JP3587885B2 - Manufacturing method of hot-dip galvanized steel sheet for corrosion-resistant refractory structure - Google Patents

Manufacturing method of hot-dip galvanized steel sheet for corrosion-resistant refractory structure Download PDF

Info

Publication number
JP3587885B2
JP3587885B2 JP17766894A JP17766894A JP3587885B2 JP 3587885 B2 JP3587885 B2 JP 3587885B2 JP 17766894 A JP17766894 A JP 17766894A JP 17766894 A JP17766894 A JP 17766894A JP 3587885 B2 JP3587885 B2 JP 3587885B2
Authority
JP
Japan
Prior art keywords
weight
hot
steel
strength
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17766894A
Other languages
Japanese (ja)
Other versions
JPH0770647A (en
Inventor
徹 藤田
征一 浜中
照夫 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP17766894A priority Critical patent/JP3587885B2/en
Publication of JPH0770647A publication Critical patent/JPH0770647A/en
Application granted granted Critical
Publication of JP3587885B2 publication Critical patent/JP3587885B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)
  • Coating With Molten Metal (AREA)
  • Heat Treatment Of Steel (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、建築分野等における構造物として使用され、構造物の高強度化を可能とし、火災時においても十分な強度を維持する耐食性に優れた溶融亜鉛めっき鋼板を製造する方法に関する。
【0002】
【従来の技術】
鉄骨構造物に使用されるJIS規格鋼材として、一般構造用圧延鋼板(JISG3101),溶接構造用圧延鋼板(G3106),溶接構造用耐候性熱間圧延鋼材(G3114)等がある。また、構造用軽量形鋼や構造用鋼管等の素材として、熱間圧延軟質鋼板(G3132),溶融亜鉛めっき鋼板(G3302)等が広く使用されている。
構造物として使用される鋼材には、火災時における安全性を確保する上から鋼材温度が350℃を超えないように耐火被覆を施すことが義務付けられている。しかし、十分な高温強度が確保される場合、無被覆で鋼材を使用することも可能となる。そこで、高温においても高い耐力を呈する鋼材の使用が種々検討されている。
【0003】
鋼材の高温強度は、古くから調査・研究されているものであり、ボイラー用鋼板,圧力容器用鋼板等に関し規格化されている。この種の鋼材は、ボイラー,圧力容器等として高温で数万時間といった長時間使用の場合の強度、すなわちクリープ強度の高い鋼材である。これに対し、本発明で問題としている強度は、火災時の数時間以内の強度である。この点、従来の高温用鋼板は、常温における強度が高過ぎ、冷間加工性、更に溶接性が構造用鋼板に比較して大幅に劣る。そのため、ボイラー用鋼板,圧力容器用鋼板等は、構造用鋼板には適さない。
構造用鋼板では、火災時の数時間の間に高温雰囲気に構造物が曝されたとき、必要な構造強度をもつことが要求される。
高温強度を高めた建築用の鋼板として、特開平4−136118号公報,特開平4−102802号公報等では、Mo及びVを添加している。MoやVは、火災時に鋼材が高温に曝される過程で微細な炭化物として析出し、必要な高温耐力を鋼材に与える。しかし、高価なMoを合金元素とすることから製造コストが上昇する。また、鋼板の長寿命化に対して耐食性が不十分である。
【0004】
【発明が解決しようとする課題】
本発明の目的は、高温特性,軽量鉄骨等への成形加工性,母材の耐食性に優れ、更に製鋼工程〜熱間圧延工程に特別な手段を使用せず、普通鋼に近い鋼組成で、経済的に優れた耐食性耐火構造用溶融亜鉛めっき鋼板の製造方法の提供にある。具体的には、P,Cu添加を基本成分とすることで耐食性を向上させるものである。また、Cuは高温時にε−Cuを析出し、高温強度を高める作用をも有することから、Mo添加量を減らすことが可能となり、製造コストが安価となる。
【0005】
【課題を解決するための手段】
本発明の耐食性耐火構造用溶融亜鉛めっき鋼板の製造方法は、その目的を達成するため、C:0.03〜0.20重量%,Si:0.1重量%以下,Mn:0.3〜2.0重量%,P:0.03〜0.15重量%,S:0.02重量%以下,Al:0.005〜0.1重量%,Mo:0.05〜1.0重量%,Cu:0.6〜2.0重量%及びNi:0.3〜2.0重量%を含み、残部が実質的にFeからなる組成の鋼に熱間圧延及び酸洗を施した後、連続溶融亜鉛めっき設備で450〜750℃の温度範囲で加熱還元し、次いで溶融亜鉛めっきを施すことを特徴とする。
使用する鋼は、更にCr:0.05〜1.0重量%,V:0.005〜0.2重量%,W:0.01〜1.0重量%,Ti:0.005〜0.2重量%,Nb:0.005〜0.2重量%及びB:0.0003〜0.003重量%の1種又は2種以上を含むことができる。
