JPH02229309A - Executing method for non-sprinkling snow melting facility with heat exchanger in well - Google Patents

Executing method for non-sprinkling snow melting facility with heat exchanger in well

Info

Publication number
JPH02229309A
JPH02229309A JP5048089A JP5048089A JPH02229309A JP H02229309 A JPH02229309 A JP H02229309A JP 5048089 A JP5048089 A JP 5048089A JP 5048089 A JP5048089 A JP 5048089A JP H02229309 A JPH02229309 A JP H02229309A
Authority
JP
Japan
Prior art keywords
well
road surface
heat
heat exchanger
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5048089A
Other languages
Japanese (ja)
Other versions
JPH0639762B2 (en
Inventor
Kohei Katsuragi
桂木 公平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON CHIKASUI KAIHATSU KK
Original Assignee
NIPPON CHIKASUI KAIHATSU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON CHIKASUI KAIHATSU KK filed Critical NIPPON CHIKASUI KAIHATSU KK
Priority to JP1050480A priority Critical patent/JPH0639762B2/en
Publication of JPH02229309A publication Critical patent/JPH02229309A/en
Publication of JPH0639762B2 publication Critical patent/JPH0639762B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Cleaning Of Streets, Tracks, Or Beaches (AREA)
  • Road Paving Structures (AREA)

Abstract

PURPOSE:To improve snow melting efficiency by providing a heat exchanger connected to a storage pump in a well, circulating nonfreezing fluid in a radiating pipe buried in the road surface with a circulating pump, and driving the pumps by the signal from a snowfall detector. CONSTITUTION:A pumping well 1 and a filling well 2 are drilled on a road surface 12 at appropriate interval. When return water is drained out of the road surface, the filling well 2 is unnecessary. Nextly, a heat exchanger 4 connected to a storage pump 3 is provided in the pumping well 1, and connected to a radiating pipe 16 buried in the road surface 12 through a circulating pump 11. Nextly, nonfreezing fluid is filled in the circulating pipe line, a snowfall detector 17 provided on the ground, and the storage pump and the circulating pump are driven by the signal of detector. Snow on the road surface is melted by the temperature of water in the well without sprinkling. Hereby, maintenance cost can be reduced.

