JPH0118343B2 - - Google Patents
Info
- Publication number
- JPH0118343B2 JPH0118343B2 JP58081414A JP8141483A JPH0118343B2 JP H0118343 B2 JPH0118343 B2 JP H0118343B2 JP 58081414 A JP58081414 A JP 58081414A JP 8141483 A JP8141483 A JP 8141483A JP H0118343 B2 JPH0118343 B2 JP H0118343B2
- Authority
- JP
- Japan
- Prior art keywords
- chromium oxide
- film
- solution
- thick
- thin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000010408 film Substances 0.000 claims description 45
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 claims description 21
- 239000000919 ceramic Substances 0.000 claims description 20
- 229910000423 chromium oxide Inorganic materials 0.000 claims description 16
- 239000011248 coating agent Substances 0.000 claims description 12
- 238000000576 coating method Methods 0.000 claims description 12
- 239000010409 thin film Substances 0.000 claims description 11
- 229910052751 metal Inorganic materials 0.000 claims description 9
- 239000002184 metal Substances 0.000 claims description 9
- 150000004706 metal oxides Chemical class 0.000 claims description 8
- 229910044991 metal oxide Inorganic materials 0.000 claims description 7
- 238000011282 treatment Methods 0.000 claims description 7
- 150000001875 compounds Chemical class 0.000 claims description 6
- 239000000203 mixture Substances 0.000 claims description 6
- ZCDOYSPFYFSLEW-UHFFFAOYSA-N chromate(2-) Chemical compound [O-][Cr]([O-])(=O)=O ZCDOYSPFYFSLEW-UHFFFAOYSA-N 0.000 claims description 5
- 239000000843 powder Substances 0.000 claims description 5
- 238000004519 manufacturing process Methods 0.000 claims description 4
- 230000000379 polymerizing effect Effects 0.000 claims description 3
- 238000000151 deposition Methods 0.000 claims description 2
- 238000006116 polymerization reaction Methods 0.000 claims description 2
- 238000010030 laminating Methods 0.000 claims 1
- 239000000243 solution Substances 0.000 description 26
- 238000010438 heat treatment Methods 0.000 description 16
- 238000010521 absorption reaction Methods 0.000 description 14
- 230000005484 gravity Effects 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 239000010410 layer Substances 0.000 description 5
- 238000007747 plating Methods 0.000 description 5
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000012528 membrane Substances 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 3
- 229910052804 chromium Inorganic materials 0.000 description 3
- 239000011651 chromium Substances 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 238000005338 heat storage Methods 0.000 description 3
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 230000001680 brushing effect Effects 0.000 description 2