【0006】
【作用】
本発明者等は、600℃における鋼板強度及び母材の耐食性に及ぼす化学成分,製造条件等について種々調査・研究した。その結果、普通鋼に近い組成系に規定量のMo,Cu及びPを添加するとき、高温強度及び母材耐食性に優れた耐食性耐火構造用溶融亜鉛めっき鋼板が得られることを見い出した。得られた鋼板は、室温の降伏強度に対する600℃の降伏強度の比が0.6以上であり、高温雰囲気に曝されても高温強度を大きく低下することがない。特に、含有量が厳格に規定されたCuは、耐食性の向上に有効であるばかりでなく、高温時に鋼中にε−Cuとして析出し、高温強度を上昇させる。その結果、Mo添加量を減少することができ、製造コストが低減する。高温強度及び母材耐食性は、Cr,V,W,Ti,Nb及びBの1種又は2種以上を添加することによって更に改善される。
【0007】
以下、本発明で使用される鋼材の合金元素及びその含有量を説明する。
C:0.03〜0.20重量%
鋼材に必要な強度を付与する上で有効な合金元素であり、0.03重量%以上の含有量が必要である。しかし、0.20重量%を超える多量のCを含有させると、加工性,溶接性,靭性等が劣化する。
Si:0.1重量%以下
Siは、強度向上元素として有効であるが、本発明の目的である高温強度及び耐食性の向上効果は比較的小さいので0.10重量%以下に限定した。
Mn:0.3〜2.0重量%
鋼材の高強度化に有効な合金元素であり、0.30重量%以上で効果を発揮する。しかし、2.0重量%を超える多量のMn含有は、加工性を劣化させる。
【0008】
P:0.03〜0.15重量%
鋼材の強度向上に有効な合金元素である。また、Cuと複合して添加するとき、耐食性の改善に寄与する。このような効果を得るためには、0.03重量%以上のPを含有させることが必要である。しかし、0.15重量%を超えて多量のPを含有させると、脆化を助長させる。
S:0.02重量%以下
母材鋼にとって本質的に有害な元素であり、低ければ低いほど好ましい。S含有量は、本発明の鋼では0.02重量%まで許容される。
Al:0.005〜0.1重量%
脱酸剤として添加される元素であるが、鋼中のNをAlNとして固定する作用も呈する。このためには、0.005重量%以上が必要である。しかし、Al含有量が0.1重量%を超えると、介在物が増大し、加工性及び表面品質を劣化させる。
【0009】
Mo:0.05〜1.0重量%
本発明鋼において重要な合金元素であり、鋼中に固溶し或いは炭化物を析出することにより、鋼材の高温強度を向上させる。このような効果は、Mo含有量0.05重量%以上で顕著になる。しかし、1.0重量%を超える多量のMoを含有させても、高価なMo含有量の増加に見合った効果が得られず、却って高強度化に起因した加工性の劣化を招く。
Cu:0.6〜2.0重量%
本発明鋼における重要な合金元素であり、鋼中に固溶し或いはε−Cuとして微細に析出し、鋼材の高温強度を向上させる。また、Pとの相互作用によって緻密な腐食生成物を形成し、耐食性も向上する。高温強度を向上させる効果は、Cu含有量0.6重量%以上で顕著になり、2.0重量%で飽和する。また、2.0重量%を超えて多量のCuを含有させると、熱間圧延時に脆化を生じ易く、高温割れ等の原因となる。
【0010】
Ni:0.3〜2.0重量%
Cu添加に起因した熱間脆性の低下防止にも有効である。この点で、Niの含有量は、Cu含有量とほぼ同量、すなわち0.30〜2.0重量%の範囲に設定する。
Cr:0.05〜1.0重量%
母材の耐食性を改善するために必要に応じ添加される合金元素であり、高温強度を向上させる。このような効果は、0.05重量%以上のCrを含有させるとき顕著になる。しかし、1.0重量%を超える多量のCrを含有させても、Crの増量に見合った効果の改善がみられない。
V,Ti,Nb:0.005〜0.2重量%
室温強度及び高温強度を向上させる上で有効な合金元素であり、それぞれ含有量0.005重量%以上で顕著な効果が得られる。しかし、0.2重量%を超えて含有させても、増量に見合った効果が得られない。そこで、V,Ti,Nb等を添加する場合には、それぞれの含有量を0.005〜0.2重量%の範囲に定める。
【0011】
W:0.01〜1.0重量%
必要に応じて添加される合金元素であり、鋼中に固溶し或いは炭化物を析出し、鋼材の高温強度を向上させる効果を発揮する。W添加の効果は、0.01
重量%以上で顕著に現れ、1.0重量%で飽和する。
B:0.0003〜0.003重量%
焼入れ性を向上させると共に粒界を強化することから、必要に応じて添加される合金元素である。B添加の効果は、0.0003重量%以上で顕著になり
、0.003重量%で飽和する。
【0012】
以上の成分・組成をもつ鋼を通常の工程でスラブにした後、熱間圧延によって所定板厚の鋼板とする。熱間圧延は、加熱温度1050〜1250℃,仕上げ温度800〜950℃及び巻取り温度500〜700℃の条件で行うことが好ましい。
熱延鋼板は、酸洗後、連続溶融めっき設備に導入される。連続溶融めっき設備では、還元性雰囲気中で表面温度450〜750℃に熱延鋼板が加熱され、鋼板表面にある異物や酸化皮膜等が除去される。
加熱温度は、鋼板表面の活性度を高め、めっき金属に対する濡れ性を改善する上で、表面温度450〜750℃に定められる。450℃未満の加熱温度では、活性化が不十分となり、溶融亜鉛めっき層の密着性が低下する。逆に、750℃を超える加熱温度では、めっき性の改善に寄与する効果が飽和し、却って過大な熱エネルギーを必要とすることから生産効率を損なう。
【0013】
【実施例】
表1に示した組成の鋼を溶製し、常法に従ってスラブにした後、熱間圧延して板厚3.2mmの熱延鋼板を得た。表1におけるAグループは、本発明に従った鋼を示す。Bグループは、何れもCuを含有していない比較鋼を示す。
熱延鋼板を酸洗した後、連続溶融めっき設備で目付け量45g/m の溶融亜鉛めっきを施した。熱間圧延及び溶融亜鉛めっきの条件を、表2に示す。
【0014】
【表1】

