JPH0222864B2 - - Google Patents

Info

Publication number
JPH0222864B2
JPH0222864B2 JP58037212A JP3721283A JPH0222864B2 JP H0222864 B2 JPH0222864 B2 JP H0222864B2 JP 58037212 A JP58037212 A JP 58037212A JP 3721283 A JP3721283 A JP 3721283A JP H0222864 B2 JPH0222864 B2 JP H0222864B2
Authority
JP
Japan
Prior art keywords
heat ray
corrosion resistance
content
stainless steel
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58037212A
Other languages
Japanese (ja)
Other versions
JPS59161643A (en
Inventor
Mineo Kobayashi
Shigeru Kitani
Kenichi Goshokubo
Kazutoshi Ogawa
Noryuki Matsura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Stainless Steel Co Ltd
Original Assignee
Nippon Stainless Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Stainless Steel Co Ltd filed Critical Nippon Stainless Steel Co Ltd
Priority to JP58037212A priority Critical patent/JPS59161643A/en
Publication of JPS59161643A publication Critical patent/JPS59161643A/en
Publication of JPH0222864B2 publication Critical patent/JPH0222864B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S70/00Details of absorbing elements
    • F24S70/20Details of absorbing elements characterised by absorbing coatings; characterised by surface treatment for increasing absorption
    • F24S70/25Coatings made of metallic material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S70/00Details of absorbing elements
    • F24S70/20Details of absorbing elements characterised by absorbing coatings; characterised by surface treatment for increasing absorption
    • F24S70/225Details of absorbing elements characterised by absorbing coatings; characterised by surface treatment for increasing absorption for spectrally selective absorption
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)