- KRVSOGSZCMJSLX-UHFFFAOYSA-L chromic acid Substances O[Cr](O)(=O)=O KRVSOGSZCMJSLX-UHFFFAOYSA-L 0.000 description 2
- AWJWCTOOIBYHON-UHFFFAOYSA-N furo[3,4-b]pyrazine-5,7-dione Chemical compound C1=CN=C2C(=O)OC(=O)C2=N1 AWJWCTOOIBYHON-UHFFFAOYSA-N 0.000 description 2
- 238000003475 lamination Methods 0.000 description 2
- NUJOXMJBOLGQSY-UHFFFAOYSA-N manganese dioxide Chemical compound O=[Mn]=O NUJOXMJBOLGQSY-UHFFFAOYSA-N 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 1
- 239000005751 Copper oxide Substances 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- 229910001111 Fine metal Inorganic materials 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 238000004378 air conditioning Methods 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- UOUJSJZBMCDAEU-UHFFFAOYSA-N chromium(3+);oxygen(2-) Chemical class [O-2].[O-2].[O-2].[Cr+3].[Cr+3] UOUJSJZBMCDAEU-UHFFFAOYSA-N 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 229910000431 copper oxide Inorganic materials 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000005238 degreasing Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- WTFXARWRTYJXII-UHFFFAOYSA-N iron(2+);iron(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[Fe+2].[Fe+3].[Fe+3] WTFXARWRTYJXII-UHFFFAOYSA-N 0.000 description 1
- SZVJSHCCFOBDDC-UHFFFAOYSA-N iron(II,III) oxide Inorganic materials O=[Fe]O[Fe]O[Fe]=O SZVJSHCCFOBDDC-UHFFFAOYSA-N 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 238000004886 process control Methods 0.000 description 1
- 102200082816 rs34868397 Human genes 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- 238000011179 visual inspection Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24S—SOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
- F24S70/00—Details of absorbing elements
- F24S70/20—Details of absorbing elements characterised by absorbing coatings; characterised by surface treatment for increasing absorption
- F24S70/25—Coatings made of metallic material
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24S—SOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
- F24S70/00—Details of absorbing elements
- F24S70/20—Details of absorbing elements characterised by absorbing coatings; characterised by surface treatment for increasing absorption
- F24S70/225—Details of absorbing elements characterised by absorbing coatings; characterised by surface treatment for increasing absorption for spectrally selective absorption
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/40—Solar thermal energy, e.g. solar towers
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Thermal Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Spectroscopy & Molecular Physics (AREA)
Description