Figure 0003587885
【0015】
【表2】
Figure 0003587885
【0016】
溶融亜鉛めっき鋼板からJIS Z2201に規定する5号試験片を切り出し、室温における引張り試験に供した。また、JIS G0567に準拠した高温引張り試験片を作成し、試験片を600℃に15分保持した後、引張り強さ及び降伏強度を測定した。高温強度の指標としては、室温での降伏強度に対する600℃での降伏強度の比を採用した。
耐食性は、腐食試験後の最大侵食深さで評価した。すなわち、溶融亜鉛めっき鋼板から切り出された70mm×150mmの試験片を、図1に示した条件の塩水噴霧,乾燥及び湿潤(3サイクル/日)の複合サイクル腐食試験に供した。この腐食試験を240サイクル(80日)繰り返し、腐食生成物を除去した上で最大侵食深さを測定した。
調査結果を示す表3から明らかなように、試験番号B1の試験片は、室温で優れた強度及び延性を示すものの、600℃における降伏強度の低下が大きく、降伏強度比が0.6未満となっている。すなわち、高温強度に劣る材料である。また、最大侵食深さも1.04mmと深く、耐食性にも劣っている。
【0017】
【表3】
Figure 0003587885
【0018】
試験番号B2及びB3の試験片は、室温における延性の低下がみられず、降伏強度比0.6以上の要求を満足し、600℃における降伏強度の低下が小さいことから、高温強度に優れた材料といえる。しかし、最大侵食深さがB2では0.88mm,B3では0.82mmと深く、耐食性に劣っている。
これに対し、本発明に従ったAグループの試験片は、何れも室温における大きな延性の低下がみられず、600℃における降伏強度においても優れた特性を示している。また、最大侵食深さもB1〜B3に比較して浅く、耐食性に優れていることが判る。特に、Cr,V,Wを複合添加した試験片A8及びNb,Bを複合添加した試験片A13は、それぞれ降伏強度比において0.70及び0.74、最大侵食深さにおいて0.53mm及び0.48mmと示されているように、高温特性及び耐食性の何れにおいても優れた特性を備えている。
【0019】
【発明の効果】
以上に説明したように、本発明においては、製鋼工程や熱間圧延工程に特別な手段を必要とすることなく、普通鋼に近い組成で経済的に優れた耐食性耐火構造用溶融亜鉛めっき鋼板が製造される。得られためっき鋼板は、高温特性,耐食性,成形加工性等に優れていることから、広範な分野において耐火構造物材料として使用される。
【図面の簡単な説明】
【図1】本発明実施例で採用した複合サイクル腐食試験[0001]
[Industrial applications]
The present invention relates to a method for producing a hot-dip galvanized steel sheet which is used as a structure in the field of construction and the like, enables high strength of the structure and maintains sufficient strength even in a fire, and has excellent corrosion resistance.
[0002]
[Prior art]
Examples of JIS standard steel materials used for steel structures include rolled steel plates for general structures (JIS G3101), rolled steel plates for welded structures (G3106), and weather-resistant hot-rolled steel materials for welded structures (G3114). Further, as a material for a structural lightweight section steel or a structural steel pipe, a hot-rolled soft steel plate (G3132), a hot-dip galvanized steel plate (G3302), and the like are widely used.
Steel materials used as structures are required to be provided with a fire-resistant coating so that the steel material temperature does not exceed 350 ° C. in order to ensure safety in the event of a fire. However, when sufficient high-temperature strength is secured, it is possible to use a steel material without coating. Thus, various studies have been made on the use of steel materials that exhibit high proof stress even at high temperatures.
[0003]
The high-temperature strength of steel has been investigated and studied since ancient times, and is standardized for steel plates for boilers, steel plates for pressure vessels, and the like. This type of steel material has high strength when used as a boiler, pressure vessel or the like at high temperatures for a long period of time of tens of thousands of hours, that is, a steel material having high creep strength. On the other hand, the strength of the present invention is the strength within several hours at the time of fire. In this respect, the conventional high-temperature steel sheet has too high strength at room temperature, and is significantly inferior in cold workability and weldability to structural steel sheets. Therefore, steel plates for boilers, steel plates for pressure vessels, and the like are not suitable for structural steel plates.
Structural steel sheets are required to have necessary structural strength when the structure is exposed to a high-temperature atmosphere during several hours during a fire.
In Japanese Patent Application Laid-Open Nos. 4-136118 and 4-102802, Mo and V are added as steel plates for building with increased high-temperature strength. Mo and V precipitate as fine carbides in the process of exposing the steel material to a high temperature in the event of a fire, and give the steel material the required high-temperature strength. However, since expensive Mo is used as an alloy element, the manufacturing cost increases. Further, the corrosion resistance is insufficient for extending the life of the steel sheet.
[0004]
[Problems to be solved by the invention]
