JPH02228601A - Antireflection film for silicon - Google Patents

Antireflection film for silicon

Info

Publication number
JPH02228601A
JPH02228601A JP1048827A JP4882789A JPH02228601A JP H02228601 A JPH02228601 A JP H02228601A JP 1048827 A JP1048827 A JP 1048827A JP 4882789 A JP4882789 A JP 4882789A JP H02228601 A JPH02228601 A JP H02228601A
Authority
JP
Japan
Prior art keywords
layer
silicon
reflection
optical thickness
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1048827A
Other languages
Japanese (ja)
Inventor
Yukihiro Morimoto
森本 幸博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP1048827A priority Critical patent/JPH02228601A/en
Publication of JPH02228601A publication Critical patent/JPH02228601A/en
Pending legal-status Critical Current

Links

Landscapes

  • Surface Treatment Of Optical Elements (AREA)

Abstract

PURPOSE:To prevent the reflection on the surface of silicon over a wide band by setting the optical thicknesses of a 1st layer consisting of calcium fluoride, a 2nd layer consisting of zinc sulfide and a 3rd layer consisting of antimony sulfide so as to resemble to a change in the refractive index of multilayered antireflection films of a Chebyshev type. CONSTITUTION:The 1st layer, counted from an oil side, which consists of the calcium fluoride and has the optical thickness of 0.24 times a reference wavelength lambda0, the 2nd layer which consists of the zinc sulfide and has 0.21 lambda0 optical thickness and the 3rd layer which consists of the antimony sulfide and has 0.09 lambda0 optical thickness are provided. The refractive indices and thicknesses are so set as to resemble the refractive indices and thicknesses of the multilayered antireflection film of the Chebyshev type. The reflected light rays of the respective boundary faces of the air and the 1st layer, the 1st layer and the 2nd layer, the 2nd layer and the 3rd layer, and the 3rd layer and silicon are negated by interference with each other and the reflections are decreased over the wide band. The reflections on the silicon surfaces are decreased in this way in a 3 to 5mum wavelength range.

Description

【発明の詳細な説明】 (帝業上の利用分野〕 この発明は、赤外光学装置のレンズ等の光学素子に用い
られるシリコンの表面における反射を広帯域に、たきえ
ば波長範囲3〜5μmにわたって防止するシリコン用反
射防止嘆に関するものである。
Detailed Description of the Invention (Field of Application) This invention prevents reflection on the surface of silicon used for optical elements such as lenses of infrared optical devices over a wide band, for example, over a wavelength range of 3 to 5 μm. This article concerns anti-reflective coatings for silicone.

〔従来の技術〕[Conventional technology]

赤外光学装置におけるレンズ等の光学素子に用いられる
シリコンは屈折率が高(、その表面における反射は大き
い、とのtめ、信号光の減少が大きく、また光学素子間
の多重反射によるフレアやゴーストが大きいので、赤外
光学系の光学特性は著しく劣化する。そこで、シリコン
の表面には上記反射を防止する反射防止嘆が設けられて
いる。
Silicon, which is used for optical elements such as lenses in infrared optical devices, has a high refractive index (because the reflection on its surface is large), the reduction in signal light is large, and it also causes flares and flares due to multiple reflections between optical elements. Since the ghost is large, the optical characteristics of the infrared optical system are significantly deteriorated. Therefore, an anti-reflection layer is provided on the silicon surface to prevent the above-mentioned reflection.

光屈折率が光学素子の屈折率の平方根に等しく。The optical refractive index is equal to the square root of the refractive index of the optical element.

光学的厚さがM単波長″A6 のにである単層嘆)場合
、22!気−単層喚問の境界面における反射光と単層嘆
−光学素子間の境界面における反射光は、撮幅が等しく
位相が逆相となる。このため、上記反射光状、干渉によ
り打消しあうので、基準波長λ、1/Cおける反射率が
0%となる。しかし、波長範囲3〜Samと広い帯域を
使用する赤外光学装置においては、単層嘆では反射防止
が十分でなく。
In the case of a single layer whose optical thickness is M single wavelength "A6", the reflected light at the interface between the optical element and the optical element and the reflected light at the interface between the optical element and the optical element are The widths are equal and the phase is opposite. Therefore, the reflected light shape and interference cancel each other out, so the reflectance at the reference wavelength λ, 1/C becomes 0%. However, the wavelength range is wide from 3 to Sam. In infrared optical devices that use wavelength bands, a single layer is not sufficient to prevent reflection.

多層からなる反射防止嘆が必要である。Multi-layer anti-reflection coating is required.

