JPH02228088A - Quantum well laser - Google Patents

Quantum well laser

Info

Publication number
JPH02228088A
JPH02228088A JP4802189A JP4802189A JPH02228088A JP H02228088 A JPH02228088 A JP H02228088A JP 4802189 A JP4802189 A JP 4802189A JP 4802189 A JP4802189 A JP 4802189A JP H02228088 A JPH02228088 A JP H02228088A
Authority
JP
Japan
Prior art keywords
quantum
quantum well
level
well structure
levels
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4802189A
Other languages
Japanese (ja)
Inventor
Shinji Takano
信司 高野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP4802189A priority Critical patent/JPH02228088A/en
Publication of JPH02228088A publication Critical patent/JPH02228088A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/3418Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers using transitions from higher quantum levels

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To improve injection efficiency of carriers into a quantum level by using a semiconductor layer having the same energy as at least one of quantum levels of a quantum well structure except the lowest one, and utilizing tunnel effect. CONSTITUTION:A quantum well active layer is constructed from a first quantum well structure 50, a second semiconductor layer 90 having on both sides of the first well structure 50 the same energy level as a quantum level 52 on the high energy side of the first quantum well structure, and a barrier layer 61 separating the first quantum well structure 50 and the second semiconductor layer 90. The first quantum well structure 50 has quantum levels 51, 52 whose energy gaps are 0.8eV, 0.92eV respectively. A structure, having the same energy level as at least one quantum level except the lowest one, is caused to be adjacent to the quantum well with the spacing therebetween being such that tunnel effect can occur there, so that the state density of this high energy side levels is increased. Thus, carrier injection efficiency for the lowest quantum level 51 can be increased.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は光通信、光演算あるいは光計測装置の光源とし
て用いられる量子井戸レーザに関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a quantum well laser used as a light source for optical communication, optical calculation, or optical measurement equipment.

(従来の技術) 近年、有機金属気相エピタキシー(MOCV D)技術
、分子線エピタキシー(MBE)技術などの薄膜結晶成
長技術の急速な進展に伴い、単原子層の厚さの精度で急
峻な組成変化を持った良質な半導体へテロ接合界面が製
作されるようになった。
(Conventional technology) In recent years, with the rapid progress of thin film crystal growth technologies such as metal organic vapor phase epitaxy (MOCVD) technology and molecular beam epitaxy (MBE) technology, it has become possible to achieve steep compositions with the precision of a single atomic layer thickness. High-quality semiconductor heterojunction interfaces with variations have now been manufactured.

これらへテロ接合によって形成されるポテンシャル井戸
構造、超格子構造はバルク半導体に比べて特異な光学特
性、電気特性を示しデバイス応用への研究が活発化して
いる。
The potential well structure and superlattice structure formed by these heterojunctions exhibit unique optical and electrical properties compared to bulk semiconductors, and research into device applications is intensifying.

量子井戸層を活性層とする量子井戸構造半導体レーザは
このような量子サイズ効果によって生じる高い状態密度
をもつ量子準位間の電子遷移を利用したもので、従来の
ダブルへテロ接合半導体レーザに比べ ■低発振しきい
電流■温度安定性■高い発光効率■緩和振動周波数の増
大■スペクトル線幅、チャーピングの低減など、多くの
特徴を有していることが報告されている。これらの優れ
た特性は2次元平面内に電子および正孔を局在させたた
めに生じた量子力学的効果による。
A quantum well structure semiconductor laser with a quantum well layer as an active layer utilizes electronic transitions between quantum levels with a high density of states caused by such a quantum size effect, and is more efficient than a conventional double heterojunction semiconductor laser. It has been reported that it has many characteristics such as ■low oscillation threshold current ■temperature stability ■high luminous efficiency ■increased relaxation oscillation frequency■reduced spectral line width and chirping. These excellent properties are due to quantum mechanical effects caused by localizing electrons and holes within a two-dimensional plane.