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 この発明は積雪寒冷地の路面上に降る雪を融かし,路面
の凍結をも防ぐための井戸内熱交換無散水消雷施設の施
工方法に係り,特に井戸内に揚水ポンプと共に熱交換器
を降下設置して,地下水との熱交換効率を高めると共に
,熱交換器と路面内に埋設した放熱管とに循環ポンプを
介してその管内に満たした不凍液を循環させ,路面上に
降る雪の均一な消雪と凍結防止をも行う井戸内熱交換無
.散水消雪施設の施工方法に関する. 〔従来の技術〕 従来の無散水消雪施設の施工方法は,揚水井の中には揚
水ポンプのみを設置し,地上に熱交換器を設け,使用済
地下水の地下還元用の注入管を別に設けた還元井の中に
導いていた.又路面内には放熱管を埋設して地上熱交換
器との間に循環ポンプを介在させ,管内に満たした凍結
防止用液体を循環させるように施工し,無散水消雪方法
で路面上に降る雪の消雪や凍結防止を行っていた.〔発
明が解決しようとする課題〕 しかし,このような従来の無散水消雪施設の施工方法で
は、揚水井の中には揚水ポンプのみを設置し,地上に熱
交換器を設けていたために、冬季の冷たい外気により熱
交換器が冷却されて熱損失が大きく,熱交換効率が悪く
なって凍結防止用液体の温度が低く路面の均一な消雪が
難しいという問題があった. そのため冷たい外気による熱損失防止のために特別な保
温断熱施設と地上に熱交換器の格納庫との施工が必要と
なり、施工工程が多岐に渡って複雑となり,全体の工事
に要する期間も長くなって高価となるなど,多くの欠点
を有していた.本発明は上記の多くの欠点を除くために
,井戸内に揚水ポンプと共に熱交換器を設置し,熱交換
の熱損失を極めて小さくして熱交換効率を高めることに
よって路面の均一な消雪を可能とし、安価で,施工の容
易な井戸内熱交換無散水消雪施設の施工方法を提供する
ことを目的としている.〔課題を解決するための手段〕 本発明は上記の目的を達成するため路面上に適切な間隔
をおいて揚水井、及び注入井を地下深く掘削する第1工
程と,該揚水井内に揚水ポンプと連結させた井戸内熱交
換器を降下設置する第2工程と,該熱交換器伝熱管側の
入口側,又は出口側に循環ポンプを介して該伝熱管側と
舗装路面内に埋設された送り本管、及び戻り本管とを連
結し,前記揚水ポンプ,及び前記循環ポンプは地上に設
けた降雪探知機の発する信号により運転,停止を行うよ
うに接続する第3工程と,該送り本管,及び該戻り本管
と舗装路面内に埋設固定された放熱管とを連結して循環
管路を形成し,該循環管路の内部に不凍液を満たす第4
工程とを連続して行う施工方法である.
[Industrial Application Field] This invention relates to a method for constructing an in-well heat exchange non-sprinkling water lightning extinguishing facility for melting snow falling on roads in snowy and cold regions and also preventing road surfaces from freezing. A heat exchanger is lowered and installed along with a water pump to increase the efficiency of heat exchange with groundwater, and a circulation pump is used to circulate the antifreeze filled in the heat exchanger and heat radiation pipes buried in the road surface. , There is no heat exchange inside the well to evenly melt the snow that falls on the road surface and prevent freezing. Concerning construction methods for water sprinkler snow removal facilities. [Conventional technology] The conventional construction method for waterless snow removal facilities is to install only a pump in the pumping well, a heat exchanger above ground, and a separate injection pipe for returning used groundwater underground. It was led into a reinjection well that had been set up. In addition, heat dissipation pipes are buried in the road surface, and a circulation pump is interposed between them and the above-ground heat exchanger to circulate the antifreeze liquid filled in the pipes. They were melting falling snow and preventing freezing. [Problem to be solved by the invention] However, in the conventional construction method of waterless snow removal facilities, only a pump was installed in the pumping well and a heat exchanger was installed above ground. In winter, the heat exchanger is cooled by the cold outside air, resulting in large heat loss, resulting in poor heat exchange efficiency and low temperature of the antifreeze liquid, making it difficult to remove snow uniformly from the road surface. Therefore, in order to prevent heat loss due to the cold outside air, it was necessary to construct a special thermal insulation facility and an above-ground heat exchanger hangar, which made the construction process diverse and complicated, and the time required for the entire construction work was also extended. It had many drawbacks, including being expensive. In order to eliminate many of the above-mentioned drawbacks, the present invention installs a heat exchanger together with a water pump in the well, extremely minimizes heat loss during heat exchange, and increases heat exchange efficiency, thereby achieving uniform snow removal from the road surface. The purpose of this study is to provide a method for constructing an in-well heat exchange waterless snow removal facility that is inexpensive and easy to construct. [Means for Solving the Problems] In order to achieve the above object, the present invention includes a first step of excavating pumping wells and injection wells deep underground at appropriate intervals above the road surface, and a pumping pump installed in the pumping wells. The second step is to lower and install the in-well heat exchanger connected to the heat exchanger, and the heat exchanger is buried in the heat exchanger tube side and the paved road surface via a circulation pump on the inlet side or outlet side of the heat exchanger tube side. a third step of connecting a sending main pipe and a return main pipe so that the lift pump and the circulation pump are operated and stopped in response to a signal emitted by a snow detector installed on the ground; a fourth pipe, and a fourth pipe connecting the return main pipe and a heat dissipation pipe buried and fixed in the paved road surface to form a circulation pipe, and filling the inside of the circulation pipe with antifreeze.
This is a construction method in which the steps are performed consecutively.