An object of the present invention is to provide a steel composition close to ordinary steel without using any special means in the steelmaking process to hot rolling process, having excellent high-temperature characteristics, workability in forming into a lightweight steel frame and the like, and corrosion resistance of a base material. An object of the present invention is to provide a method of manufacturing a galvanized steel sheet for a corrosion-resistant fire-resistant structure that is economically excellent. Specifically, the corrosion resistance is improved by adding P and Cu as basic components. Further, since Cu also precipitates ε-Cu at a high temperature and also has an effect of increasing the high-temperature strength, the amount of Mo added can be reduced, and the production cost is reduced.
[0005]
[Means for Solving the Problems]
In order to achieve the object, the method for producing a hot-dip galvanized steel sheet for a corrosion-resistant refractory structure according to the present invention comprises C: 0.03 to 0.20% by weight, Si: 0.1% by weight or less, and Mn: 0.3 to 0.3%. 2.0 wt%, P: 0.03-0.15 wt%, S: 0.02 wt% or less, Al: 0.005-0.1 wt%, Mo: 0.05-1.0 wt% , Cu: 0.6 to 2.0 wt% and Ni: 0.3 to 2.0 wt% only containing, after being subjected to hot rolling and pickling the steel composition the balance being substantially Fe And reducing by heating in a continuous hot-dip galvanizing facility in a temperature range of 450 to 750 ° C., and then performing hot-dip galvanizing.
The steel to be used further contains Cr: 0.05 to 1.0% by weight, V: 0.005 to 0.2% by weight, W: 0.01 to 1.0% by weight, and Ti: 0.005 to 0. One or more of 2% by weight, 0.005 to 0.2% by weight of Nb and 0.0003 to 0.003% by weight of B can be contained.
[0006]
[Action]
The present inventors have conducted various investigations and researches on chemical components, production conditions, and the like that affect the strength of a steel sheet at 600 ° C. and the corrosion resistance of a base material. As a result, it has been found that when a specified amount of Mo, Cu and P is added to a composition system close to ordinary steel, a hot-dip galvanized steel sheet for a corrosion-resistant refractory structure excellent in high-temperature strength and base metal corrosion resistance can be obtained. The ratio of the yield strength at 600 ° C. to the yield strength at room temperature of the obtained steel sheet is 0.6 or more, and the high-temperature strength does not significantly decrease even when exposed to a high-temperature atmosphere. In particular, Cu whose content is strictly defined is not only effective for improving corrosion resistance, but also precipitates as ε-Cu in steel at high temperatures to increase high-temperature strength. As a result, the amount of Mo added can be reduced, and the manufacturing cost is reduced. High temperature strength and base metal corrosion resistance are further improved by adding one or more of Cr, V, W, Ti, Nb and B.
[0007]
Hereinafter, alloying elements of steel materials used in the present invention and their contents will be described.
C: 0.03 to 0.20% by weight
It is an effective alloying element for imparting necessary strength to steel, and requires a content of 0.03% by weight or more. However, when a large amount of C exceeding 0.20% by weight is contained, workability, weldability, toughness and the like are deteriorated.
Si: 0.1% by weight or less Si is effective as a strength improving element, but is limited to 0.10% by weight or less because the effects of improving high temperature strength and corrosion resistance, which are objects of the present invention, are relatively small.
Mn: 0.3 to 2.0% by weight
It is an effective alloying element for increasing the strength of steel, and exhibits an effect at 0.30% by weight or more. However, a large content of Mn exceeding 2.0% by weight deteriorates workability.
[0008]
P: 0.03 to 0.15% by weight
It is an effective alloy element for improving the strength of steel. Further, when added in combination with Cu, it contributes to improvement of corrosion resistance. In order to obtain such an effect, it is necessary to contain 0.03% by weight or more of P. However, when a large amount of P is contained in excess of 0.15% by weight, embrittlement is promoted.
S: 0.02% by weight or less S is an essentially harmful element for base steel, and the lower the better, the better. The S content is allowed up to 0.02% by weight in the steel according to the invention.