広帯域にわ九って反射を防止する多層からなるンリコン
用反射防止嘆として、マグローヒルプッタf)7パ= 
−(Mcgraw −hill fook aomps
ny)から1g78年発行の「光学ハンドブック(Ha
ndbook of 0ptics)JのPI−49に
McGraw-Hilputta f) 7P is used as an anti-reflection solution for non-contact controllers consisting of multiple layers that prevent reflection in a wide band.
-(Mcgraw -hill fook aomps
Optics Handbook (Ha
ndbook of 0ptics) J's PI-49.

各層の光学的厚さが入な基準波長λ0のK であり、屈
折率が空気側から1.38. 1.8g、  2.58
である3層反射防止嘆が提示されている。しかし。
The optical thickness of each layer is K at the reference wavelength λ0, and the refractive index is 1.38 from the air side. 1.8g, 2.58
A three-layer anti-reflective layer is presented. but.

上記屈折率を有し赤外光に対して透過性を示す材料は存
在せず、実際には、屈折率が上記1直の近傍である材料
を用いねばならなかつ念、たとえば。
There is no material that has the above-mentioned refractive index and is transparent to infrared light, and in reality, it is necessary to use a material whose refractive index is close to the above-mentioned 1 line.

$1層としてはフッ化ナトリウム、クリオライト。The $1 layer is sodium fluoride and cryolite.

フッ化マグネシウム、フッ化カルシウムが、第2層とし
てはフッ化鉛、硫化亜鉛が、第3層としては硫化アンチ
モン、セレン化亜鉛である。
Magnesium fluoride and calcium fluoride are used as the second layer, lead fluoride and zinc sulfide are used as the second layer, and antimony sulfide and zinc selenide are used as the third layer.

しかし、フッ化ナトリウムやクリオライトやフッ化鉛は
吸湿性があり、信頼性に問題がある。まな、セレン化亜
鉛は毒性があるという問題がある。
However, sodium fluoride, cryolite, and lead fluoride are hygroscopic and have reliability problems. However, zinc selenide has the problem of being toxic.

さらに、フッ化マグネシウムの場合は、嘆の強度を高く
するなめ高温で蒸着する必要があるが、このように製作
され九フッ化マグネシウム゛暉は、51張係数が大きい
九め応力が大きく、剥離やクラックが生じやすいという
問題がある。
Furthermore, in the case of magnesium fluoride, it is necessary to vapor-deposit it at a high temperature in order to increase its strength, but magnesium nonafluoride produced in this way has a high tensile coefficient of 51, has a large stress, and is prone to peeling. There is a problem that cracks are likely to occur.

との友め、外層の光学的厚さが基準波長λ0の8と等し
い従来のシリコン用反射防止嘆け3図4に示すように、
製作性、信頼性および安全性の観点から選択され九フフ
化カルシウム、硫化亜鉛及び硫化アンチモンで構成され
てい念。
As shown in Figure 4, the optical thickness of the outer layer is equal to 8 of the reference wavelength λ0, as shown in Figure 4.
It is selected from the viewpoint of manufacturability, reliability and safety, and is composed of calcium nonafulfide, zinc sulfide and antimony sulfide.

図において、C5)はフッ化カルシウムからなる第1層
、(6)は硫化亜鉛からなる第2層、(7)は硫化アン
チモンからなる第3層であり、各層の光学的厚さは入な
λo / 4  と等しい。(4)は光学素子として用
いられるシリコンである。
In the figure, C5) is the first layer made of calcium fluoride, (6) is the second layer made of zinc sulfide, and (7) is the third layer made of antimony sulfide, and the optical thickness of each layer is different. Equal to λo/4. (4) is silicon used as an optical element.

〔発明が解決しようとする!l!題〕[Invention tries to solve! l! Title]

以上のように光学的厚さが基準波長λ0のン4であるフ
ッ化カルシウム、硫化亜鉛8および硫化アンチモンから
構成されてい念従来のシリコン用反射防止嘆け、第5閏
に示す残留反射率の波長依存性を有しており、波長範囲
3〜5μmにおける平均残留反射率は1.8%であり、
その反射防止の効果は十分でないという問題点かあっ乏
As mentioned above, the optical thickness is composed of calcium fluoride, zinc sulfide, and antimony sulfide whose optical thickness is 4 at the reference wavelength λ0. The average residual reflectance in the wavelength range of 3 to 5 μm is 1.8%,
The problem is that the anti-reflection effect is not sufficient.