(産業上の利用分野)
本発明は太陽熱を利用した例えば冷暖房用、給
湯用或いは発電用等の集熱体とその製造方法に関
するものである。
(従来の技術)
一般に太陽熱の光干渉方式に伴う選択吸収膜を
表面に形成してなる集熱体としては第1図に示す
ように太陽熱エネルギーの最も強力とされている
波長0.5μ乃至2.0μに対する有効な透過率を計るべ
く、選択吸収膜を特に該波長範囲の1/4の極薄膜
とするものが最も有効視されている。従来の集熱
体における選択吸収膜としては、例えば黒色塗装
膜或いは電気鍍金による黒色クロム鍍金膜をもつ
て形成してその用途に供している状態にあつた。
(発明が解決しようとする課題)
しかしながら前者にあつては、塗装膜自体を前
記したような極薄膜の範囲に形成することは至難
であり、同時に概して高い放射率を示すこと及び
長期に亘る使用による塗膜の劣化による集熱効果
の低下とが相まつて、一般に可能蓄熱温度は最高
で80℃にとどまるに過ぎず、又後者にあつては極
薄膜の形成は容易であつて、使用当初においては
そこそこの集熱効果を発揮するが、前者同様長期
に亘る使用によつて発錆を含む耐候性の劣化に伴
つて高温での集熱効果が低下し、一般に可能蓄熱
温度は最高400℃前後にとどまるに過ぎず、何れ
にしても選択吸収膜として未だ十分に満足できる
ものではなく、その改善が要望されている。
(課題を解決するための手段)
本発明は上記した問題点を極めて効果的に解決
し、良好な耐候性と耐熱性を有し且つ性能的にも
優れた太陽熱集熱体およびその効率的な製造方法
を提供することを目的とするものであつて、以下
に本発明を第2図および第3図によつて詳述すれ
ば鉄鋼材、鋳鋼材、ステンレス材、アルミニウム
材、アルミニウム合金材、銅材および銅合金材、
若しくはこれらの金属にニツケル又はクロム等の
鍍金処理、或いは化成処理を施したものによる所
望の形状を有する板、管或いは帯材からなる金属
部材1の表面に酸化クロム又は錯体クロム酸塩の
単味溶液或いは該溶液に酸化鉄、二酸化マンガ
ン、或いは酸化銅等の金属酸化物の1種または1
種以上の好ましくは粒径2.0μ程度以下からなる微
粉末を混合してなる比重1.6乃至1.8の範囲にある
濃厚溶液を塗布し、しかる後に電気炉等の加熱炉
において高温での加熱処理を行なう。加熱処理
は、例えば170℃乃至670℃の範囲に亘つて段階的
に加熱処理を施すことによつて、クロム酸化物又
は錯体クロム酸化物又はこれらの化合物に金属酸
化物の混合した膜厚が数μの比較的厚状からなる
黒色セラミツク膜3を被着させる。つぎに該セラ
ミツク膜の表面に、前記濃厚溶液に比して稀薄な
濃度を有する比重1.0乃至1.4の範囲にある前記同
様の単味或いは混合した稀薄溶液を再度塗布し
て、再び170℃乃至670℃の範囲に亘る段階的加熱
処理を施すことによつて前記同様の組成を有する
膜厚0.125μ乃至0.5μの範囲の薄状黒色セラミツク
膜4を被着重合させ、このようにしてそれぞれに
溶液濃度を異にした個々の溶液をもつて、濃厚溶
液による厚膜を下層に位置させ、更に該厚膜の表
面上層に稀薄溶液によつて得られる薄膜を位置さ
せた厚薄膜を一対とする黒色セラミツク膜3,4
をもつて必要に応じ第3図のように厚薄膜交互に
所望なだけ積層状に被着重合させて選択吸収膜を
形成してなるものである。上記した塗布溶液の加
熱処理における数段に分けての段階的加熱は溶液
中に含まれるクロム酸又は錯体酸化クロム塩又は
これらの化合物と共に含まれる金属酸化物を相互
に強固に化学結合させることによつて得られる黒
色セラミツク膜を均一緻密化し、本発明の集熱体
の長期高温における使用を安定化させ得るもので
ある。しかしてこの段階的加熱処理の初期段階で
の加熱温度は180℃以下、又最終段階での加熱温
度は650℃以上とすることが望ましい。なお第1
図および第2図中2は金属材表面に必要に応じて
施された鍍金膜層或いは化成膜層である。
(作 用)
本発明においては上記したように集熱体を構成
する選択吸収膜の形成に際してクロム酸、又は錯
体クロム酸塩単味溶液またはこれに金属酸化物微
粉末を混合した濃薄2種類の溶液を調製し、先ず
濃厚溶液を金属材表面に塗布後これを段階的に加
熱処理することにより、最終的にセラミツク化さ
れて酸化クロム又は酸化クロム系化合物を主体と
する厚膜の黒色セラミツク膜を被着させ、この上
に稀薄溶液を塗布して同様の処理を施して薄膜の
黒色セラミツクを被着重合せしめるものであるか
ら、溶液濃度の調整(或いは比重調整)を行なう
ことによるのみで、溶液のほぼ同一塗布厚さおよ
びほぼ同一加熱操作によつて上層セラミツク膜を
薄状に、下層セラミツク膜の厚さを厚状に形成す
ることが出来るので工程管理がきわめて容易且つ
効率的であり、殊に、本発明によるときは従来の
塗装膜による方法では至難とされた上層のセラミ
ツク膜の厚さを最も有効な太陽熱エネルギー透過
効率を示す0.125μ乃至0.5μの範囲内に的確に収め
ることが出来るので極めて効果的である。又この
ようにして形成された本発明による選択吸収膜は
クロム酸化物系組成物を主体とする強固に化学結
合された均一緻密な黒色セラミツク膜の厚薄2重
構造膜により構成されるが、このものは極めて耐
熱、耐湿性に優れていて800℃付近の高温に長時
間保持しても劣化等の問題を起こすことがないこ
とが確認されているし、また下層を形成する厚状
セラミツクは高温に至るまで極めて低い放射率を
示すので太陽熱集熱体としてまさに好適であると
云える。
(実施例)
以下本発明の実施例について詳述する。
実施例 1
金属部材・材質S45C、寸法縦1000mm横1000mm、
厚さ2mmの板材で前処理として通常
の脱脂、脱錆処理を行なつた。
酸化クロムの単味濃厚溶液
・無水クロム酸500gに対して水500c.c.
をまぜ、撹拌混合して比重1.66の濃
厚溶液とした。
塗布処理・刷毛塗りにより濃厚溶液100c.c.を金
属部材表面に均一に塗布した。
加熱処理・電気炉により170℃で10分→390℃で
10分→670℃で10分の3段階に亘る
加熱処理を行ない、膜厚3μからな
る濃厚溶液による厚膜を被着形成し
た。
酸化クロムの単味稀薄溶液
・無水クロム酸60gに対して水500c.c.