Al: 0.005 to 0.1% by weight
Although it is an element added as a deoxidizing agent, it also has an effect of fixing N in steel as AlN. For this purpose, 0.005% by weight or more is required. However, if the Al content exceeds 0.1% by weight, inclusions increase and workability and surface quality deteriorate.
[0009]
Mo: 0.05 to 1.0% by weight
It is an important alloying element in the steel of the present invention, and improves the high-temperature strength of a steel material by forming a solid solution or precipitating carbide in the steel. Such effects become remarkable when the Mo content is 0.05% by weight or more. However, even if Mo is contained in a large amount exceeding 1.0% by weight, the effect corresponding to the increase in the expensive Mo content cannot be obtained, and rather the workability is deteriorated due to the high strength.
Cu: 0.6 to 2.0% by weight
It is an important alloying element in the steel of the present invention, and forms a solid solution in the steel or precipitates finely as ε-Cu to improve the high-temperature strength of the steel material. Further, a dense corrosion product is formed by the interaction with P, and the corrosion resistance is also improved. The effect of improving the high-temperature strength becomes remarkable when the Cu content is 0.6% by weight or more, and saturates at 2.0% by weight. Further, if a large amount of Cu is contained in excess of 2.0% by weight, embrittlement is likely to occur during hot rolling, which causes high-temperature cracking and the like.
[0010]
Ni: 0.3 to 2.0% by weight
It is also effective in preventing reduction in hot brittleness due to the addition of Cu. At this point, the Ni content is set to be substantially the same as the Cu content, that is, in the range of 0.30 to 2.0% by weight.
Cr: 0.05 to 1.0% by weight
It is an alloying element added as needed to improve the corrosion resistance of the base material, and improves the high-temperature strength. Such an effect becomes remarkable when 0.05% by weight or more of Cr is contained. However, even when a large amount of Cr exceeding 1.0% by weight is contained, the effect corresponding to the increase in Cr is not improved.
V, Ti, Nb: 0.005 to 0.2% by weight
It is an effective alloy element for improving the room temperature strength and the high temperature strength. A remarkable effect can be obtained when the content is 0.005% by weight or more, respectively. However, even if the content exceeds 0.2% by weight, an effect commensurate with the increased amount cannot be obtained. Therefore, when V, Ti, Nb, etc. are added, their contents are set in the range of 0.005 to 0.2% by weight.
[0011]
W: 0.01 to 1.0% by weight
It is an alloy element added as needed, and exhibits an effect of improving the high-temperature strength of a steel material by forming a solid solution or precipitating carbide in steel. The effect of W addition is 0.01
It appears remarkably when it is equal to or more than 10% by weight and saturates at 1.0% by weight.
B: 0.0003 to 0.003% by weight
It is an alloying element that is added as necessary because it improves hardenability and strengthens grain boundaries. The effect of the addition of B becomes significant at 0.0003% by weight or more, and saturates at 0.003% by weight.
[0012]
After the steel having the above-described components and compositions is formed into a slab by a normal process, a steel sheet having a predetermined thickness is formed by hot rolling. The hot rolling is preferably performed under the conditions of a heating temperature of 1050 to 1250C, a finishing temperature of 800 to 950C, and a winding temperature of 500 to 700C.
After pickling, the hot-rolled steel sheet is introduced into a continuous hot-dip plating facility. In the continuous hot-dip plating equipment, a hot-rolled steel sheet is heated to a surface temperature of 450 to 750 ° C. in a reducing atmosphere to remove foreign substances and oxide films on the steel sheet surface.