(発明が解決しようとする課題) しかしこのように薄い活性層をもつレーザ構造では、量
子井戸層厚の減少と共に光閉じ込め係数は著しく減少し
、従ってしきい電流密度は増加してしまう。量子井戸レ
ーザのこのような欠点を解決する方法としては、量子井
戸を多重化し光閉じ込め係数を増加させた多重量子井戸
(Mu l t IQuantua+ l/elf)レ
ーザや光−キャリア分離閉じ込め構造(Separat
e Conf’1nsIIent Heterostr
ucture)レーザがある。しかしさらに閾値を低減
、発光効率を増大させるためにはキャリアの量子準位へ
の注入効率を増大することが必要である。このように従
来の量子井戸レーザには、キャリアの量子準位への注入
効率を改善して従来のものより閾値を低減するという課
題があった。
(Problem to be Solved by the Invention) However, in a laser structure having such a thin active layer, the optical confinement coefficient decreases significantly as the quantum well layer thickness decreases, and therefore the threshold current density increases. Methods to solve these drawbacks of quantum well lasers include multiple quantum well (Mult IQuanta + l/elf) lasers in which quantum wells are multiplexed to increase the optical confinement coefficient, and optical-carrier separation confinement structures (separate quantum wells).
e Conf'1nsIIent Heterostr
(cuture) laser. However, in order to further reduce the threshold and increase luminous efficiency, it is necessary to increase the injection efficiency of carriers into the quantum level. As described above, conventional quantum well lasers have had the problem of improving the injection efficiency of carriers into quantum levels and lowering the threshold value compared to conventional ones.

(課題を解決するための手段) 前述の課題を解決するために本発明が提供する手段は、
半導体基板上に半導体多層薄膜から成る活性層を積層し
た量子井戸レーザであって、前記量子井戸活性層が複数
の量子準位を有する量子井戸構造と、前記量子井戸構造
の最低の量子準位以外のうち少なくとも一つと同一のエ
ネルギー準位を有する第一の半導体層と、前記複数の量
子準位を有する量子井戸構造と前記第一の半導体層とを
互いに分離する第二の半導体層とから成り、前記第二半
導体層がトンネル効果の現われる程度に薄いことを特徴
とする。
(Means for Solving the Problems) Means provided by the present invention to solve the above-mentioned problems are as follows:
A quantum well laser in which an active layer made of a semiconductor multilayer thin film is laminated on a semiconductor substrate, the quantum well active layer having a quantum well structure having a plurality of quantum levels, and a quantum well structure other than the lowest quantum level of the quantum well structure. a first semiconductor layer having the same energy level as at least one of the semiconductor layers; and a second semiconductor layer that separates the quantum well structure having the plurality of quantum levels and the first semiconductor layer from each other. , the second semiconductor layer is so thin that a tunnel effect appears.

(作用) 本発明では、量子井戸層を活性層とする量子井戸構造半
導体レーザにおいて、この量子井戸構造の最低の量子準
位以外のうち少なくとも一つと同一のエネルギーを有す
る半導体層を用い、トンネル効果を利用してキャリアの
量子準位への注入効率を改善している。この原理につい
て以下に詳細に説明する。
(Function) In the present invention, in a quantum well structure semiconductor laser having a quantum well layer as an active layer, a semiconductor layer having the same energy as at least one of the quantum levels other than the lowest quantum level of the quantum well structure is used to create a tunneling effect. is used to improve the injection efficiency of carriers into the quantum level. This principle will be explained in detail below.

一般にキャリアの量子準位への注入効率はバリア層と量
子準位とのエネルギー差およびキャリアの運動エネルギ
ーに依存すると考えられる。第3図(a)の伝導帯のエ
ネルギーバンド図に示すような二つの量子準位を有する
量子井戸構造を例に考える。キャリアの量子準位への注
入機構、緩和機構の詳細は現在のところ明らかとなって
いないが、最低量子準位51へのキャリア注入は、この
量子準位へ直接キャリアが注入される場合のほかに高エ
ネルギー側の量子準位52に注入されたキャリアの緩和
による場合が考えられ、量子準位52へのキャリアの注
入効率を大きくできれば最低量子準位51へのキャリア
の注入は増大する。
In general, the injection efficiency of carriers into the quantum level is considered to depend on the energy difference between the barrier layer and the quantum level and the kinetic energy of the carriers. Consider, for example, a quantum well structure having two quantum levels as shown in the energy band diagram of the conduction band in FIG. 3(a). Although the details of the injection mechanism and relaxation mechanism of carriers into the quantum level are not clear at present, carrier injection into the lowest quantum level 51 is possible in addition to the case where carriers are directly injected into this quantum level. This may be due to the relaxation of carriers injected into the quantum level 52 on the high energy side, and if the efficiency of carrier injection into the quantum level 52 can be increased, the injection of carriers into the lowest quantum level 51 will increase.

m3図(b)に示すように最低量子準位以外のうち少な
くとも一つと同一のエネルギー準位を有する構造を上記
量子井戸とトンネル効果が生じる程度の間隔で隣接させ
ることによりこの高エネルギー側の準位の状態密度は増
し、実効的に量子準位52への注入効率を大きくしたの
と同じ効果が得られ、従って最低量子準位51へのキャ
リア注入効率を増大させることができる。この場合価電
子帯のホール(正孔)の量子準位は必ずしも一致しない
が、伝導帯の量子準位の一致のみによって前述の効果を
得ることができる。また第3図(C)の価電子帯のエネ
ルギー図に示すように、ホールの量子準位82.83を
一致させホールのトンネル効果を利用した構造としても
同様な効果を得ることができる。
As shown in Fig. m3 (b), by placing a structure having the same energy level as at least one of the quantum wells other than the lowest quantum level adjacent to the quantum well at an interval sufficient to cause a tunnel effect, this high-energy level is The density of states at the lowest quantum level increases, and the same effect as effectively increasing the efficiency of injection into the quantum level 52 can be obtained, and therefore the efficiency of carrier injection into the lowest quantum level 51 can be increased. In this case, although the quantum levels of holes in the valence band do not necessarily match, the above-mentioned effect can be obtained only by matching the quantum levels of the conduction band. Further, as shown in the energy diagram of the valence band in FIG. 3(C), a similar effect can be obtained by using a structure in which the hole quantum levels 82 and 83 are made to match and utilize the hole tunneling effect.

(第一の実施例) 本発明による量子井戸レーザの第一の実施例を第1図を
参照して詳細に説明する。量子井戸構造の成長法として
は有機金属気相成長(MOCVD)法を用いた。
(First Example) A first example of the quantum well laser according to the present invention will be described in detail with reference to FIG. Metal organic chemical vapor deposition (MOCVD) was used as the growth method for the quantum well structure.

第1図(a)に伝導帯のエネルギーバンド図を示すよう
に、量子井戸活性層40は、第一の量子井戸構造50と
、この第一の量子井戸構造50の両側に設けられた第二
の量子井戸構造70と、これら第一および第二の量子井
戸構造を互いに分離するバリア層60とから構成されて
いる。第一の量子井戸構造50は1.1μm組成1nG
aAsPバリア57(厚さ120人)、2層のI nG
aAsウェル55(厚さ80A)から成り、エネルギー
ギャップがそれぞれ0.8eV(λ−1,55、[Zm
) 、 0.92eV (λ−1,35ttm)の量子
準位51,52を有する。第二の量子井戸構造70は第
一の量子井戸構造50と同一組成でそれぞれ5層のウェ
ル75(厚さ2OA)、バリア77(厚さ10人)から
成り、量子準位72は第一の量子井戸構造の高エネルギ
ー側の量子準位52と同じエネルギー準位を有する。第
一および第二の量子井戸構造を互いに分離するバリア層
60の厚さはIOAである。
As shown in the energy band diagram of the conduction band in FIG. quantum well structure 70, and a barrier layer 60 separating the first and second quantum well structures from each other. The first quantum well structure 50 has a thickness of 1.1 μm and a composition of 1 nG.
aAsP barrier 57 (thickness 120), two layers of InG
It consists of an aAs well 55 (thickness 80A) with an energy gap of 0.8eV (λ-1, 55, [Zm
), has quantum levels 51 and 52 of 0.92 eV (λ-1, 35ttm). The second quantum well structure 70 has the same composition as the first quantum well structure 50 and consists of five layers of a well 75 (thickness: 2 OA) and a barrier 77 (thickness: 10 layers), and the quantum level 72 is the same as that of the first quantum well structure 50. It has the same energy level as the quantum level 52 on the high energy side of the quantum well structure. The thickness of the barrier layer 60 separating the first and second quantum well structures from each other is IOA.

上に述べた量子井戸活性層を用いて、第1図(b)の斜
視図に示すような二重チャネル形埋め込み構造(DC−
PBH)分布帰還形(DFB)半導体レーザを形成する
。共振器長を300μmとしてへき開した素子の特性と
して、第二の量子井戸構造70を有しない量子井戸レー
ザに比べ発振しきい値は1 / 2〜1 / 3 (5
m A程度)、外部微分量子効率で1.5〜2倍(0,
3W/A/facet程度)の改善が得られる。さらに
バリア層厚やウェル数の最適化により一層の特性向上が
望める。
Using the quantum well active layer described above, a double channel buried structure (DC-
PBH) to form a distributed feedback (DFB) semiconductor laser. As a characteristic of a device cleaved with a cavity length of 300 μm, the oscillation threshold is 1/2 to 1/3 (5
m A degree), external differential quantum efficiency is 1.5 to 2 times (0,
An improvement of about 3W/A/facet) can be obtained. Furthermore, further improvements in properties can be expected by optimizing the barrier layer thickness and the number of wells.

以上の実施例は二重チャネル形埋め込み(DC−PBH
)構造の半導体レーザを例に説明したが他の埋め込み構
造やりッジウェーブガイド構造などにも有効である。
The above embodiments are based on dual channel embedding (DC-PBH).
) structure has been described as an example, but it is also effective for other buried structures, ridge waveguide structures, etc.

(第二の実施例) 本発明による量子井戸レーザの第二の実施例を第2図を
参照して説明する。
(Second Embodiment) A second embodiment of the quantum well laser according to the present invention will be described with reference to FIG.

第2図のエネルギー図に示すように第一の実施例の場合
と同一の組成、厚さから成る第一の量子井戸構造50と
、この両側に第一の量子井戸構造の高エネルギー側の量
子準位52と同じエネルギー準位を有する第二の半導体
層(厚さ400A)90と、これら第一の量子井戸構造
50と第二の半導体層90とを分離するバリア層(厚さ
10A)61とから構成されている。
As shown in the energy diagram of FIG. 2, there is a first quantum well structure 50 having the same composition and thickness as in the first embodiment, and on both sides there is a quantum well structure 50 on the high energy side of the first quantum well structure. A second semiconductor layer (400 A thick) 90 having the same energy level as the level 52, and a barrier layer (10 A thick) 61 separating the first quantum well structure 50 and the second semiconductor layer 90. It is composed of.

このような量子井戸レーザにおいても第一の実施例と同
様の優れた特性が得られることが期待される。
It is expected that such a quantum well laser will also have excellent characteristics similar to those of the first embodiment.

また以上の二つの実施例はInP系の量子井戸構造を例
に説明したが、GaAs系など一般の半導体量子井戸構
造においても本発明は有効である。
Furthermore, although the above two embodiments have been explained using an InP-based quantum well structure as an example, the present invention is also effective in a general semiconductor quantum well structure such as a GaAs-based quantum well structure.

(発明の効果) 以上に述べてきたように、本発明によれば、キャリアの
量子準位への注入効率を増大でき低閾値で発光効率の高
い量子井戸レーザを実現することができる。
(Effects of the Invention) As described above, according to the present invention, it is possible to increase the injection efficiency of carriers into quantum levels, and to realize a quantum well laser with a low threshold and high luminous efficiency.

導体層80とを分離するバリア層、70は第二の量子井
戸構造、75.77はそれぞれ第二の量子井戸構造のウ
ェルおよびバリア層、81,82゜83は価電子帯の量
子準位、90は第二の半導体層である。
A barrier layer separating the conductor layer 80, 70 a second quantum well structure, 75, 77 a well and barrier layer of the second quantum well structure, 81, 82, and 83 quantum levels of the valence band; 90 is a second semiconductor layer.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)は本発明の第一の実施例における伝導帯の
エネルギバンド図、第1図(b)はその第一の実施例の
斜視図である。第2図は本発明の第二の実施例における
伝導帯のエネルギバンド図である。第3図は本発明の詳
細な説明図である。
FIG. 1(a) is an energy band diagram of a conduction band in a first embodiment of the present invention, and FIG. 1(b) is a perspective view of the first embodiment. FIG. 2 is an energy band diagram of a conduction band in a second embodiment of the present invention. FIG. 3 is a detailed explanatory diagram of the present invention.

Claims (2)

【特許請求の範囲】[Claims] (1)半導体基板上に半導体多層薄膜から成る活性層を
積層した量子井戸レーザにおいて、前記量子井戸活性層
が複数の量子準位を有する量子井戸構造と、前記量子井
戸構造の最低の量子準位以外のうち少なくとも一つと同
一のエネルギー準位を有する第一の半導体層と、前記複
数の量子準位を有する量子井戸構造と前記第一の半導体
層とを互いに分離する第二の半導体層とから成り、前記
第二の半導体層がトンネル効果の現われる程度に薄いこ
とを特徴とする量子井戸レーザ。
(1) In a quantum well laser in which an active layer made of a semiconductor multilayer thin film is laminated on a semiconductor substrate, the quantum well active layer has a quantum well structure having a plurality of quantum levels, and the quantum well structure has a lowest quantum level. a first semiconductor layer having the same energy level as at least one of 1. A quantum well laser, wherein the second semiconductor layer is thin enough to cause a tunnel effect.
(2)第一の半導体層が量子井戸構造から成ることを特
徴とする請求項1記載の量子井戸レーザ。
(2) The quantum well laser according to claim 1, wherein the first semiconductor layer has a quantum well structure.
JP4802189A 1989-02-28 1989-02-28 Quantum well laser Pending JPH02228088A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4802189A JPH02228088A (en) 1989-02-28 1989-02-28 Quantum well laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4802189A JPH02228088A (en) 1989-02-28 1989-02-28 Quantum well laser

Publications (1)

Publication Number Publication Date
JPH02228088A true JPH02228088A (en) 1990-09-11

Family

ID=12791659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4802189A Pending JPH02228088A (en) 1989-02-28 1989-02-28 Quantum well laser

Country Status (1)

Country Link
JP (1) JPH02228088A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6078602A (en) * 1996-02-12 2000-06-20 Nec Corporation Separate confinement heterostructured semiconductor laser device having high speed characteristics
US6141363A (en) * 1996-06-04 2000-10-31 France Telecom Optical semiconductor light guide device having a low divergence emergent beam, application to fabry-perot and distributed feedback lasers

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6286782A (en) * 1985-10-11 1987-04-21 Nec Corp Quantum well laser
JPS63146481A (en) * 1986-12-10 1988-06-18 Mitsubishi Electric Corp Semiconductor laser device
JPH02209781A (en) * 1989-02-09 1990-08-21 Mitsubishi Electric Corp Superlattice semiconductor laser

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6286782A (en) * 1985-10-11 1987-04-21 Nec Corp Quantum well laser
JPS63146481A (en) * 1986-12-10 1988-06-18 Mitsubishi Electric Corp Semiconductor laser device
JPH02209781A (en) * 1989-02-09 1990-08-21 Mitsubishi Electric Corp Superlattice semiconductor laser

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6078602A (en) * 1996-02-12 2000-06-20 Nec Corporation Separate confinement heterostructured semiconductor laser device having high speed characteristics
US6141363A (en) * 1996-06-04 2000-10-31 France Telecom Optical semiconductor light guide device having a low divergence emergent beam, application to fabry-perot and distributed feedback lasers

Similar Documents

Publication Publication Date Title
JPH0418476B2 (en)
JPH0143472B2 (en)
JPH05102604A (en) Semiconductor laser device
JP3249999B2 (en) Semiconductor laser device
EP0188080B1 (en) Light-emitting semiconductor device having a super lattice
JPS61218192A (en) Semiconductor light emitting element
JP2003046200A (en) Multiple quantum well semiconductor element
JPH02228088A (en) Quantum well laser
US5375135A (en) Semiconductor laser device
US5452316A (en) Semiconductor laser having stacked active layers with reduced drive voltage
JPH04350988A (en) Light-emitting element of quantum well structure
JPH0377677B2 (en)
JP3146710B2 (en) Light emitting element
US5506856A (en) Semiconductor laser device having a resonator of particular length for reduced threshold current density
JP2748570B2 (en) Semiconductor laser device
JP2748838B2 (en) Quantum well semiconductor laser device
JPH0358490A (en) Quantum well laser
JP7038913B1 (en) Semiconductor laser device
JPH06350193A (en) Semiconductor laser element
JP3309394B2 (en) Semiconductor light emitting device
EP0566411B1 (en) Semiconductor laser device
JPH0634429B2 (en) Method for selectively growing GaAs for formation of semiconductor laser and semiconductor laser
JPH0550873B2 (en)
JPH0870161A (en) Semiconductor light emitting element
JPS6035590A (en) Planar type semiconductor light emitting device