この発明は上記の問題点を解決するtめになされたもの
で、Il造性、信頼性あるいは安全性の観点から選択さ
れたフッ化カルシウム、硫化亜鉛。
This invention was made to solve the above problems, and calcium fluoride and zinc sulfide are selected from the viewpoints of ease of production, reliability, and safety.

および硫化アンチモンからなる層嘆で、波長範囲3〜S
μmにおいてシリコン表面の反射を低減することを目的
とする。
A layer consisting of antimony sulfide and a wavelength range of 3 to S.
The purpose is to reduce the reflection of the silicon surface in μm.

〔原題を解決するための手段〕[Means to solve the original problem]

この発明に係るシリコン用反射防止嘆は、フッ化カルシ
ウムからな9光学的厚さが基準波長λ0の0.24倍で
ある空気側から数えて第1層と、硫化亜鉛からな抄光学
的厚さが0.21λ0 である第2層と、硫化アンチモ
ンからなり光学的厚さがσ、09λ0 である第3層を
備えたものである。
The anti-reflection layer for silicon according to the present invention has a first layer counted from the air side whose nine optical thickness is 0.24 times the reference wavelength λ0 made of calcium fluoride, and a first layer made of zinc sulfide whose optical thickness is 0.24 times the reference wavelength λ0. The second layer has a thickness of 0.21λ0, and the third layer is made of antimony sulfide and has an optical thickness of σ, 09λ0.

〔作用〕[Effect]

この発明におけるシリコン用反射防止嘆は屈折率ト厚さ
がチエビシエフ形の多層反射防止嘆と類似するように設
定されているので、空気と第1層。
The silicon antireflection layer in this invention has a refractive index and a thickness similar to that of the Tievishev-type multilayer antireflection layer, so that the air and the first layer are similar.

第1層と第2層、1g2層と第3層および、第3層とシ
リコンとの各境界面からの反射光が干渉により打消しあ
って広W!咳にわたり反射を低減することができる。
The reflected light from each interface between the first layer and the second layer, the 1g2 layer and the third layer, and the third layer and silicon cancel each other out due to interference, resulting in a wide W! Coughing can reduce reflexes.

〔実権例〕[Example of real power]

以下、この発明の実施例を図について説明する。 Embodiments of the present invention will be described below with reference to the drawings.

91図は、この−実権例を示す構成図である。FIG. 91 is a configuration diagram showing an example of this real power.

図において、(」)はフッ化カルシウムからなる第1層
、C2)は硫化亜鉛からなる第2層、(3)は硫化アン
チモンからなる第3層であり、(4)は光学素子として
用いられるシリコンである。第1層(1)、第2層(2
)、および第3層(3)の光学的厚さは、基準波長λo
(It対しそれぞれ、Q、24λa、0.21λG、a
、a9λ0 である。
In the figure, ('') is the first layer made of calcium fluoride, C2) is the second layer made of zinc sulfide, (3) is the third layer made of antimony sulfide, and (4) is used as an optical element. It's silicon. 1st layer (1), 2nd layer (2
), and the optical thickness of the third layer (3) is the reference wavelength λo
(For It, Q, 24λa, 0.21λG, a, respectively
, a9λ0.

第2色は、シリコン用反射防止嘆の空気側からシリコン
へかけての屈折率の変化を示す図である。
The second color is a diagram showing the change in refractive index from the air side of the silicon antireflection layer to the silicon.

横軸は、22気と第1層(1)の境界面からの光学的厚
さであり0反射防止嗅全体の厚さで規格化している4、
九て軸は屈折率である5図において、実線が第1図に示
したこの発明によるシリコン用反射防止嘆の場合で、破
線が従来のシリコン用反射防止嘆の場合で、−点@線が
反射を防止する帯域が中心波長の50%であるチエビシ
エフ形のシリコン用3/i反射防止漠の場合である、い
ずれの場合も。
The horizontal axis is the optical thickness from the interface between the 22 Qi and the first layer (1), which is normalized to the thickness of the entire 0 anti-reflection layer4.
In Fig. 5, the nine-point axis is the refractive index, the solid line is the case of the anti-reflection film for silicon according to the present invention shown in Fig. 1, the broken line is the case of the conventional anti-reflection film for silicon, and the - point @ line is the case of the anti-reflection film for silicon according to the present invention shown in Fig. 1. In both cases, this is the case for a 3/i antireflection band for silicon of the Tievisiev type in which the antireflection band is 50% of the center wavelength.

空気と第1層の境界面から各層の中心面までの厚さとそ
の層の屈折率をプロットし、直線で近供している5図よ
抄、従来のシリコン用反射防止嘆の屈折率の変化に比べ
、この発明によるシリコン用反射防正嘆の屈折率の変化
は、チエビシエフ形の反射防止嗅の屈折率の変化に類似
の度合いの高いことがわかる、 チエビシエフ形の反射防止暎は、各層の光学的厚さがλ
o / 4  で等しいだけでなり0g!気−第1層間
の境界面における振幅反射率と第3層シリコン間の境界
面における振幅反射率が等しく、かつ。
The thickness from the interface between the air and the first layer to the center plane of each layer and the refractive index of that layer are plotted, and the change in refractive index of the conventional anti-reflection film for silicon is shown in Figure 5, which is shown as a straight line. In comparison, it can be seen that the change in the refractive index of the silicone anti-reflection layer according to the present invention is highly similar to the change in the refractive index of the Tievishiev-type anti-reflection layer. target thickness is λ
Just being equal at o/4 makes it 0g! The amplitude reflectance at the interface between the air and the first layer is equal to the amplitude reflectance at the interface between the third layer silicon, and.

@1層−第2層間の境界面における振幅反射率と第2層
・第3層間の境界面における振幅反射率が等しくなるよ
うに各層の屈折率が関係付けられているので、基準波長
λ0の光に対して空気−第1層間の境界面における反射
光と第3層−シリコン間の境界面における反射光が干渉
により打消し合うとともに第1層−第2層間の境界面に
おける反射光と第2199・第3層間の境界面における
反射光が干渉により打消し合って反射率が0%となるだ
けでな(、基準波長λ0 を中心に広い波長範囲の光に
対しても各境界面からの反射光が干渉し打消し合うこと
ができる。このため、チエビシエフ形の反射防止鷹は広
帯域にわたって残留反射率を十分小さくできる。一方、
この発明によるシリコン用反射防止嘆においては、各境
界の振幅反射率は等しくないが、各層の光学的厚さをλ
Q/4 から変えてその屈折率の変化をチエビシエフ形
の反射防止嘆の屈折率の変化に類似させているので、広
帯域にわたって反射を防止することができる。
Since the refractive index of each layer is related so that the amplitude reflectance at the interface between the first layer and the second layer is equal to the amplitude reflectance at the interface between the second layer and the third layer, the reference wavelength λ0 The light reflected at the interface between the air and the first layer and the light reflected at the interface between the third layer and silicon cancel each other out due to interference, and the light reflected at the interface between the first layer and the second layer and the light reflected at the interface between the first and second layers cancel each other out. 2199 - Not only does the reflected light at the interface between the third layers cancel each other out due to interference, resulting in a reflectance of 0% (but also for light in a wide wavelength range centered around the reference wavelength λ0, The reflected light can interfere and cancel each other out.For this reason, the Chiebishiev type anti-reflection hawk can reduce the residual reflectance sufficiently over a wide band.On the other hand,
In the antireflection layer for silicon according to the present invention, the amplitude reflectance of each boundary is unequal, but the optical thickness of each layer is λ
Since the change in refractive index is changed from Q/4 to be similar to the change in refractive index of a Tievishev-type antireflection filter, reflection can be prevented over a wide band.