The heating temperature is set at a surface temperature of 450 to 750 ° C. in order to increase the activity of the steel sheet surface and improve the wettability to the plated metal. If the heating temperature is lower than 450 ° C., the activation becomes insufficient, and the adhesion of the hot-dip galvanized layer is reduced. Conversely, at a heating temperature exceeding 750 ° C., the effect of contributing to the improvement of the plating property is saturated, and rather excessive heat energy is required, thereby impairing the production efficiency.
[0013]
【Example】
A steel having the composition shown in Table 1 was melted, formed into a slab according to a conventional method, and then hot-rolled to obtain a hot-rolled steel sheet having a thickness of 3.2 mm. Group A in Table 1 indicates steel according to the invention. Group B shows comparative steels each containing no Cu.
After pickling the hot-rolled steel sheet, hot-dip galvanizing was applied with a basis weight of 45 g / m 2 in a continuous hot-dip plating facility. Table 2 shows the conditions of hot rolling and hot dip galvanizing.
[0014]
[Table 1]
Figure 0003587885
[0015]
[Table 2]
Figure 0003587885
[0016]
A No. 5 test piece specified in JIS Z2201 was cut out from the hot-dip galvanized steel sheet and subjected to a tensile test at room temperature. Further, a high-temperature tensile test piece in accordance with JIS G0567 was prepared, and after maintaining the test piece at 600 ° C. for 15 minutes, the tensile strength and the yield strength were measured. As an index of the high temperature strength, the ratio of the yield strength at 600 ° C. to the yield strength at room temperature was adopted.
The corrosion resistance was evaluated by the maximum erosion depth after the corrosion test. That is, a 70 mm × 150 mm test piece cut out from a hot-dip galvanized steel sheet was subjected to a combined cycle corrosion test of salt spray, drying and wetness (3 cycles / day) under the conditions shown in FIG. This corrosion test was repeated for 240 cycles (80 days), and the maximum erosion depth was measured after removing corrosion products.
As is clear from Table 3 showing the inspection results, although the test piece of Test No. B1 shows excellent strength and ductility at room temperature, the yield strength at 600 ° C has a large decrease, and the yield strength ratio is less than 0.6. Has become. That is, the material is inferior in high-temperature strength. Further, the maximum erosion depth is as deep as 1.04 mm, and the corrosion resistance is poor.
[0017]
[Table 3]
Figure 0003587885
[0018]
The test pieces of Test Nos. B2 and B3 did not show a decrease in ductility at room temperature, satisfied the requirement of a yield strength ratio of 0.6 or more, and were excellent in high-temperature strength because the decrease in yield strength at 600 ° C. was small. It can be said that it is a material. However, the maximum erosion depth is as deep as 0.88 mm for B2 and 0.82 mm for B3, and is inferior in corrosion resistance.
On the other hand, the test pieces of Group A according to the present invention did not show any significant decrease in ductility at room temperature, and exhibited excellent properties in yield strength at 600 ° C. Also, the maximum erosion depth is shallower than B1 to B3, which indicates that the erosion resistance is excellent. In particular, the test piece A8 to which Cr, V, and W were added in combination and the test piece A13 to which Nb and B were added in combination have a yield strength ratio of 0.70 and 0.74 and a maximum pit depth of 0.53 mm and 0, respectively. As shown by .48 mm, it has excellent characteristics in both high-temperature characteristics and corrosion resistance.
[0019]
【The invention's effect】
As described above, in the present invention, a hot-dip galvanized steel sheet for a corrosion-resistant refractory structure that is economically excellent in composition close to ordinary steel without requiring any special means in the steelmaking process or hot rolling process. Manufactured. The resulting plated steel sheet has excellent high-temperature properties, corrosion resistance, formability, and the like, and is therefore used as a refractory structural material in a wide range of fields.
[Brief description of the drawings]
FIG. 1 shows a combined cycle corrosion test employed in an embodiment of the present invention.