をまぜ撹拌混合して比重1.07の稀薄
溶液とした。
塗布処理・刷毛塗りにより稀薄溶液100c.c.を前
記厚膜を被着した金属部材表面に均
一に塗布した。
加熱処理・電気炉により170℃で10分→390℃で
10分→670℃で10分の3段階に亘る
加熱処理を行ない、膜厚0.2μからな
る稀薄溶液による薄膜を重合被着形
成した。
積層繰返し処理
・以上の処理を1サイクルとなし、全
く同じ条件にて再度の繰返しによる
2サイクルの処理を行なつた。
実施例 2
金属部材・実施例1に同じ。(但し表面に4μか
らなる黒色酸化鉄皮膜処理を施し
た。)
錯体クロム酸塩と金属酸化物の混合溶液
・無水クロム酸500gに対してカーボ
ン粉15gと水500gをまぜた比重1.72
の溶液に、粒径0.5μ程度以下の酸化
鉄粉末2.5gを加え撹拌混合した。
塗布処理・実施例1に同じ。
加熱処理・実施例1に同じ。(但し被着膜厚は
4μであつた。)
酸化クロムの単味稀薄溶液
・実施例1に同じ。
塗布処理・実施例1に同じ。
加熱処理・実施例1に同じ。(但し被着膜厚は
0.5μであつた。)
積層繰返し処理
・以上の処理を1サイクルとなし、全
く同じ条件にて繰返し処理による2
サイクルの処理を行なつた。
以上により得られた本発明の集熱体と従来品と
の比較性能試験の結果は下記の通りである。
(イ) 選択吸収性能
(Industrial Field of Application) The present invention relates to a heat collector that utilizes solar heat, for example, for air conditioning, hot water supply, power generation, etc., and a method for manufacturing the same. (Prior art) In general, as shown in Figure 1, a heat collector formed by forming a selective absorption film on the surface associated with the optical interference method of solar heat energy has a wavelength of 0.5μ to 2.0μ, which is considered to be the most intense solar thermal energy. In order to measure the effective transmittance for wavelengths, it is considered most effective to use a selective absorption film that is extremely thin, especially one-fourth of the wavelength range. As a selective absorption film in a conventional heat collector, for example, a black paint film or a black chromium plating film by electroplating has been formed and used for that purpose. (Problem to be Solved by the Invention) However, in the case of the former, it is extremely difficult to form the coating film itself in the ultra-thin range as described above, and at the same time, it is difficult to form the coating film itself in the extremely thin range as described above, and at the same time, it generally has a high emissivity and is difficult to use over a long period of time. In general, the maximum possible heat storage temperature is only 80℃, and in the case of the latter, it is easy to form an extremely thin film, and the heat collection effect is reduced due to the deterioration of the coating film due to Although the former has a reasonable heat collecting effect, as with the former, the heat collecting effect at high temperatures decreases due to deterioration of weather resistance including rust due to long-term use, and the maximum possible heat storage temperature is generally around 400°C. In any case, it is still not fully satisfactory as a selective absorption membrane, and improvements are desired. (Means for Solving the Problems) The present invention extremely effectively solves the above-mentioned problems, and provides a solar heat collector having good weather resistance and heat resistance, and excellent performance, and an efficient method thereof. The purpose of this invention is to provide a manufacturing method, and the present invention will be described in detail below with reference to FIGS. 2 and 3. copper materials and copper alloy materials,
Alternatively, a single layer of chromium oxide or complex chromate may be applied to the surface of the metal member 1, which is a plate, tube, or strip material having a desired shape, which is formed by plating these metals with nickel or chromium, or by chemical conversion treatment. The solution or the solution contains one or more metal oxides such as iron oxide, manganese dioxide, or copper oxide.