第3図は、基準波長λ0 を115μmとした場合のこ
の発明忙よるシリコン用反射防止嘆の残留反射率の液長
依存性である5図より、広帯域にわたってシリコンの表
面における反射を防止できるときがわかる。特に、波長
箱12113〜1gwにおける平均残留反射率は0.1
8%と非常忙低い。
Figure 3 shows the liquid length dependence of the residual reflectance of the silicon anti-reflection method according to the present invention when the reference wavelength λ0 is 115 μm. Recognize. In particular, the average residual reflectance in the wavelength box 12113~1gw is 0.1
Very busy at 8%.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、広帯域にわtってシ
リコンの表面における反射を防止できるチエビシエフ形
の多層反射防止嘆の屈折率の変化に類似するように、フ
ッ化カルシウムからなる第1層、硫化亜鉛からなる第2
層、および、硫化アンチモンからなる第3層の光学的厚
さを設定し友もので、広帯域、九とえば、波長範囲3〜
5μmにわ九ってシリコンの表面における反射を防止す
る効果を有している。
As described above, according to the present invention, the first layer made of calcium fluoride is similar to the change in the refractive index of the Tievishev-type multilayer antireflection layer that can prevent reflection on the surface of silicon over a wide band. layer, a second layer consisting of zinc sulfide
The optical thickness of the layer and the third layer of antimony sulfide can be set to provide a broadband, e.g., wavelength range of 3 to 3
A thickness of 5 μm has the effect of preventing reflection on the silicon surface.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例を示す構成図、第2図はこ
の発明の一実施例における反射防正模を構成する各層の
屈折率を示す閏、第3図はこの発明の一実施例における
反射防止嘆の残留反射率の波長依存性を示す図、第4図
は従来のシリコン用反射防止嘆を示す図、第S図は従来
のシリコン用反射防止嘆の残留反射率の波長依存性を示
す図である。 図において、(0はフッ化カルシウムからなる第1層、
(2)は硫化亜鉛からなる第27i[F、(3)は硫化
アンチモ/からなる第3層、(4)はシリコンである。 なお、各図中同一符号は同一または相当部分を示す。 1:フ・q化カルシウムからなう邦1層21歳イヒ!4
台が6なる葛2眉 3:E&イヒアンチ七ンfJ1らなろ第314:シリコ
Fig. 1 is a block diagram showing an embodiment of the present invention, Fig. 2 is a leap diagram showing the refractive index of each layer constituting the anti-reflection panel in an embodiment of the invention, and Fig. 3 is an embodiment of the invention. Figure 4 is a diagram showing the wavelength dependence of the residual reflectance of the anti-reflection layer in the example, Figure 4 is a diagram showing the conventional anti-reflection layer for silicon, and Figure S is the wavelength dependence of the residual reflectance of the conventional anti-reflection layer for silicon. FIG. In the figure, (0 is the first layer made of calcium fluoride,
(2) is the 27i[F made of zinc sulfide, (3) is the third layer made of antimony sulfide, and (4) is silicon. Note that the same reference numerals in each figure indicate the same or corresponding parts. 1: A 21-year-old Japanese 1st layer made of calcium chloride! 4
Kuzu 2 eyebrows 3: E & Ihianti 7in fJ1 Naro No. 314: Silicon

Claims (1)

【特許請求の範囲】[Claims] フッ化カルシウムからなり光学的厚さが基準波長λ_0
の0.24倍である空気側から数えて第1層と、硫化亜
鉛からなり光学的厚さが0.21λ_0である第2層と
、硫化アンチモンからなり光学的厚さが0.09λ_0
である第3層を備えたことを特徴とするシリコン用反射
防止膜。
Made of calcium fluoride, optical thickness is reference wavelength λ_0
The first layer counting from the air side is 0.24 times as large as
An antireflection film for silicon, comprising a third layer.
JP1048827A 1989-03-01 1989-03-01 Antireflection film for silicon Pending JPH02228601A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1048827A JPH02228601A (en) 1989-03-01 1989-03-01 Antireflection film for silicon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1048827A JPH02228601A (en) 1989-03-01 1989-03-01 Antireflection film for silicon

Publications (1)

Publication Number Publication Date
JPH02228601A true JPH02228601A (en) 1990-09-11

Family

ID=12814064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1048827A Pending JPH02228601A (en) 1989-03-01 1989-03-01 Antireflection film for silicon

Country Status (1)

Country Link
JP (1) JPH02228601A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009038342A (en) * 2007-05-31 2009-02-19 Schott Ag Interference filter and method of manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009038342A (en) * 2007-05-31 2009-02-19 Schott Ag Interference filter and method of manufacturing the same

Similar Documents

Publication Publication Date Title
US20190383972A1 (en) Layer system and optical element comprising a layer system
US3922068A (en) Multi-layer anti-reflection coating with high and low index material
US4997241A (en) Multi-layered antireflection film preventing reflection at two wavelength regions
Musset et al. IV multilayer antireflection coatings
US3235397A (en) Reflection-reducing arrangements
JP3399159B2 (en) Optical film and optical element for infrared region
JPS6177002A (en) Optical antireflecting film
JPS5498257A (en) Aspherical antireflection film
JPH02228601A (en) Antireflection film for silicon
JP3894107B2 (en) Infrared antireflection film
JP2566634B2 (en) Multi-layer antireflection film
JP2003149434A (en) Optical film for ir region and optical element
JP3894108B2 (en) Infrared antireflection film
JPH03215803A (en) Band-pass filter
JP3034017B2 (en) Surface high reflection mirror
JPS5811901A (en) Multilayered semipermeable mirror
JPH02135401A (en) Antireflection coating for germanium
TWI735258B (en) Coating element for drone lens
JP2725043B2 (en) Broadband half mirror
JPH06250001A (en) Multilayer antireflection film and optical system provided with the same
JPH03129301A (en) Multilayered antireflection film
JPS62127701A (en) Antireflection film
JP2915513B2 (en) Anti-reflective coating
JPS62116901A (en) Antireflection film
JPH02250001A (en) Antireflection film