Claims (2)

C:0.03〜0.20重量%,Si:0.1重量%以下,Mn:0.3〜2.0重量%,P:0.03〜0.15重量%,S:0.02重量%以下,Al:0.005〜0.1重量%,Mo:0.05〜1.0重量%,Cu:0.6〜2.0重量%及びNi:0.3〜2.0重量%を含み、残部が実質的にFeからなる組成の鋼に熱間圧延及び酸洗を施した後、連続溶融亜鉛めっき設備で450〜750℃の温度範囲で加熱還元し、次いで溶融亜鉛めっきを施すことを特徴とする耐食性耐火構造用溶融亜鉛めっき鋼板の製造方法。C: 0.03 to 0.20% by weight, Si: 0.1% by weight or less, Mn: 0.3 to 2.0% by weight, P: 0.03 to 0.15% by weight, S: 0.02 % By weight, Al: 0.005 to 0.1% by weight, Mo: 0.05 to 1.0% by weight, Cu: 0.6 to 2.0% by weight, and Ni: 0.3 to 2.0% by weight. % only contains, after the balance has been subjected to hot rolling and pickling the steel composition consisting essentially Fe, and heated and reduced in a temperature range of 450 to 750 ° C. in a continuous galvanizing line, followed by galvanizing A method for producing a hot-dip galvanized steel sheet for a corrosion-resistant refractory structure, the method comprising: C:0.03〜0.20重量%,Si:0.1重量%以下,Mn:0.3〜2.0重量%,P:0.03〜0.15重量%,S:0.02重量%以下,Al:0.005〜0.1重量%,Mo:0.05〜1.0重量%,Cu:0.6〜2.0重量%及びNi:0.3〜2.0重量%を含み、更にCr:0.05〜1.0重量%,V:0.005〜0.2重量%,W:0.01〜1.0重量%,Ti:0.005〜0.2重量%,Nb:0.005〜0.2重量%及びB:0.0003〜0.003重量%の1種又は2種以上を含み、残部が実質的にFeからなる組成の鋼に熱間圧延及び酸洗を施した後、連続溶融亜鉛めっき設備で450〜750℃の温度範囲で加熱還元し、次いで溶融亜鉛めっきを施すことを特徴とする耐食性耐火構造用溶融亜鉛めっき鋼板の製造方法。C: 0.03 to 0.20% by weight, Si: 0.1% by weight or less, Mn: 0.3 to 2.0% by weight, P: 0.03 to 0.15% by weight, S: 0.02 % By weight, Al: 0.005 to 0.1% by weight, Mo: 0.05 to 1.0% by weight, Cu: 0.6 to 2.0% by weight, and Ni: 0.3 to 2.0% by weight. %: Cr: 0.05 to 1.0% by weight, V: 0.005 to 0.2% by weight, W: 0.01 to 1.0% by weight, Ti: 0.005 to 0.2% wt%, Nb: 0.005 to 0.2 wt% and B: 0.0003 to 0.003 wt% observed including one or more of the heat in the steel composition the balance being substantially Fe After hot-rolling and pickling, it is heated and reduced in a continuous hot-dip galvanizing facility at a temperature in the range of 450 to 750 ° C., and then hot-dip galvanized. Manufacturing method of hot-dip galvanized steel sheet.
JP17766894A 1993-07-07 1994-07-06 Manufacturing method of hot-dip galvanized steel sheet for corrosion-resistant refractory structure Expired - Fee Related JP3587885B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17766894A JP3587885B2 (en) 1993-07-07 1994-07-06 Manufacturing method of hot-dip galvanized steel sheet for corrosion-resistant refractory structure

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP16805693 1993-07-07
JP5-168056 1993-07-07
JP17766894A JP3587885B2 (en) 1993-07-07 1994-07-06 Manufacturing method of hot-dip galvanized steel sheet for corrosion-resistant refractory structure

Publications (2)

Publication Number Publication Date
JPH0770647A JPH0770647A (en) 1995-03-14
JP3587885B2 true JP3587885B2 (en) 2004-11-10

Family

ID=26491911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17766894A Expired - Fee Related JP3587885B2 (en) 1993-07-07 1994-07-06 Manufacturing method of hot-dip galvanized steel sheet for corrosion-resistant refractory structure

Country Status (1)

Country Link
JP (1) JP3587885B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109865742A (en) * 2019-02-27 2019-06-11 江苏省沙钢钢铁研究院有限公司 A kind of production method of 440MPa grades of thin gauge hot rolling acid-cleaning Automobile Plate

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4610272B2 (en) * 2004-09-22 2011-01-12 日新製鋼株式会社 Method for producing Zn-Al-Mg alloy-plated steel sheet excellent in resistance to molten metal embrittlement cracking
CN112813352A (en) * 2021-01-21 2021-05-18 江苏沪之通金属制品有限公司 Corrosion-resistant metal material and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109865742A (en) * 2019-02-27 2019-06-11 江苏省沙钢钢铁研究院有限公司 A kind of production method of 440MPa grades of thin gauge hot rolling acid-cleaning Automobile Plate

Also Published As

Publication number Publication date
JPH0770647A (en) 1995-03-14

Similar Documents

Publication Publication Date Title
JP5228062B2 (en) High strength thin steel sheet with excellent weldability and method for producing the same
JP2005528519A5 (en)
JP2010018856A (en) High-strength automobile component excellent in corrosion resistance after coating, and plated steel sheet for hot press
KR20180128977A (en) METHOD FOR MANUFACTURING TWIP STEEL SHEET HAVING AUSTENITE MATRIX
KR20220016491A (en) Method for manufacturing sheet metal parts from sheet metal products with anti-corrosion coatings
JP3587885B2 (en) Manufacturing method of hot-dip galvanized steel sheet for corrosion-resistant refractory structure
JP2003049239A (en) High strength galvanized steel sheet having excellent workability and production method therefor
JP2007270341A (en) Method for producing hot dip galvanized steel sheet
JPH0472013A (en) Manufacture of two phase stainless steel having excellent corrosion resistance to concentrated sulfuric acid
JP2003105493A (en) Si-CONTAINING HIGH STRENGTH GALVANIZED STEEL SHEET HAVING EXCELLENT CORROSION RESISTANCE AND DUCTILITY, AND PRODUCTION METHOD THEREFOR
JP3464289B2 (en) Method for producing hot-dip Zn-Al alloy-plated steel sheet for fire-resistant structure with excellent corrosion resistance
JP3267324B2 (en) Manufacturing method of high tensile galvanized steel sheet for fire resistance
JP2001271148A (en) HIGH Al STEEL SHEET EXCELLENT IN HIGH TEMPERATURE OXIDATION RESISTANCE
JP3260232B2 (en) Manufacturing method of coastal high weather resistant clad steel sheet
JP3464288B2 (en) Manufacturing method of hot-dip aluminized steel sheet for fire-resistant structure with excellent corrosion resistance
JP3347152B2 (en) Method for producing cold-rolled high-strength hot-dip galvanized steel sheet with excellent resistance to pitting corrosion
JP3027011B2 (en) Chromium-containing steel sheet with excellent corrosion resistance and workability
JP3392154B2 (en) Method for producing high-strength hot-dip Zn-A1 alloy coated steel sheet for fire resistance
JP3048278B2 (en) High-strength hot-rolled original sheet alloyed hot-dip galvanized steel sheet with excellent weld fatigue properties and method for producing the same
JP4458610B2 (en) Hot-dip aluminized steel sheet with excellent high-temperature oxidation resistance
JP3267325B2 (en) Method for producing high-strength hot-dip aluminized steel sheet for fire resistance
JP3105533B2 (en) Method for producing hot-dip galvanized steel sheet with excellent bake hardenability and pitting corrosion resistance
JP3550721B2 (en) Method for producing hot-rolled steel strip for building with excellent fire resistance and toughness
JPH09263905A (en) Soft austenitic stainless steel
JP2981932B2 (en) Manufacturing method of coastal high weather resistant clad steel sheet

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040810

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040811

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080820

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090820

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100820

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110820

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120820

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120820

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130820

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees