストを前記
の側面高抵抗層上に100〜300μ■の厚さに塗布し
、空気中で昇降温速度100〜200″C/hr、40
0〜iooo゜C保持時間0.5〜2時間という条件で
熱処理することによりガラス層を形成すると好ましい。
Next, this temperature was raised and lowered at a rate of 40 to 60°C/hr, 10
00-1250°C preferably 1050-1190°C
, 3 to 7 hours. A glass paste prepared by adding organic binders such as ethyl cellulose, butyl carbitol, n-butyl acetate, etc. to glass powder was applied to the above-mentioned side high-resistance layer to a thickness of 100 to 300 μ■, and the temperature was raised and lowered in the air at a rate of 100~200″C/hr, 40
It is preferable to form the glass layer by heat treatment at 0 to iooo°C for 0.5 to 2 hours.

その後、得られた電圧非直線抵抗体の両端面をSiC,
 A j! !Ohダイヤモンド等の#400〜200
0相当?研磨剤により水好ましくは油を使用して研磨す
る。次に、研磨面を洗浄後、研磨した両端面に例えばア
ルミニウムによって電極を例えば溶射により設けて電圧
非直線抵抗体を得ている.以下、実際に本発明範囲内お
よび範囲外の電圧非直線抵抗体について各種特性を測定
した結果について説明する。
After that, both end faces of the obtained voltage nonlinear resistor were bonded to SiC,
A j! ! #400-200 of Oh diamond etc.
Equivalent to 0? Polishing with an abrasive agent using water, preferably oil. Next, after cleaning the polished surfaces, electrodes made of aluminum, for example, are provided on both polished end surfaces by thermal spraying, to obtain a voltage nonlinear resistor. Below, the results of actually measuring various characteristics of voltage nonlinear resistors within and outside the range of the present invention will be described.

皇旌班 上述した方法で作成した直径47m、厚さ20amの電
圧非直線抵抗体において、側面高抵抗層用の混合物中の
組成の影響を調べるため、素子本体の組成はBlxOz
 1.0 モ/l/%、Co=Q40.7 モ7L/%
、MnO.0.5モル%、Sb103 1.0 モル%
、Cr,Q,, o.s モ/L/%、NiO O.5
 モル%、An!gos 0.005 モル%、非晶質
SiO■1.θモル%および残部がZnOとし、さらに
、銀を含むホウケイ酸ビスマスガラス0.01−0.5
重量%を含み、側面高抵抗層の組成はケイ素として非晶
質シリカを使用するとともに、第1表に示す組成を有し
、焼成温度を変えてバリスタ電圧を変化させた本発明範
囲内の試料No. l〜3oと、側面高抵抗層の組成の
うちいずれかの点で本発明の範囲を満たさない比較例の
試料Nal〜22を準備し、それぞれのバリスタ電圧(
■,.^)、雷サージ耐量、開閉サージ耐量、側面高抵
抗層の吸湿性を測定した.結果を第1表に示す。
In order to investigate the influence of the composition of the mixture for the side high resistance layer in a voltage nonlinear resistor with a diameter of 47 m and a thickness of 20 am created by the method described above, the composition of the element body was BlxOz.
1.0 mo/l/%, Co=Q40.7 mo7L/%
, MnO. 0.5 mol%, Sb103 1.0 mol%
,Cr,Q,, o. s Mo/L/%, NiO O. 5
Mol%, An! gos 0.005 mol%, amorphous SiO■1. Bismuth borosilicate glass with θ mol% and the balance being ZnO and further containing silver 0.01-0.5
% by weight, the composition of the side high resistance layer uses amorphous silica as silicon, and has the composition shown in Table 1, and the varistor voltage is varied by changing the firing temperature. Samples within the scope of the present invention. No. Comparative samples Nal to 22, which do not satisfy the scope of the present invention in any aspect of the composition of the side high resistance layer, were prepared, and the respective varistor voltages (
■、.. ^), lightning surge withstand capacity, switching surge withstand capacity, and moisture absorption of the side high-resistance layer were measured. The results are shown in Table 1.

第1表において、雷サージ耐量はエネルギー耐量として
表示しており、ここにエネルギー耐量とはバリスタ電圧
の異なる抵抗体の耐量を相対的に評価する手段でありエ
ネルギー{1 (電流×電圧×印加時間)で示す.開閉
サージ耐量は400A, 500Aおよび600Aの電
流を2msの電流波形で20回繰り返し印加した後破壊
したものを×、破壊しなかったものをOと表示した.側
面高抵抗層の吸湿性については、素子を蛍光深傷液中に
圧力200kg/cm”の状態で24時間浸漬した後の
吸湿状態を検査し、側面高抵抗層に滲みのないものにつ
いてはO、滲みのあるものについては×と表示した。
In Table 1, the lightning surge withstand capacity is expressed as the energy withstand capacity, and the energy withstand capacity is a means of relatively evaluating the withstand capacity of resistors with different varistor voltages, and is calculated by energy {1 (current x voltage x application time). ). The opening/closing surge withstand capacity is indicated as × for those that break down after 20 repeated applications of currents of 400 A, 500 A, and 600 A with a current waveform of 2 ms, and as O for those that do not break. Regarding the hygroscopicity of the side high-resistance layer, the device was immersed in fluorescent deep wound liquid for 24 hours at a pressure of 200 kg/cm. , those with blurring were indicated as ×.

第1表の結果から、高抵抗層の組成を本発明の範囲内と
した本発明試料No.1〜30の抵抗体は、高いバリス
タ電圧のものでも良好な電気特性を得ることができると
ともに、いずれかの点で本発明を満たさない比較例試料
Nα1〜22と比べて、雷サージ耐量等の良好な電気的
特性および側面高抵抗層の良好な耐湿性を示すことがわ
かった。
From the results in Table 1, inventive sample No. 1 whose composition of the high resistance layer was within the range of the present invention. Resistors Nos. 1 to 30 can obtain good electrical characteristics even with high varistor voltage, and have better lightning surge resistance, etc., than comparative samples Nα1 to 22, which do not satisfy the present invention in any respect. It was found to exhibit good electrical properties and good moisture resistance of the side high resistance layer.

(発明の効果) 以上の説明から明らかなように、本発明の電圧非直線抵
抗体の製造方法によれば、高抵抗層中の組成を限定する
ことにより、良好な雷サージ耐量等の電気特性を高いバ
リスタ電圧においても得ることができるとともに、側面
高抵抗層中の吸湿性をも改善できる電圧非直線抵抗体を
得ることができる。
(Effects of the Invention) As is clear from the above explanation, according to the method for manufacturing a voltage nonlinear resistor of the present invention, by limiting the composition in the high resistance layer, electrical properties such as good lightning surge resistance can be achieved. It is possible to obtain a voltage non-linear resistor which can obtain the same characteristics even at a high varistor voltage, and which can also improve the hygroscopicity in the side high resistance layer.

一9ー19-

Claims (1)

【特許請求の範囲】[Claims] 1.酸化亜鉛を主成分とし、ビスマス成分、アンチモン
成分、ケイ素成分を含有する電圧非直線抵抗体素体の側
面に、少なくとも非晶質シリカ、アンチモン化合物、ビ
スマス化合物、亜鉛化合物を、非晶質シリカをSiO_
2に換算して65〜91モル%、アンチモン化合物をS
b_2O_3に換算して2〜15モル%、ビスマス化合
物をBi_2O_3に換算して7〜20モル%、亜鉛化
合物をZnOに換算してZnO/(SiO_2+Sb_
2O_3+Bi_2O_3)=0.1〜1.0となる組
成の絶縁被覆用の混合物を塗布し、焼成体の側面にケイ
酸亜鉛およびスピネルを含有する高抵抗層を形成するこ
とを特徴とする電圧非直線抵抗体の製造方法。
1. At least amorphous silica, an antimony compound, a bismuth compound, a zinc compound, and amorphous silica are applied to the side surface of the voltage nonlinear resistor element body, which is mainly composed of zinc oxide and contains a bismuth component, an antimony component, and a silicon component. SiO_
65 to 91 mol% in terms of 2, antimony compound S
2 to 15 mol% in terms of b_2O_3, 7 to 20 mol% in terms of bismuth compounds as Bi_2O_3, and ZnO/(SiO_2+Sb_) in terms of zinc compounds as ZnO.
2O_3+Bi_2O_3)=0.1-1.0 A voltage non-linear method characterized by applying a mixture for insulation coating with a composition of 0.1 to 1.0 and forming a high-resistance layer containing zinc silicate and spinel on the side surface of the fired body. Method of manufacturing a resistor.
JP1048450A 1989-03-02 1989-03-02 Method of manufacturing voltage non-linear resistor Expired - Lifetime JPH0812812B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1048450A JPH0812812B2 (en) 1989-03-02 1989-03-02 Method of manufacturing voltage non-linear resistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1048450A JPH0812812B2 (en) 1989-03-02 1989-03-02 Method of manufacturing voltage non-linear resistor

Publications (2)

Publication Number Publication Date
JPH02229402A true JPH02229402A (en) 1990-09-12
JPH0812812B2 JPH0812812B2 (en) 1996-02-07

Family

ID=12803685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1048450A Expired - Lifetime JPH0812812B2 (en) 1989-03-02 1989-03-02 Method of manufacturing voltage non-linear resistor

Country Status (1)

Country Link
JP (1) JPH0812812B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5249491A (en) * 1975-10-16 1977-04-20 Meidensha Electric Mfg Co Ltd Non-linear resistor
JPS59136902A (en) * 1983-01-26 1984-08-06 松下電器産業株式会社 Method of producing voltage nonlinear resistor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5249491A (en) * 1975-10-16 1977-04-20 Meidensha Electric Mfg Co Ltd Non-linear resistor
JPS59136902A (en) * 1983-01-26 1984-08-06 松下電器産業株式会社 Method of producing voltage nonlinear resistor

Also Published As

Publication number Publication date
JPH0812812B2 (en) 1996-02-07

Similar Documents

Publication Publication Date Title
JPH0252409B2 (en)
US5277843A (en) Voltage non-linear resistor
US4906964A (en) Voltage non-linear resistor
JPS606522B2 (en) semiconductor composition
JPH02229402A (en) Manufacture of voltage dependent nonlinear resistor
JPH04253302A (en) Non-linear varistor
JPH04245602A (en) Nonlinearly voltage-dependent resistor
JP2942027B2 (en) Method of manufacturing voltage non-linear resistor
JP2533597B2 (en) Method of manufacturing voltage non-linear resistor
JPH0812808B2 (en) Method of manufacturing voltage non-linear resistor
JPH04257201A (en) Voltage non-linear resistor
JPH0216003B2 (en)
JPH02239602A (en) Manufacture of voltage dependent nonlinear resistor
JPH02135701A (en) Manufacture of voltage non-linear resistor
JP2608626B2 (en) Method of manufacturing voltage non-linear resistor
JP2549756B2 (en) Manufacturing method of voltage non-linear resistor for arrester with gap
JPS5994402A (en) Method of producing voltage nonlinear resistor
JPH08138911A (en) Manufacture of voltage non-linearity resistor
JPH04245601A (en) Nonlinearly voltage-dependent resistor
JPH0247802A (en) Voltage nonlinear resistor body
JPH0320883B2 (en)
JPH0223008B2 (en)
JPH07105286B2 (en) Voltage nonlinear resistor
JPH03142801A (en) Manufacture of voltage-dependent nonlinear resistor
JPH03181102A (en) Manufacture of nonlinearly voltage-dependent resistor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090207

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090207

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100207

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100207

Year of fee payment: 14