Description

【発明の詳細な説明】 この発明は、熱線、特に大陽熱を選択的に吸収
する機能を有するとともに、優れた耐食性をも示
す熱線吸収板の製造方法に関するものである。 近年、石油等の地下資源の有限性がとみに喧伝
されるようになり、省資源・省エネルギーの思想
が産業界のみならず、日常生活の隅々にまで浸透
しはじめてきている。そして、このような事情を
背景として、無限とも言える太陽熱をエネルギー
資源として本格的に活用しようとの気運も、年を
追つて高まつてきている。 ところで、太陽熱エネルギー利用分野において
は、太陽から放射される各種の電磁波の中から熱
線のみを選択的に吸収するとともに、放熱射率の
十分に少ない集熱材が必要とされており、従来、
各種の塗料を塗布した金属板や、真空蒸着処理、
化学的気相メツキ処理、或いはイオンメツキ処理
等によつて特殊な多層薄膜を形成した金属板がそ
れらの用途に供されていた。 しかしながら、このような従来の集熱材には、 所望波長領域の熱線のみを選択吸収する効率
が十分でない、 製造工程が極めて繁雑である、 塗装板の場合には、塗料の剥離や溶出を生ず
る恐れがある、 等の問題点があり、長期にわたつて安定した性能
を発揮し、かつ安価であることが要求される工業
用材料としては決して満足できるものではなかつ
たのである。 そこで、これら従来材の問題点を解消するもの
として、オーステナイト系ステンレス鋼又はフエ
ライト系ステンレス鋼の表面荒さを整えた後、こ
れを700〜900℃の温度で30分〜2時間大気加熱
し、該ステンレス鋼表面に黒色の酸化皮膜を形成
せしめることから成る集熱材の製造方法が、特願
昭50−148447号(特開昭52−72950号公報)とし
て提案されている。 この特願昭50−148447号(特開昭52−72950号
公報)として提案された集熱材の製造方法によれ
ば、確かに、これまでの素材に比べて熱線の選択
吸収効率の良好なものを簡単に、そして低コスト
で得ることが可能とはなつたけれども、このよう
にして製造された集熱材を、例えば屋根上に構成
されるソーラシステム材として使用した場合に、
水、酸素、塩素イオン等の存在によつて容易に腐
食が進行してしまうという難点の存在することが
その後明らかとなり、また、生産性に対するその
後の要求の変化から、集熱材製造の際の加熱時間
の長いことが指摘されるようになつてきたのであ
る。 本発明者等は、上述のような観点から、熱線選
択吸収効率に優れるとともに、熱放射率が低く、
かつ各種の環境中においても長期にわたつて安定
した耐食性を発揮し、ソーラシステム等の太陽熱
集熱板として極めて良好な性能を有する熱線吸収
板を、簡単な工程の下で生産能率良く製造すべく
研究を重ねた結果、 C及びN含有量を極力低くした高純度の高Cr
フエライト系ステンレス鋼に特定元素の適量を添
加含有せしめて得た鋼板を、温度を時間とを微妙
に選択し組合せた加熱条件下で大気中加熱するこ
とにより、該鋼板表面上に集熱性能及び腐食防護
性の極めて優れた酸化皮膜を短時間で形成し得
る、との知見を得るに至つたのである。 この発明は、上記知見に基づいてなされたもの
であり、 Cr:18〜26%(以下、成分割合を表わす%は重
量%とする)、 Mo:0.4〜4.0%、 C:0.025%以下、 N:0.025%以下、 を含有するとともに、 Ti、Nb、及びZrのうちの1種以上: 8×{C(%)+N(%)}〜0.80%、 をも含む高純度高Crフエライト系ステンレス鋼
板を、大気中で800〜1050℃の温度に30秒〜10分
間加熱し、その表面に酸化皮膜を形成せしめるこ
とによつて、熱線吸収率と耐食性とが共に優れた
熱線吸収板とすることに特徴を有するものであ
る。 なお、この発明の方法で対象とするフエライト
系ステンレス鋼板は、C、Cr、Mo及びNの含有
量が前記範囲内にあり、かつTi、Nb及びZrの1
種以上が前記の組成範囲内で添加されているもの
であれば、通常のこの種のステンレス鋼に含有さ
れている程度の量で他成分を含むものであつても
良いことは当然のことである。 ついで、この発明の方法において、鋼板の成分
組成、加熱温度、及び加熱時間を前記の如く数値
限定した理由を説明する。 A 鋼板の成分組成 (a) Cr Cr成分は、ステンレス鋼の耐食性を高め
るために欠くことのできない元素であり、か
つ、加熱酸化処理によつて形成される酸化皮
膜の主成分となる元素であるので、かかる観
点からはCr成分の量は多い程望ましいもの
であるが、その含有量が26%を超えると鋼板
の靭性や成形性を損うようになるとともにコ
スト高の要因ともなり、他方18%未満の含有
量では太陽熱吸収板として十分な腐食防護性
を有する酸化皮膜が得られなくなることか
ら、その含有量を18〜26%と定めた。 (b) Mo Mo成分も、鋼板の耐食性を高める上で特
に有効な元素であるが、その含有量が0.4%
未満では所望の耐食性向上効果を得ることが
できず、他方、4.0%を越えて含有させると
鋼板の靭性並びに加工性が劣化することとな
るので、その含有量を0.4〜4.0%と定めた。 (c) C、及びN これらの元素は、いずれもCrと反応して
炭化物や窒化物を形成し、有効Cr量を減ず
るばかりでなく、Ti、Nb又はZrとも反応し
てこれらの元素を消耗する有害成分であり、
また、上記反応によつて生じたTiN等の非
金属介在物は鋼板の表面疵を誘起し易いの
で、その含有量は出来る限り低くする必要が
ある。そして、その含有量が各0.025%以下
であれば前記有害作用は実際上許容し得る範
囲となるので、両元素の含有量の上限をそれ
ぞれ0.025%と定めた。 (d) Ti、Nb、及びZr これらの成分は、鋼中のCやNと反応する
ことによつてこれらを固定し、従つてCrの
炭化物や窒化物の形成を抑制して鋼板の耐食
性を向上させる作用を有しているので1種以
上を添加含有せしめるものであるが、その含
有量が、C及びNの含有量に関連して8×
{C(%)+N(%)}%以下では前記作用に所
望の効果を得ることができず、他方0.80%を
越えてこれらの元素の1種以上を含有させる
と、鋼板の靭性、延性、及び表面状態の悪化
等を招くこととなるので、これらの成分の含
有量を合計で8×{C(%)+N(%)}〜0.80
%と定めた。 B 加熱温度 大気中での鋼板の加熱温度が800℃未満では、
鋼板表面に適当厚さの酸化皮膜を形成せしめる
のに長時間を要することとなつて経済的不利を
招き、他方1080℃を越える温度に加熱すると適
正酸化時間が短か過ぎて酸化の程度をコントロ
ールするのが困難となり、鋼板に所望の耐食性
と太陽熱吸収率を安定して付与することができ
なくなることから、加熱温度を800〜1050℃と
定めた。 C 加熱時間 加熱時間が30秒未満の場合には、鋼板の酸化
の程度が不十分であつて、太陽熱吸収率が低
く、かつ耐食性も十分でない製品しか得ること
ができず、他方、10分を越えて加熱すると形成
される酸化皮膜の緻密さが失われて耐食性が劣
化すると同時に、吸収した熱の放射率が増加す
る傾向が強くなることから、加熱時間を30秒〜
10分に定めた。 つぎに、この発明を実施例により比較例と対比
しながら具体的に説明する。 実施例 1 まず、高周波誘導加熱炉を用いて第1表に示さ
れる成分組成の鋼を溶製し、それぞれ10Kgの鋼 【表】 【表】 (注) *印は、本発明の条件から外れていることを
示すものである。
【表】 【表】 れた試料に関する結果を、それ以外は比較法によつ
て得られた試料に関する結果を示す。
塊を得た。そして、これに鍛造、冷間圧延、焼
鈍、酸洗を施し、厚さ:0.4mmの冷延鋼板とした
後、これらの鋼板から試験片を切り出した。 続いて、試験片の表面を#600研磨紙で湿式研
磨し、脱脂、水洗、乾燥後、電気炉によつて第2
表に示される加熱温度及び加熱時間の条件で大気
中加熱し、空冷した。 このような処理を施した試験片の表面には、極
く薄い酸化皮膜が形成されており、光の干渉作用
のため、その膜厚に応じて赤褐色、赤紫色、紫青
色、青色、深青色、灰青色、灰青色等の色相を呈
していた。 つぎに、これら各試験片について、太陽熱吸収
率(測定波長域:0.3〜2.0μm)及び放射率(測
定波長域:3〜30μm)を測定し、さらに1ケ月
間の大気曝露試験を行つて耐食性を調べたが、そ
の結果を第2表に併せて示した。なお、耐食性の
評価は、 ◎:発銹なし、 〇:わずかに発銹あり、 △:発銹あり、 ×:発銹かなり多し、 ××:発銹多し、 ×××:腐食により大部分の酸化皮膜剥離、 の6段階で行つた。 そして、得られた結果を詳細に検討すると、つ
ぎのようなことが明らかであつた。即ち、 ○…
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a heat ray absorbing plate that has a function of selectively absorbing heat rays, particularly solar heat, and also exhibits excellent corrosion resistance. In recent years, the finite nature of underground resources such as oil has become widely publicized, and the idea of resource and energy conservation has begun to permeate not only industry but also every corner of daily life. Against this background, the momentum to make full-scale use of the almost limitless solar heat as an energy resource is increasing year by year. By the way, in the field of solar thermal energy utilization, there is a need for a heat collecting material that selectively absorbs only heat rays from the various electromagnetic waves emitted from the sun and has a sufficiently low radiation emissivity.
Metal plates coated with various paints, vacuum evaporation treatments,
Metal plates on which special multilayer thin films are formed by chemical vapor plating or ion plating have been used for these purposes. However, such conventional heat collecting materials do not have sufficient efficiency to selectively absorb only heat rays in the desired wavelength range, the manufacturing process is extremely complicated, and in the case of painted boards, the paint peels off or elutes. There were problems such as the risk of oxidation, and it was by no means satisfactory as an industrial material that required long-term stable performance and low cost. Therefore, in order to solve the problems of these conventional materials, after smoothing the surface roughness of austenitic stainless steel or ferritic stainless steel, it is heated in the atmosphere at a temperature of 700 to 900°C for 30 minutes to 2 hours. A method of manufacturing a heat collecting material that involves forming a black oxide film on the surface of stainless steel has been proposed in Japanese Patent Application No. 148447/1984 (Japanese Patent Application Laid-Open No. 72950/1983). According to the manufacturing method of the heat collecting material proposed in this patent application No. 50-148447 (Japanese Patent Application Laid-open No. 52-72950), it is true that the heat collecting material has better selective absorption efficiency of heat rays than conventional materials. Although it is no longer possible to obtain such materials easily and at low cost, when the heat collecting material manufactured in this way is used as a material for a solar system constructed on a roof, for example,
Later on, it became clear that there was a problem in that corrosion progressed easily due to the presence of water, oxygen, chlorine ions, etc.; It has been pointed out that the heating time is long. From the above-mentioned viewpoints, the inventors of the present invention have discovered a material that has excellent heat ray selective absorption efficiency, low thermal emissivity, and
We aim to manufacture heat ray absorbing plates that exhibit stable corrosion resistance over a long period of time in various environments and have extremely good performance as solar heat collecting plates for solar systems, etc., using simple processes and with high production efficiency. As a result of repeated research, we have developed a high-purity, high-Cr content with as low as possible C and N contents.
A steel plate obtained by adding an appropriate amount of a specific element to ferritic stainless steel is heated in the atmosphere under carefully selected combinations of temperature and time to improve heat collection performance and This led to the discovery that an oxide film with extremely excellent corrosion protection can be formed in a short period of time. This invention was made based on the above knowledge, and contains Cr: 18 to 26% (hereinafter, % representing component proportions is expressed as weight %), Mo: 0.4 to 4.0%, C: 0.025% or less, N. : 0.025% or less, and one or more of Ti, Nb, and Zr: 8 x {C (%) + N (%)} ~ 0.80%, High purity high Cr ferritic stainless steel sheet was heated in the air to a temperature of 800 to 1050°C for 30 seconds to 10 minutes to form an oxide film on its surface, resulting in a heat ray absorbing plate with excellent heat ray absorption and corrosion resistance. It has characteristics. The ferritic stainless steel sheet to be used in the method of the present invention has a content of C, Cr, Mo, and N within the above range, and a content of 1% of Ti, Nb, and Zr.
It goes without saying that it may contain other components in the same amount as normally contained in this type of stainless steel, as long as at least one of these components is added within the above composition range. be. Next, the reason why the chemical composition, heating temperature, and heating time of the steel plate are numerically limited as described above in the method of the present invention will be explained. A. Composition of steel sheets (a) Cr The Cr component is an indispensable element for increasing the corrosion resistance of stainless steel, and is the main component of the oxide film formed by heat oxidation treatment. Therefore, from this point of view, the higher the amount of Cr, the more desirable it is, but if the content exceeds 26%, it will impair the toughness and formability of the steel sheet, and also become a factor in increasing costs. If the content is less than 1%, it will not be possible to obtain an oxide film with sufficient corrosion protection as a solar heat absorbing plate, so the content is set at 18% to 26%. (b) Mo The Mo component is also a particularly effective element in increasing the corrosion resistance of steel sheets, but its content is 0.4%.
If the content is less than 4.0%, the desired effect of improving corrosion resistance cannot be obtained, and on the other hand, if the content exceeds 4.0%, the toughness and workability of the steel sheet will deteriorate, so the content was set at 0.4 to 4.0%. (c) C and N These elements not only react with Cr to form carbides and nitrides, reducing the effective amount of Cr, but also react with Ti, Nb, or Zr, depleting these elements. It is a harmful ingredient that
Furthermore, since non-metallic inclusions such as TiN generated by the above reaction tend to cause surface flaws in the steel sheet, their content needs to be as low as possible. If the content of each element is 0.025% or less, the above-mentioned harmful effects will be within a practically tolerable range, so the upper limit of the content of both elements was set at 0.025% each. (d) Ti, Nb, and Zr These components fix C and N in steel by reacting with them, thereby suppressing the formation of Cr carbides and nitrides and improving the corrosion resistance of steel sheets. Since it has the effect of improving the content, one or more types are added and contained, but the content is 8x in relation to the content of C and N.
If the content is less than {C (%) + N (%)}%, the desired effect cannot be obtained in the above-mentioned action, and on the other hand, if the content exceeds 0.80% of one or more of these elements, the toughness, ductility, and and deterioration of the surface condition, etc., so the total content of these components should be 8 x {C (%) + N (%)} ~ 0.80
%. B Heating temperature If the heating temperature of the steel plate in the atmosphere is less than 800℃,
It takes a long time to form an oxide film of appropriate thickness on the surface of the steel sheet, which causes an economic disadvantage.On the other hand, heating to a temperature exceeding 1080℃ takes too short an appropriate oxidation time to control the degree of oxidation. The heating temperature was set at 800 to 1050°C because it would be difficult to do so and it would be impossible to stably impart the desired corrosion resistance and solar heat absorption rate to the steel plate. C. Heating time If the heating time is less than 30 seconds, the degree of oxidation of the steel plate is insufficient, and a product with low solar heat absorption rate and insufficient corrosion resistance can be obtained. If the heating time exceeds 30 seconds, the density of the oxide film formed will be lost and the corrosion resistance will deteriorate, and at the same time, the emissivity of the absorbed heat will tend to increase.
It was set at 10 minutes. Next, the present invention will be specifically explained using examples and comparing with comparative examples. Example 1 First, steel having the composition shown in Table 1 was melted using a high-frequency induction heating furnace, and each steel weighed 10 kg. This indicates that the
[Table] [Table] The results are shown for the samples obtained by the comparative method.
Got a lump. This was then subjected to forging, cold rolling, annealing, and pickling to obtain a cold rolled steel plate with a thickness of 0.4 mm, and test pieces were cut from these steel plates. Next, the surface of the test piece was wet-polished with #600 abrasive paper, degreased, washed with water, and dried.
It was heated in the air under the heating temperature and heating time conditions shown in the table, and then air cooled. An extremely thin oxide film is formed on the surface of the test piece treated in this way, and due to the interference effect of light, the color varies depending on the thickness of the film, such as reddish-brown, reddish-purple, purple-blue, blue, or deep blue. , gray-blue, gray-blue, etc. Next, solar heat absorption rate (measurement wavelength range: 0.3 to 2.0 μm) and emissivity (measurement wavelength range: 3 to 30 μm) were measured for each of these test pieces, and a one-month atmospheric exposure test was conducted to determine the corrosion resistance. The results are also shown in Table 2. The evaluation of corrosion resistance is as follows: ◎: No rusting, 〇: Slight rusting, △: Rusting, ×: Quite a lot of rusting, XX: Much rusting, ×××: Severe corrosion. This was done in 6 steps: removing the oxide film from the area. When the obtained results were examined in detail, the following things became clear. That is, ○…

Claims (1)

【特許請求の範囲】 1 重量割合で、 Cr:18〜26%、 Mo:0.4〜4.0%、 C:0.025%以下、 N:0.025%以下、 を含有するとともに、 Ti、Nb、及びZrのうちの1種以上: 8×{C(%)+N(%)}〜0.80%、 をも含む高純度高Crフエライト系ステンレス鋼
板を、大気中で800〜1050℃の温度に30秒〜10分
間加熱し、その表面に酸化皮膜を形成せしめるこ
とを特徴とする、熱線吸収率と耐食性とが共に優
れた熱線吸収板の製造方法。 2 ステンレス鋼板として帯状のものを用い、加
熱炉中を連続的に通過させて加熱する、特許請求
の範囲第1項に記載の熱線吸収率と耐食性とが共
に優れた熱線吸収板の製造方法。
[Claims] 1 Contains, in weight proportions, Cr: 18-26%, Mo: 0.4-4.0%, C: 0.025% or less, N: 0.025% or less, and among Ti, Nb, and Zr. A high-purity, high-Cr ferritic stainless steel plate containing one or more of: 8 x {C (%) + N (%)} ~ 0.80%, is heated to a temperature of 800 to 1050 degrees Celsius in the air for 30 seconds to 10 minutes. A method for producing a heat ray absorbing plate having excellent heat ray absorption rate and corrosion resistance, characterized by forming an oxide film on the surface of the heat ray absorbing plate. 2. A method for manufacturing a heat ray absorbing plate having excellent heat ray absorption rate and corrosion resistance as set forth in claim 1, which uses a belt-shaped stainless steel plate and heats it by continuously passing it through a heating furnace.
JP58037212A 1983-03-07 1983-03-07 Manufacture of heat ray absorptive plate excellent in corrosion resistance Granted JPS59161643A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58037212A JPS59161643A (en) 1983-03-07 1983-03-07 Manufacture of heat ray absorptive plate excellent in corrosion resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58037212A JPS59161643A (en) 1983-03-07 1983-03-07 Manufacture of heat ray absorptive plate excellent in corrosion resistance

Publications (2)

Publication Number Publication Date
JPS59161643A JPS59161643A (en) 1984-09-12
JPH0222864B2 true JPH0222864B2 (en) 1990-05-22

Family

ID=12491282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58037212A Granted JPS59161643A (en) 1983-03-07 1983-03-07 Manufacture of heat ray absorptive plate excellent in corrosion resistance

Country Status (1)

Country Link
JP (1) JPS59161643A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019164146A (en) * 2016-04-01 2019-09-26 ティエスアイ インコーポレイテッドTsi Incorporated Reduction of false count in condensate particle counter

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02298760A (en) * 1989-05-11 1990-12-11 Sanyo Electric Co Ltd Solar heat collector
CN102620456B (en) * 2012-04-06 2013-10-09 中国科学院宁波材料技术与工程研究所 Medium-and-low-temperature solar selective absorption thin film and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019164146A (en) * 2016-04-01 2019-09-26 ティエスアイ インコーポレイテッドTsi Incorporated Reduction of false count in condensate particle counter
US11085866B2 (en) 2016-04-01 2021-08-10 Tsi Incorporated Reducing false counts in condensation particle counters

Also Published As

Publication number Publication date
JPS59161643A (en) 1984-09-12

Similar Documents

Publication Publication Date Title
EP2683843B1 (en) Flat steel product and method for producing a flat steel product
WO2009025389A1 (en) Insulating film treating liquid for grain oriented electromagnetic steel plate, and process for producing grain oriented electromagnetic steel plate with insulating film
CA1127940A (en) Method of making surface layers with improved corrosion properties on articles of iron-chromium alloys, and a surface layer made by the method
JPH0222864B2 (en)
Pardo et al. Influence of Cu and Sn addition on the corrosion resistance of AISI 304 stainless steel in acid media
JPS5819950B2 (en) Manufacturing method of solar heat selective absorption board
US4255213A (en) Method for producing solar collector plates
US3841894A (en) Minimizing crazing of hot-dip aluminum coatings
Mahajan et al. Elevated temperature molten salt corrosion study of SS304L austenitic boiler steel
US4268324A (en) Fabrication of spectrally selective solar surfaces by the thermal treatment of austenitic stainless steel AISI 321
JP2000087259A (en) Stainless steel sheet and its production
JP3587885B2 (en) Manufacturing method of hot-dip galvanized steel sheet for corrosion-resistant refractory structure
WO2024048504A1 (en) Aluminum-plated steel sheet for hot stamping
KR102659749B1 (en) Galvanized steel-aluminum cladding for kitchens
CA1138816A (en) Protecting ferritic stainless steel from crevice and pitting corrosion
KR910018560A (en) Manufacturing method of low iron loss grain oriented silicon steel sheet
ABE et al. The composition dependent intergranular corrosion mechanism in stainless steels
JPH0244149A (en) Solar heat selective absorption plate and its manufacturing method
JPS5577667A (en) Selective absorption section of solar heat collector and method of producting the same
JPH01184255A (en) Far infrared radiator and its production
JPH0118343B2 (en)
GB1309580A (en) Coating of steel sheets
CN112281148A (en) Metal surface treating agent
JPS62136561A (en) Hot rolled steel sheet having superior adhesion to scale and its manufacture
JPS5811350A (en) Manufacture of solar heat absorber