【作用】[Effect]

上記の構成によるこの発明の作用を説明する.路面上に
適切な間隔をおいて揚水井と注入井を掘削し,揚水井の
内部に下部に揚水ポンプを連結した井戸内熱交換器を降
下設置して、該熱交換器伝熱管側と,循環ポンプを介し
て送り本管,放熱管、戻り本管,再び熱交換器伝熱管側
とで循環管路を形成するように施工し,内部に不凍液を
満たしているため降雪探知機の発する信号により揚水ポ
ンプが運転を開始して温かい地下水をくみ上げ,その地
下水の保有する熱を井戸内熱交換器で伝熱管内部の不凍
液に効率良く伝え,同時に運転を開始する循環ポンプが
前記循環管路の内部に満たした不凍液を循環させる.こ
のため路面内に埋設固定した放熱管の内部に温かい不凍
液が円滑に送られ,この熱が路面内に均一に伝わって蓄
熱され,路面上に降る雪を一様に消雪するとともに,凍
結防止を行う.また,消雪が終了した場合には降雪検知
器の発する信号により2つのポンプの運転は自動的に停
止される. 〔実施例〕 次に本発明に係る施工方法の実施例を図面を参照して説
明する. (第1実施例) 第1図乃至第3図にはこの発明を路面に適用した場合の
実施例が示さ九ている. まず第1工程において、路面12上に30m〜150m
の適切な間隔をおいて揚水井1、及び注入井2を掘削す
る.揚水井1は上部完成口径100■以上、深さ30m
以深まで掘削し、また注入井2は上部完成口径100m
以上、深さは揚水井の深さより浅い深さに掘削する. 第2工程において,揚水井1内の地下に地下水の揚水ポ
ンプ3を下部に連結した井戸内熱交換器4を降下設置す
る.熱交換器4は第3図に示したように多数の小口径伝
熱管5と1本の大口径伝熱管6が適切な間隔で配設して
あり、大口径伝熱管6は管内を流れて熱を得た温かい不
凍液が管外を流れて熱を与え冷たくなった地下水に逆に
熱を奪われて冷えることを防ぐために途中から断熱材7
を巻いて保温するとより効果的である.そして熱交換器
4は,垂直方向に多数接続することも可能で、下部には
小口径伝熱管5の内部と大口径伝熱管6の内部が連通ず
るようにヘッダ−8が設けてある. さらに,該熱交換器4は井戸内に降下設置することで井
戸のケーシングパイプ9が熱交換器の胴体の保温を果た
すことになり、有効な熱交換ができ熱効率が一層向上す
る.また上部に溢流管1oが設けてある. 次いで第3工程において、熱交換器4の伝熱管側の入口
側又は出口側に循環ポンブ11を介して、熱交換器4の
伝熱管側と舗装路面12内に埋設された送り本管13及
び戻り本管l4とを連結し、また地下水の熱供給後の冷
水の地下への注入管15は注入井2の内部にまで導かれ
ており,前記揚水ボンプ3、及び前記循環ポンプ11と
が地上に設けた降雪探知機17が設定気温o℃以下で、
かつ降雪時に信号を発して運転を始めるように接続して
ある. 第4工程において、舗装路面12内に表面から放熱管1
6の中心までの深さが30l〜IOCII1の深さで、
かつ放熱管16の間隔が10a1〜2o備で埋設し,放
熱管16の材質は鋼管又は高分子樹脂管からなり,内径
9m〜36mの管を用い、埋設形態としては蛇行した屈
曲形,あるいは平行形、渦巻形やジグザグ形の適宜な形
状をもって埋設される. 放熱管16の上面又は下面には熱伝導促進用の鉄網に固
定することも可能である. このようにして埋設固定された放熱管16と前記送り本
管13、前記熱交換器4伝熱管側、及び前記戻り本管1
4とを連結して循環管路を形成し、循環管路の内部には
不凍液が満たされているから,降雪時15℃〜18℃の
地下水から熱を与えられて12℃以上に温められた不凍
液は流速0.3m/秒〜1 . 5 m/秒で管路内を
循環する.上記の路面12は例えば車道、歩道、駐車場
,橋,鉄道のプラットホーム,空港滑走路、港の埠頭な
どにも適用でき,消雪を必要とする如何なる路面にも適
宜設けて実施できるものである.(第2実施例) 第2実施例は第4図に示したように上記第1実施例にお
いて,熱量を与えて水温の低下した地下水の地下還元用
注入井2を路面12外に掘削したことを特徴とする井戸
内熱交換無散水消雪施設の施工方法である. (第3実施例) 第3実施例は第5図に示したように上記第1及び第2実
施例において、熱量を与えて水温の低下した地下水の地
下還元用注入井2を路面12外に排水するようにしたこ
とを特徴とする井戸内熱交換無散水消雪施設の施工方法
である. (第4・実施例) 第4実施例は第6図に示したように前記第1実施例にお
いて、路面12外に地下水の揚水井1を設け、熱量を与
えて水温の低下した地下水の地下還元用注入井2を路面
12上の別の位置に設けたことを特徴とする井戸内熱交
換無散水消雪施設の施工方法である. (第5実施例) 第5実施例は第7図に示したように上記第4実施例にお
いて、熱量を与えて水温の低下した地下水の地下還元用
注入井2を路面12外の別の位置に設けたことを特徴と
する井戸内熱交換無散水消雪施設の施工方法である. (第6実施例) 第6実施例は第8図に示したように上記第4及び第5実
施例において,熱量を与えて水温の低下した地下水の地
下還元用注入井2を設けず路面12外に排水するように
したことを特徴とする井戸内熱交換無散水消雪施設の施
工方法である.〔発明の効果〕 上記のこの発明に係る井戸内熱交換無散水消雪施設の施
工方法は、次のような効果を有する.この発明は施工手
順が簡略化されるので工事期間の短縮がはかられ,施工
費用も安価となり,さらに大地の断熱効果によって熱交
換器が冷たい外気による冷却を受けないので,熱交換器
の膨張、収縮が小さくなって寿命が延び,その上地中内
で熱交換を行うので熱交換効率が向上する効果を有する
. また,揚水井から地下水をくみ上げ井戸内の熱交換器で
熱交換を行うことにより熱交換効率が高くなり,この熱
を熱交換器の伝熱管内部の不凍液に伝え,効率良く温め
られた不凍液を循環ポンプで路面内に埋設した放熱管の
中に送って路面内に蓄熱させ,路面上に降る雪を均一に
、かつ効率良く融かし、凍結防止をも行うことが可能で
ある.また,この発明は揚水井内に揚水ポンプと共に井
戸内熱交換器を設置して,一つの井戸を多目的に使用す
るから、地上に特別な格納庫などが不要となり、熱交換
器の保温,断熱などの施工も不要となる. さらに、地上に降雪探知機を設け,降雪時や凍結時だけ
揚水ポンプと循環ポンプの運転を行って路面の消雪と凍
結防止を行うため,無朧な運転が無くなり,維持費用が
安くなる効果を有する.
The operation of this invention with the above configuration will be explained. A pumping well and an injection well are excavated at appropriate intervals on the road surface, and an in-well heat exchanger with a pump connected to the lower part is installed inside the pumping well, and the heat exchanger heat exchanger tube side and The circulation pipe is constructed to form a circulation pipe with the main sending pipe, heat radiation pipe, return main pipe, and the heat exchanger heat transfer pipe side via a circulation pump, and because the inside is filled with antifreeze, the signal emitted by the snow detector is The lift pump starts operating and pumps up warm groundwater, and the heat held in the groundwater is efficiently transferred to the antifreeze inside the heat transfer pipe through the well heat exchanger.At the same time, the circulation pump starts operating and pumps up warm groundwater. Circulates the antifreeze filled inside. For this reason, warm antifreeze is smoothly sent inside the heat dissipation pipes buried and fixed in the road surface, and this heat is evenly transmitted and stored within the road surface, which uniformly melts snow falling on the road surface and prevents freezing. I do. Furthermore, when the snow removal is completed, the operation of the two pumps is automatically stopped by the signal emitted by the snowfall detector. [Example] Next, an example of the construction method according to the present invention will be described with reference to the drawings. (First Embodiment) FIGS. 1 to 3 show an embodiment in which the present invention is applied to a road surface. First, in the first step, 30m to 150m of ground is placed on the road surface 12.
Pumping well 1 and injection well 2 are drilled at appropriate intervals. Pumping well 1 has a completed upper diameter of 100 mm or more and a depth of 30 m.
The injection well 2 has a completed upper diameter of 100 m.
As mentioned above, the depth is shallower than the depth of the pumping well. In the second step, an in-well heat exchanger 4 with a groundwater pump 3 connected to its lower part is installed underground in the pumping well 1. As shown in FIG. 3, the heat exchanger 4 has a large number of small-diameter heat exchanger tubes 5 and one large-diameter heat exchanger tube 6 arranged at appropriate intervals, and the large-diameter heat exchanger tube 6 has a large number of small-diameter heat exchanger tubes 5 and one large-diameter heat exchanger tube 6 arranged at appropriate intervals. The warm antifreeze that has gained heat flows outside the pipe and gives it heat, and in order to prevent it from becoming cold due to the heat being taken away by the cold underground water, insulation material 7 is placed in the middle.
It is more effective to wrap the cloth around it to keep it warm. A large number of heat exchangers 4 can be connected in the vertical direction, and a header 8 is provided at the bottom so that the inside of the small-diameter heat exchanger tube 5 and the inside of the large-diameter heat exchanger tube 6 are communicated. Furthermore, by lowering the heat exchanger 4 into the well, the casing pipe 9 of the well serves to keep the body of the heat exchanger warm, allowing effective heat exchange and further improving thermal efficiency. An overflow pipe 1o is also provided at the top. Next, in the third step, a main feed pipe 13 buried in the heat exchanger tube side of the heat exchanger 4 and the paved road surface 12 is connected to the inlet side or the outlet side of the heat exchanger tube side of the heat exchanger 4 via the circulation pump 11. A pipe 15 for injecting cold water into the underground after supplying heat to the groundwater is connected to the return main pipe 14, and is led into the injection well 2, and the water pump 3 and the circulation pump 11 are connected to the ground. When the snowfall detector 17 installed at
It is also connected so that it will issue a signal and start operating when it snows. In the fourth step, the heat dissipation pipe 1 is inserted into the paved road surface 12 from the surface.
The depth to the center of 6 is 30l ~ IOCII1 depth,
The heat dissipation pipes 16 are buried with an interval of 10a1 to 2o, the material of the heat dissipation pipes 16 is steel pipe or polymer resin pipe, the inner diameter is 9m to 36m, and the buried form is meandering, bent or parallel. It is buried in an appropriate shape, such as a spiral or zigzag shape. It is also possible to fix an iron mesh on the upper or lower surface of the heat dissipation tube 16 to promote heat conduction. The heat radiation pipe 16 buried and fixed in this way, the main feed pipe 13, the heat exchanger 4 on the heat transfer tube side, and the main return pipe 1
4 are connected to form a circulation pipe, and the inside of the circulation pipe is filled with antifreeze, so when it snows, it is heated to over 12°C by receiving heat from groundwater at 15°C to 18°C. The flow rate of antifreeze is 0.3 m/sec to 1. It circulates in the pipe at a speed of 5 m/sec. The above-mentioned road surface 12 can be applied to, for example, roads, sidewalks, parking lots, bridges, railway platforms, airport runways, port wharves, etc., and can be appropriately installed and implemented on any road surface that requires snow removal. .. (Second Embodiment) As shown in FIG. 4, the second embodiment differs from the first embodiment in that an injection well 2 for underground return of groundwater whose water temperature has been lowered by applying heat is excavated outside the road surface 12. This is a construction method for an in-well heat exchange waterless snow removal facility featuring the following features: (Third Embodiment) In the third embodiment, as shown in FIG. This is a construction method for an in-well heat exchange non-sprinkling snow melting facility characterized by drainage. (Fourth Example) As shown in FIG. 6, the fourth example differs from the first example in that a groundwater pumping well 1 is provided outside the road surface 12, and the groundwater whose water temperature has been lowered by providing heat is added to the groundwater. This is a method of constructing an in-well heat exchange non-sprinkling snow melting facility, characterized in that the reinjection injection well 2 is provided at a different position on the road surface 12. (Fifth Embodiment) As shown in FIG. 7, the fifth embodiment differs from the fourth embodiment in that the injection well 2 for underground return of groundwater whose water temperature has been lowered by providing heat is placed at a different location outside the road surface 12. This is a construction method for an in-well heat exchange non-sprinkling snow removal facility, which is characterized by being installed in a well. (Sixth Embodiment) As shown in FIG. 8, the sixth embodiment differs from the fourth and fifth embodiments in that the injection well 2 for underground return of groundwater whose water temperature has been lowered by providing heat is not provided, and the road surface 12 is This is a construction method for an in-well heat exchange non-sprinkling snow removal facility that is characterized by draining water to the outside. [Effects of the Invention] The construction method for the in-well heat exchange non-sprinkling snow removal facility according to the present invention has the following effects. This invention simplifies the construction procedure, shortens the construction period, and reduces construction costs.Furthermore, because the heat exchanger is not cooled by cold outside air due to the insulation effect of the earth, the heat exchanger expands. This has the effect of reducing shrinkage, extending the lifespan, and improving heat exchange efficiency since heat exchange takes place underground. In addition, by pumping up groundwater from a pumping well and exchanging heat with a heat exchanger inside the well, heat exchange efficiency is increased, and this heat is transferred to the antifreeze inside the heat transfer tube of the heat exchanger, allowing the antifreeze to be heated efficiently. By using a circulation pump to send heat into heat dissipation pipes buried in the road surface and storing it within the road surface, it is possible to evenly and efficiently melt snow falling on the road surface and prevent it from freezing. In addition, this invention installs an in-well heat exchanger together with a pump in a pumping well, and uses one well for multiple purposes, so there is no need for a special hangar on the ground, and the heat exchanger can be kept warm and insulated. No construction is required. Furthermore, snow detectors are installed on the ground, and water pumps and circulation pumps are operated only when it snows or freezes to remove snow from the road surface and prevent it from freezing, which eliminates mindless operation and reduces maintenance costs. has.

【図面の簡単な説明】[Brief explanation of the drawing]

第1@は本発明の第1実施例を示す断面図,第2図は第
1実施例を示す平面図,第3図は井戸内熱交換器を示す
斜視図、第4図は第2実施例を示す平面図、第5図は第
3実施例を示す平面図、第6図は第4実施例を示す平面
図,第7図は第5実施例を示す平面図,第8図は第6実
施例を示す平面図である. 1・・・ 3・・・ 5・・・ 7・・・ 9・・・ 10・・・ 1 2・●Φ 14・・− 16・・・ 揚水井、   2・・・ 揚水ポンプ、 4・・・ 小口径伝熱管、6・・・ 断熱材、   8・・・ ケーシングパイプ、 溢流管、  11・・・ 路面、   13・・・ 戻り本管, 15・・・ 放熱管,  17・・・ 注入井, 井戸内熱交換器, 大口径伝熱管, ヘッダ− 循環ポンプ, 送り本管, 注入管、 降雪探知機. 第1図
1@ is a sectional view showing the first embodiment of the present invention, FIG. 2 is a plan view showing the first embodiment, FIG. 3 is a perspective view showing the in-well heat exchanger, and FIG. 4 is the second embodiment. FIG. 5 is a plan view showing the third embodiment, FIG. 6 is a plan view showing the fourth embodiment, FIG. 7 is a plan view showing the fifth embodiment, and FIG. 8 is a plan view showing the fifth embodiment. FIG. 6 is a plan view showing the sixth embodiment. 1... 3... 5... 7... 9... 10... 1 2・●Φ 14...- 16... Pumping well, 2... Lifting pump, 4...・ Small diameter heat transfer tube, 6... Insulation material, 8... Casing pipe, Overflow pipe, 11... Road surface, 13... Return main pipe, 15... Heat dissipation pipe, 17... Injection Well, in-well heat exchanger, large-diameter heat exchanger tube, header, circulation pump, main feed pipe, injection pipe, snow detector. Figure 1

Claims (5)

【特許請求の範囲】[Claims] (1)路面上に適切な間隔をおいて揚水井、及び注入井
を地下深く掘削する第1工程と、該揚水井内に揚水ポン
プと連結させた井戸内熱交換器を降下設置する第2工程
と、該熱交換器伝熱管側の入口側、又は出口側に循環ポ
ンプを介して該伝熱管側と舗装路面内に埋設された送り
本管、及び戻り本管とを連結し、前記揚水ポンプ及び前
記循環ポンプは地上に設けた降雪探知機の発する信号に
より運転、停止を行なうように接続する第3工程と、該
送り本管及び該戻り本管と舗装路面内に埋設固定された
放熱管とを連結して循環管路を形成し、該循環管路の内
部に不凍液を満たす第4工程とを連続して行なうことを
特徴とする井戸内熱交換無散水消雪施設の施工方法。
(1) A first step of excavating pumping wells and injection wells deep underground at appropriate intervals above the road surface, and a second step of lowering and installing an in-well heat exchanger connected to a pumping pump into the pumping well. and the heat exchanger tube side is connected to a feed main pipe and a return main pipe buried in the paved road surface via a circulation pump on the inlet side or outlet side of the heat exchanger heat transfer tube side, and the water pump and a third step in which the circulation pump is connected to operate and stop in response to a signal emitted by a snowfall detector installed on the ground; and a heat dissipation pipe buried and fixed in the feed main pipe, the return main pipe, and the paved road surface. A method for constructing an in-well heat exchange non-sprinkling snow melting facility, characterized in that a fourth step of connecting the circulation pipes to form a circulation pipe and filling the inside of the circulation pipe with antifreeze is performed continuously.
(2)熱量を与えて水温の低下した地下水の地下還元用
注入井を路面外に設けたことを特徴とする請求項第1項
記載の井戸内熱交換無散水消雪施設の施工方法。
(2) The method for constructing an in-well heat exchange non-sprinkling snow melting facility according to claim 1, characterized in that an injection well for underground return of groundwater whose water temperature has been lowered by imparting heat is provided outside the road surface.
(3)熱量を与えて水温の低下した地下水を地下還元用
注入井を設けずに路面外に排水するようにしたことを特
徴とする請求項第1項および第2項記載の井戸内熱交換
無散水消雪施設の施工方法。
(3) In-well heat exchange according to claims 1 and 2, characterized in that the groundwater whose water temperature has been lowered by imparting heat is drained outside the road surface without providing an underground reinjection injection well. Construction method of waterless snow removal facility.
(4)路面外に地下水の揚水井を設け、熱量を与えて水
温の低下した地下水の地下還元用注入井を路面上の別の
位置に設けたことを特徴とする請求項第1項記載の井戸
内熱交換無散水消雪施設の施工方法。
(4) A pumping well for groundwater is provided outside the road surface, and an injection well for returning underground water whose water temperature has been lowered by applying heat is provided at another location on the road surface. Construction method of waterless snow removal facility with in-well heat exchange.
(5)熱量を与えて水温の低下した地下水の地下還元用
注入井を路面外の別の位置に設けたことを特徴とする請
求項第4項記載の井戸内熱交換無散水消雪施設の施工方
法。 (5)熱量を与えて水温の低下した地下水を地下還元用
注入井を設けずに路面外に排水するようにしたことを特
徴とする請求項第4項および第5項記載の井戸内熱交換
無散水消雪施設の施工方法。
(5) The in-well heat exchange non-sprinkling snow melting facility according to claim 4, characterized in that an injection well for underground return of groundwater whose water temperature has been lowered by imparting heat is provided at a separate location outside the road surface. Construction method. (5) In-well heat exchange according to claims 4 and 5, characterized in that the groundwater whose water temperature has been lowered by applying heat is drained outside the road surface without providing an underground reinjection injection well. Construction method of waterless snow removal facility.
JP1050480A 1989-03-02 1989-03-02 Facility for snow-melting without heat exchange in wells Expired - Fee Related JPH0639762B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1050480A JPH0639762B2 (en) 1989-03-02 1989-03-02 Facility for snow-melting without heat exchange in wells