A concentrated solution with a specific gravity in the range of 1.6 to 1.8 made by mixing fine powder with a grain size of 2.0μ or more is applied, and then heat treatment is performed at a high temperature in a heating furnace such as an electric furnace. . Heat treatment is performed stepwise over a range of 170°C to 670°C, for example, to increase the thickness of a film of chromium oxide, complex chromium oxide, or a mixture of these compounds and metal oxide. A relatively thick black ceramic film 3 of μ is deposited. Next, on the surface of the ceramic membrane, a dilute solution similar to the one described above, having a specific gravity in the range of 1.0 to 1.4 and having a dilute concentration compared to the concentrated solution, is applied again, and the temperature is again heated to 170°C to 670°C. A thin black ceramic film 4 with a thickness ranging from 0.125μ to 0.5μ having the same composition as described above is deposited and polymerized by performing stepwise heat treatment over a temperature range of A black color consisting of a pair of thick and thin films containing individual solutions of different concentrations, with a thick film made of a concentrated solution located on the lower layer, and a thin film obtained from a diluted solution placed on the upper layer of the surface of the thick film. Ceramic membrane 3, 4
A selective absorption film is formed by depositing and polymerizing a desired number of thick and thin films alternately as shown in FIG. 3 as required. The stepwise heating in several stages in the heat treatment of the coating solution described above causes the chromic acid or complex chromium oxide salts contained in the solution, or the metal oxides contained together with these compounds, to form strong chemical bonds with each other. The black ceramic film thus obtained can be uniformly densified and the heat collector of the present invention can be used stably at high temperatures for a long period of time. However, it is desirable that the heating temperature at the initial stage of this stepwise heat treatment be 180°C or lower, and the heating temperature at the final stage be 650°C or higher. Note that the first
Reference numeral 2 in the figures and FIG. 2 is a plating film layer or a chemically formed film layer applied to the surface of the metal material as necessary. (Function) As described above, in the present invention, when forming the selective absorption film constituting the heat collector, two types of chromic acid, a simple solution of complex chromate, or a concentrated solution containing fine metal oxide powder mixed therewith are used. By first applying a concentrated solution to the surface of a metal material and then heat-treating it in stages, it is finally turned into a ceramic, producing a thick black ceramic film mainly composed of chromium oxide or chromium oxide-based compounds. A film is applied, a diluted solution is applied on top of this, and the same treatment is applied to deposit and polymerize the thin film of black ceramic, so it is only necessary to adjust the concentration of the solution (or adjust the specific gravity). The process control is extremely easy and efficient because the upper ceramic film can be formed thin and the lower ceramic film thick by applying the solution at approximately the same thickness and using approximately the same heating operation. In particular, according to the present invention, the thickness of the upper ceramic film, which is extremely difficult to achieve with conventional coating film methods, must be kept within the range of 0.125μ to 0.5μ, which indicates the most effective solar energy transmission efficiency. It is extremely effective. The selective absorption film according to the present invention thus formed is composed of a thick and thin double-layered film of a uniformly dense black ceramic film with strong chemical bonds mainly composed of a chromium oxide composition. It has been confirmed that the material has extremely excellent heat and moisture resistance, and does not cause any problems such as deterioration even if kept at high temperatures around 800℃ for a long time, and the thick ceramic that forms the lower layer can withstand high temperatures. Since it exhibits an extremely low emissivity up to , it can be said to be suitable as a solar heat collector. (Example) Examples of the present invention will be described in detail below. Example 1 Metal parts/Material S45C, dimensions 1000mm in height and 1000mm in width.
A 2 mm thick plate was subjected to the usual degreasing and rust removal treatments as pretreatment. Simple concentrated solution of chromium oxide - 500 g of chromic anhydride to 500 c.c. of water.
were mixed and stirred to form a concentrated solution with a specific gravity of 1.66. 100 c.c. of the concentrated solution was applied uniformly to the surface of the metal member by coating and brushing. Heat treatment/Electric furnace at 170℃ for 10 minutes → 390℃
Heat treatment was carried out in three stages: 10 minutes → 10 minutes at 670° C., and a thick film made of a concentrated solution having a thickness of 3 μm was deposited. Simple dilute solution of chromium oxide - 60 g of chromic anhydride to 500 c.c. of water.
were mixed and stirred to form a dilute solution with a specific gravity of 1.07. 100 c.c. of the diluted solution was uniformly applied to the surface of the metal member covered with the thick film by coating treatment/brushing. Heat treatment/Electric furnace at 170℃ for 10 minutes → 390℃
Heat treatment was carried out in three stages: 10 minutes → 10 minutes at 670° C., and a thin film of the dilute solution having a film thickness of 0.2 μm was formed by polymerization. Repeated lamination processing - The above processing was considered as one cycle, and two cycles of processing were performed by repeating it again under exactly the same conditions. Example 2 Metal member - Same as Example 1. (However, the surface was treated with a black iron oxide film of 4 μm.) Mixed solution of complex chromate and metal oxide - Specific gravity 1.72 made by mixing 500 g of chromic acid anhydride with 15 g of carbon powder and 500 g of water.
2.5 g of iron oxide powder with a particle size of about 0.5 μm or less was added to the solution and mixed with stirring. Coating treatment: Same as Example 1. Heat treatment: Same as Example 1. (However, the thickness of the deposited film is
It was 4μ. ) Simple dilute solution of chromium oxide - Same as Example 1. Coating treatment: Same as Example 1. Heat treatment: Same as Example 1. (However, the thickness of the deposited film is
It was 0.5μ. ) Repeated lamination processing ・The above processing is considered as one cycle, and two cycles are performed by repeating processing under exactly the same conditions.
The cycle was processed. The results of a comparative performance test between the heat collector of the present invention obtained above and a conventional product are as follows. (b) Selective absorption performance
【表】
第1表の結果より判かるように本発明品は吸
収率が高く、又放射率も低く、700℃の高温に
保持するもなお十分に低い放射率の状態を保つ
ているのに対し、従来品の黒色塗装品は吸収率
においても放射率においても本発明品に比べて
劣り、しかも250℃を超えると、塗膜の劣化に
より選択吸収膜としての機能を失い、また黒色
鍍金品(クロム鍍金による)においては吸収率
はほぼ本発明品に匹敵し、また放射率は低温で
は寧ろ本発明品を凌駕する低率の値を示すも
のゝ500℃において既に鍍金膜が劣化して選択
吸収膜としての使用が出来なくなる。
尚上記表中の吸収率、放射率の測定はそれぞ
れデーアンドエス社製の反射率計及び放射率計
によるものであり、又太陽光線のスペクトル分
布についてはAM2によつて測定を行なつた。
(ロ) 耐候性試験
上記試料の本発明品と従来品とを、それぞれ
大気中600℃で8時間に亘つて加熱保持し、そ
の後室温まで冷却放置し、更に40℃の飽和湿度
で6時間保持することを1サイクルとして、こ
れの繰返しによる7サイクルの経過後において
目視による外観検査を行なつた結果、実施例1
品及び実施例2品ともいずれも全く異常が認め
られなかつたのに対して、従来品の黒色塗装品
によるものは完全に塗膜が焼失し、又黒色クロ
ム鍍金のものについては鍍金膜の劣化に基づく
多数の点錆の発生が見られた。
(効 果)
以上述べたように本発明の太陽熱集熱体は優れ
た吸熱効率を高温に至るまで持続し、最高800℃
に及ぶ蓄熱温度を何等の支障を来すことなく継続
的に達成し得るものであり、またその製造も極め
て容易かつ効率的であるので工業的に優れた効果
を有するものである。[Table] As can be seen from the results in Table 1, the product of the present invention has a high absorption rate and a low emissivity, and even when kept at a high temperature of 700°C, it still maintains a sufficiently low emissivity state. On the other hand, the conventional black-coated product is inferior to the inventive product in both absorption rate and emissivity, and furthermore, when the temperature exceeds 250°C, the coating film deteriorates and loses its function as a selective absorption film. (by chromium plating), the absorption rate is almost comparable to the product of the present invention, and the emissivity is a low value that even exceeds the product of the present invention at low temperatures. It can no longer be used as an absorbent membrane. The absorption rate and emissivity in the above table were measured using a reflectance meter and an emissivity meter manufactured by D&S, respectively, and the spectral distribution of sunlight was measured using AM2. (b) Weather resistance test The above-mentioned samples of the present invention and the conventional product were heated and held in the atmosphere at 600°C for 8 hours, then allowed to cool to room temperature, and then held at 40°C and saturated humidity for 6 hours. As a result of visual inspection after 7 cycles of repeating this, Example 1 was found.
No abnormalities were observed in either the product or the two products in Example 2, whereas the coating film of the conventional black-painted product was completely burnt out, and the plating film of the black chrome-plated product deteriorated. Numerous spots of rust were observed based on (Effects) As described above, the solar heat collector of the present invention maintains excellent heat absorption efficiency up to high temperatures, and can reach up to 800℃.
It is possible to continuously achieve a heat storage temperature of up to 100% without any hindrance, and its production is extremely easy and efficient, so it has excellent industrial effects.
第1図は、太陽熱エネルギーと波長との関係を
示すグラフ、第2図及び第3図は、本発明に係る
集熱体の各実施例を示す拡大断面図である。
1……金属部材、3,3′……厚状の黒色セラ
ミツク膜、4,4′……薄状の黒色セラミツク膜。
FIG. 1 is a graph showing the relationship between solar thermal energy and wavelength, and FIGS. 2 and 3 are enlarged sectional views showing each embodiment of the heat collector according to the present invention. 1... Metal member, 3, 3'... Thick black ceramic film, 4, 4'... Thin black ceramic film.
Claims (1)
ム酸塩の単味溶液或いは該溶液に金属酸化物の1
種又は1種以上の微粉末を混合したそれぞれ溶液
濃度を異にする個々の溶液を加熱処理して得られ
た濃溶液による厚膜を下層に、又薄溶液による薄
膜を上層に位置するようにして厚薄膜を一対とし
て形成せしめた、クロム酸化物、又はクロム酸化
物系化合物を主体として強固に化学結合された黒
色セラミツク膜の少なくとも一対以上を、積層状
に被着重合して構成してなることを特徴とする太
陽熱集熱体。 2 金属部材の表面に、酸化クロム又は錯体クロ
ム酸塩の単味溶液或いは該溶液に金属酸化物の1
種又は1種以上の微粉末を混合した濃溶液を塗布
し、しかる後に加熱処理を施すことによつて強固
に化学結合したクロム酸化物、又はクロム酸化物
系化合物、又はこれらの化合物と金属酸化物とよ
りなる組成物による黒色セラミツク膜を、該表面
上に被着せしめ、更に該セラミツク膜の表面に前
記濃溶液に比して薄い濃度を有する前記同様の単
味或いは混合した薄溶液を再度塗布して再び加熱
処理を施すことによつて、前記同様の組成の薄状
黒色セラミツク膜を重合被着せしめ、このように
して下層に厚膜が、又上層に薄膜が位置する黒色
セラミツク膜の厚薄膜を一対として、必要に応じ
て繰返し重合処理を施すことによつて黒色セラミ
ツクの厚薄膜を交互に積層状に重合被着せしめる
ことを特徴とする太陽熱集熱体の製造方法。[Scope of Claims] 1. A simple solution of chromium oxide or complex chromate, or a solution containing 1 chromium oxide of a metal oxide on the surface of a metal member.
A thick film made of a concentrated solution obtained by heat-treating individual solutions containing seeds or a mixture of one or more types of fine powder with different solution concentrations is placed in the lower layer, and a thin film made of a thin solution is placed in the upper layer. At least one pair or more of black ceramic films made of chromium oxide or a chromium oxide-based compound and strongly chemically bonded to form a pair of thick and thin films are formed by laminating and polymerizing them. A solar heat collector characterized by: 2. Applying a simple solution of chromium oxide or complex chromate to the surface of the metal member, or adding one of the metal oxides to the solution.
Chromium oxide or chromium oxide-based compounds, or these compounds and metal oxides, are strongly chemically bonded by applying a concentrated solution containing seeds or one or more fine powders and then heat-treated. A black ceramic film made of a composition comprising: By applying the coating and heat-treating it again, a thin black ceramic film having the same composition as described above is polymerized and deposited.In this way, a black ceramic film with a thick film in the lower layer and a thin film in the upper layer is formed. A method for producing a solar heat collector, which comprises forming a pair of thick and thin films and polymerizing and depositing thick and thin films of black ceramic in a layered manner by repeating polymerization treatment as necessary.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58081414A JPS59205551A (en) | 1983-05-10 | 1983-05-10 | Solar heat collector and its manufacture |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58081414A JPS59205551A (en) | 1983-05-10 | 1983-05-10 | Solar heat collector and its manufacture |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59205551A JPS59205551A (en) | 1984-11-21 |
JPH0118343B2 true JPH0118343B2 (en) | 1989-04-05 |
Family
ID=13745677
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58081414A Granted JPS59205551A (en) | 1983-05-10 | 1983-05-10 | Solar heat collector and its manufacture |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59205551A (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5360634A (en) * | 1988-12-05 | 1994-11-01 | Adiabatics, Inc. | Composition and methods for densifying refractory oxide coatings |
WO2011116625A1 (en) * | 2010-03-22 | 2011-09-29 | Huang Jinxi | Composite solar heat collecting plate of foam and black ceramic and its manufacturing method and applications |
CN101915472A (en) * | 2010-08-04 | 2010-12-15 | 曹树梁 | Slip casting ceramic solar panel with waste residues or minerals as sunlight absorbers |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56151903A (en) * | 1980-03-31 | 1981-11-25 | Zeiss Jena Veb Carl | Resonance absorber |
-
1983
- 1983-05-10 JP JP58081414A patent/JPS59205551A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56151903A (en) * | 1980-03-31 | 1981-11-25 | Zeiss Jena Veb Carl | Resonance absorber |
Also Published As
Publication number | Publication date |
---|---|
JPS59205551A (en) | 1984-11-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4097311A (en) | Absorption surface of solar collector | |
Khamlich et al. | Annealing effect on the structural and optical properties of Cr/α-Cr2O3 monodispersed particles based solar absorbers | |
Ma et al. | Cu1. 5Mn1. 5O4-based ceramic spectrally selective coatings for efficient solar absorber applications | |
CN112209444A (en) | Preparation method of wide-spectrum absorption high-temperature-resistant powder material | |
JPH0118343B2 (en) | ||
CN109292820A (en) | VO2/ ZnO bilayer film and preparation method thereof | |
JP2009040640A (en) | Method for producing zinc oxide thin film | |
CN101125737A (en) | Intelligent heat-resisting thin film and its preparing process | |
CN114314664A (en) | Vanadium oxide coated carbide composite material and preparation method and application thereof | |
JPS639004B2 (en) | ||
CN111690926A (en) | Method for preparing compact Mn-Co spinel protective layer of stainless steel connector by hot-pressing sintering method | |
US4268324A (en) | Fabrication of spectrally selective solar surfaces by the thermal treatment of austenitic stainless steel AISI 321 | |
Agarwal et al. | Chemically sprayed PbS coatings for photothermal solar energy conversion | |
DE336029C (en) | Metallic cooking vessel with improved heat transfer | |
CN114195522B (en) | Method for rapidly preparing vanadium nitride ceramic powder by utilizing urea nitridation, product and application thereof | |
JPS5924768B2 (en) | Treatment method for heat collecting surface | |
Papini et al. | Study and realization of a selective absorber Ni P compound for the photothermal conversion of solar radiation | |
JPS608283Y2 (en) | solar collector | |
JPS60129567A (en) | Manufacture of solar heat selective absorption film | |
Uma et al. | Spectrally selective surfaces on stainless steel produced by chemical conversion | |
JPS6136142B2 (en) | ||
JPS6011303B2 (en) | solar heat collector | |
JPS5953459B2 (en) | solar heat absorber | |
JPS5833060A (en) | Manufacture of heat collecting body | |
Mason | Metal Filled Coloured Stainless Steel as a High Temperature Selective Absorber |