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1050480A JPH0639762B2 (en) 1989-03-02 1989-03-02 Facility for snow-melting without heat exchange in wells

Publications (2)

Publication Number Publication Date
JPH02229309A true JPH02229309A (en) 1990-09-12
JPH0639762B2 JPH0639762B2 (en) 1994-05-25

Family

ID=12860072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1050480A Expired - Fee Related JPH0639762B2 (en) 1989-03-02 1989-03-02 Facility for snow-melting without heat exchange in wells

Country Status (1)

Country Link
JP (1) JPH0639762B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021113407A (en) * 2020-01-16 2021-08-05 清水建設株式会社 Heat exchange system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63141205U (en) * 1987-03-02 1988-09-16

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63141205U (en) * 1987-03-02 1988-09-16

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021113407A (en) * 2020-01-16 2021-08-05 清水建設株式会社 Heat exchange system

Also Published As

Publication number Publication date
JPH0639762B2 (en) 1994-05-25

Similar Documents

Publication Publication Date Title
US5024553A (en) Non-water-sprinkling type snow melting method and system
US4693300A (en) Method and apparatus for sprinklerless snow control
JPH0364646B2 (en)
CN103088741A (en) Highway bridge pavement deicing and snow melting system based on energy pile and running mode
CN211872472U (en) Gravity type and horizontal heat pipe combined road snow and ice melting device
KR100991075B1 (en) Temperature control apparatus of road surface using convection of heat transfer medium in dual pipe by subterranean heat
KR20190129193A (en) System for preventing road from being frozen by using solar heat
JP2689400B2 (en) Solar heat storage type road surface snow melting device
JPH02229309A (en) Executing method for non-sprinkling snow melting facility with heat exchanger in well
JP6303361B2 (en) Thermal well and snow melting method
JP2001107307A (en) Snow melting antifreezer
KR101727154B1 (en) Snow melting block with enhanced water permeable
KR100407673B1 (en) An air conditioning system using the heat of the earth and method of constructing a large heat-exchanging pipe
JPS62237249A (en) Method of thawing snow utilizing terrestrial heat
JPH01247601A (en) Water unsprinkling type snow melting method utilizing geothermal effect in the depth of ground
JP2012211455A (en) Warming piping system for antifreezing or snow melting
JP6560706B2 (en) Snow extinguishing equipment and snow extinguishing method
JPH061606Y2 (en) Underground heat exchanger
JP3196732U (en) Ground heat energy collection system using inclined heat collection tubes
JPH05272105A (en) Road snow melting device provided with solar device on slope face
JP2973276B2 (en) Snow melting equipment
JP3928085B2 (en) Non-watering snow melting system and method of operating the system
JPS63238363A (en) Heat exchanger and heat exchanging
JPS62258009A (en) Snow melting treatment apparatus
JPH0853807A (en) Antifreezing method of road in the vicinity of tunnel entrance

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees