JPH0870161A - Semiconductor light emitting element - Google Patents

Semiconductor light emitting element

Info

Publication number
JPH0870161A
JPH0870161A JP20507594A JP20507594A JPH0870161A JP H0870161 A JPH0870161 A JP H0870161A JP 20507594 A JP20507594 A JP 20507594A JP 20507594 A JP20507594 A JP 20507594A JP H0870161 A JPH0870161 A JP H0870161A
Authority
JP
Japan
Prior art keywords
layer
quantum well
active layer
layers
well structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20507594A
Other languages
Japanese (ja)
Inventor
Toru Fukushima
徹 福島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP20507594A priority Critical patent/JPH0870161A/en
Publication of JPH0870161A publication Critical patent/JPH0870161A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To increase the carrier injection efficiency in an active layer by a method wherein the barrier layer of multiquantum well layer comprising a clad layer or light confinment layer is composed of III-V compound semiconductor layer having an indirect transition type band structure. CONSTITUTION: Clad layers 3, 7 are composed of a multiquantum well structure comprising AlAs0.4 Sb0.6 barrier layer and an InP well layer. Besides, an active layer 5 is composed of a multiquantum structure comprising an InP layer and an InGaAs well layer. Since the AlAs0.4 Sb0.6 comprising the barrier layer having an indirect transition type band structure 1 is further provided with about the same lattice constant of an InP substrate 1, the clad layers 3, 7 with few crystalline defects can be formed. Through these procedures, the carrier injection efficiency in the active layer 5 can be increased.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光通信、光情報処理な
どに用いる半導体発光素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor light emitting device used for optical communication, optical information processing and the like.

【0002】[0002]

【従来の技術】従来、半導体発光素子の発光効率を向上
させたり、あるいは、半導体レーザ素子においてはしき
い値電流を減少させたりするために、活性層に量子井戸
構造を採用している。さらに、この量子井戸構造に歪み
を導入すると、これらの特性が一層改善されることが確
認されている。これは、主として量子サイズ効果に伴う
状態密度の減少と、光学利得の増大によるものと解釈さ
れている。しかしながら、従来構造の発光素子におい
て、クラッド層あるいは光閉じ込め層については、量子
井戸構造を取り入れる必要性はさほど論じられなかっ
た。最近になり、多重量子井戸構造を取り入れたクラッ
ド層を用いて、電子の閉じ込め効果を改善した例が提案
されている(文献1参照)。 文献1:Electronics Letters, vol.22, pp1008, 1986.
2. Description of the Related Art Conventionally, a quantum well structure is used for an active layer in order to improve the luminous efficiency of a semiconductor light emitting device or to reduce the threshold current in a semiconductor laser device. Furthermore, it has been confirmed that these characteristics are further improved by introducing strain into this quantum well structure. This is interpreted to be mainly due to a decrease in the density of states associated with the quantum size effect and an increase in the optical gain. However, the necessity of incorporating a quantum well structure in the cladding layer or the optical confinement layer in the light emitting device having the conventional structure has not been discussed so much. Recently, an example of improving the electron confinement effect by using a cladding layer having a multiple quantum well structure has been proposed (see Reference 1). Reference 1: Electronics Letters, vol.22, pp1008, 1986.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、従来の
活性層に量子井戸構造を用いた半導体発光素子には、次
のような問題があった。即ち、量子井戸構造を有する活
性層において、変調帯域から算出される微分利得は、バ
ルク型活性層を有する半導体レーザ素子の微分利得に比
較して、理論から予想されるほどには増大していない。
また、量子井戸構造を有する活性層の特性温度もバルク
型活性層の場合に比較してそれほど上昇していない。
However, the conventional semiconductor light emitting device using the quantum well structure in the active layer has the following problems. That is, in the active layer having the quantum well structure, the differential gain calculated from the modulation band does not increase as expected from theory as compared with the differential gain of the semiconductor laser device having the bulk type active layer. .
Further, the characteristic temperature of the active layer having the quantum well structure is not so much higher than that of the bulk type active layer.

【0004】最近になり、上記問題点はキャリア輸送現
象により説明できることが理論および実験の両面から明
らかにされた(文献2参照)。即ち、注入されたキャリ
アが活性層の量子井戸および歪み量子井戸に注入される
までには、広い光閉じ込め層やクラッド層中を輸送され
る必要がある。そこで、これらの広い光閉じ込め層やク
ラッド層に多重量子井戸構造が含まれる場合には、多重
量子井戸構造を構成する障壁層を通る際にキャリアは再
結合過程により失われるため、注入されたキャリアの総
数のうち、活性層の量子井戸内に入るキャリア数の占め
る割合は小さくなる。この結果、微分利得が減少する。
Recently, it has been clarified both theoretically and experimentally that the above problems can be explained by the carrier transport phenomenon (see Reference 2). That is, it is necessary for the injected carriers to be transported in a wide optical confinement layer or cladding layer before being injected into the quantum well and the strained quantum well of the active layer. Therefore, when these wide optical confinement layers and cladding layers include a multi-quantum well structure, carriers are lost by recombination process when passing through the barrier layer forming the multi-quantum well structure. , The ratio of the number of carriers entering the quantum well of the active layer is small. As a result, the differential gain is reduced.

【0005】このキャリア輸送現象において、活性層へ
の注入効率∝1/χとすると、χは近似的に次式で表さ
れる。即ち、 χ≒1+(Bo /Bi )(τd /τe ) ≒1+(Bo /Bi )(Vo /Vi ) ・・・・・・ (1) ここで、Bo およびBi は、それぞれクラッド層あるい
は光閉じ込め層を構成する多重量子井戸構造の障壁層
(o)および量子井戸層(i)の再結合定数、Voおよ
びVi はそれぞれ障壁層(o)および量子井戸層(i)
の体積、τd およびτe はそれぞれキャリアが量子井戸
に拡散して注入されるまでの遅延時間、および量子井戸
層から障壁層へのキャリアの熱散逸時間である。通常、
低しきい値化、低損失(高効率)化のためには、量子井
戸層の全厚みをある程度小さくし、また、光閉じ込め係
数を最適化するために光閉じ込め層厚を大きくするが、
これによりVo /Vi は大きくなる。従って、式(1)
におけるχは増大し、これにともないキャリアの活性層
への注入効率が著しく低下する。また、時定数τe は素
子の温度上昇と共に減少するので、温度上昇と共にχは
増大し、キャリアの注入効率が低下する。本発明は、上
述のキャリア輸送現象に伴う悪影響をなくし、量子井戸
本来の利点である量子サイズ効果を最大限に引き出すこ
とである。 文献2:IEEE J. Quantum Electron., vol.QE-28, No.1
0, pp.1990.
In this carrier transport phenomenon, if the injection efficiency into the active layer is ∝1 / χ, χ is approximately represented by the following equation. That is, χ≈1 + (B o / B i ) (τ d / τ e ) ≈1 + (B o / B i ) (V o / V i ) ... (1) where B o and B i is the recombination constant of the barrier layer (o) and the quantum well layer (i) of the multiple quantum well structure which respectively constitute the cladding layer or the optical confinement layer, and V o and V i are the barrier layer (o) and the quantum, respectively. Well layer (i)
, Τ d and τ e are the delay time until carriers are diffused and injected into the quantum well, and the heat dissipation time of carriers from the quantum well layer to the barrier layer. Normal,
In order to lower the threshold value and lower the loss (high efficiency), the total thickness of the quantum well layer is reduced to some extent, and the optical confinement layer thickness is increased to optimize the optical confinement coefficient.
This increases V o / V i . Therefore, equation (1)
Χ increases, and the efficiency of carrier injection into the active layer is significantly reduced. Further, since the time constant τ e decreases with increasing temperature of the element, χ increases with increasing temperature and carrier injection efficiency decreases. The present invention eliminates the adverse effects of the carrier transport phenomenon described above and maximizes the quantum size effect, which is an inherent advantage of quantum wells. Reference 2: IEEE J. Quantum Electron., Vol.QE-28, No.1
0, pp. 1990.

【0006】[0006]

【課題を解決するための手段】本発明は上記問題点を解
決した半導体発光素子を提供するもので、3−5族化合
物半導体基板上に、一対の光閉じ込め層およびクラッド
層で挟んだ、量子井戸構造を有する活性層を設けた半導
体発光素子において、光閉じ込め層およびクラッド層の
少なくとも一方は、少なくとも対をなす片側に多重量子
井戸構造を含み、該多重量子井戸構造を構成する障壁層
は、前記基板に格子整合する間接遷移型バンド構造を有
する3−5族化合物半導体からなることを特徴とするも
のである。
The present invention provides a semiconductor light emitting device that solves the above-mentioned problems. A quantum semiconductor device having a pair of optical confinement layers and a clad layer sandwiched between a group 3-5 compound semiconductor substrate is used. In a semiconductor light emitting device provided with an active layer having a well structure, at least one of the optical confinement layer and the cladding layer includes a multiple quantum well structure on at least one side forming a pair, and the barrier layer forming the multiple quantum well structure is It is characterized by comprising a 3-5 group compound semiconductor having an indirect transition type band structure lattice-matched to the substrate.

【0007】[0007]

【作用】上述のキャリア輸送現象に伴う悪影響をなく
し、注入効率を大きくする方法の一つは、式(1)から
わかるように、障壁層における再結合定数Bo を小さく
して、χを小さくすることである。ところで、間接遷移
型バンド構造を有する3−5族化合物半導体は、原理的
に発光再結合確率が直接遷移型に比較して極めて小さ
く、従って再結合定数Bo も小さい。そこで、上述のよ
うに、クラッド層あるいは光閉じ込め層を構成する多重
量子井戸層の障壁層を間接遷移型バンド構造を有する3
−5族化合物半導体層で構成すると、キャリアの活性層
への注入効率が向上する。
As can be seen from the formula (1), one method of eliminating the adverse effects of the carrier transport phenomenon and increasing the injection efficiency is to decrease the recombination constant B o in the barrier layer and decrease χ. It is to be. By the way, in principle, a 3-5 group compound semiconductor having an indirect transition type band structure has an extremely small radiative recombination probability as compared with the direct transition type, and therefore has a small recombination constant B o . Therefore, as described above, the barrier layer of the multiple quantum well layer forming the cladding layer or the optical confinement layer has an indirect transition type band structure.
When it is made of the group-5 compound semiconductor layer, the efficiency of carrier injection into the active layer is improved.

【0008】[0008]

【実施例】以下、図面に示した実施例に基づいて本発明
を詳細に説明する。図1は本発明にかかる半導体発光素
子の一実施例の断面図である。図中、1はn−InP基
板、2はn−InPバッファ層、3はクラッド層、4は
InP光閉じ込め層、5は活性層、6はInP光閉じ込
め層、7はクラッド層、8はAlAs0.4 Sb0.6 から
なるコンタクト層である。図2は、活性層5近傍の導電
帯側のバンド構造を示している。クラッド層3、7は、
11層のAlAs0.4 Sb0.6 障壁層3a、7aと、1
0層のInP井戸層3b、7bからなる多重量子井戸構
造で構成されている。また、活性層5は2層のInP障
壁層5aと3層のInGaAsP井戸層5bからなる多
重量子井戸構造で構成されている。各障壁層3a、7
a、5aと各井戸層3b、7b、5bの厚さは、図中に
記載された通りである。ここで、クラッド層3、7に形
成された多重量子井戸構造において、活性層5に近づく
ほどAlAs0.4 Sb0.6 障壁層3a、7aが厚くなっ
ているが、これは、平均的なバンド幅が活性層5に近づ
くにつれて増大するようにして、良好なキャリアの注入
を実現するためである。本実施例において、障壁層3
a、7aを構成するAlAs0.4 Sb0.6 は、間接遷移
型バンド構造を有し、かつ、InP基板と同程度の格子
定数を有するため、結晶欠陥の少ないクラッド層3、7
を形成することができる。従来構造では、式(1)に示
されるχは2〜3と大きいが、本実施例では、χを1.
5乃至はそれ以下にすることができる。従って、キャリ
アの注入効率1/χは、従来に比して2倍から3倍に改
善され、これにともなって微分利得も2〜3倍に増大す
る。なお、障壁層を構成する間接遷移型バンド構造を有
する3−5族化合物半導体としては、上記AlAs0.4
Sb0.6 以外に、GaAs基板、サファイア基板などに
格子整合するGaP、AlAs、AlSbなどを用いる
こともできる。また、多重量子井戸構造の構造も上記実
施例の構造に限定されることはない。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below with reference to the embodiments shown in the drawings. FIG. 1 is a sectional view of an embodiment of a semiconductor light emitting device according to the present invention. In the figure, 1 is an n-InP substrate, 2 is an n-InP buffer layer, 3 is a cladding layer, 4 is an InP optical confinement layer, 5 is an active layer, 6 is an InP optical confinement layer, 7 is a cladding layer, 8 is AlAs. The contact layer is 0.4 Sb 0.6 . FIG. 2 shows a band structure on the conductive band side in the vicinity of the active layer 5. The clad layers 3 and 7 are
11 layers of AlAs 0.4 Sb 0.6 barrier layers 3a, 7a and 1
It has a multiple quantum well structure composed of 0 layers of InP well layers 3b and 7b. The active layer 5 has a multiple quantum well structure including two InP barrier layers 5a and three InGaAsP well layers 5b. Each barrier layer 3a, 7
The thicknesses of a, 5a and the well layers 3b, 7b, 5b are as described in the drawing. Here, in the multiple quantum well structure formed in the cladding layers 3 and 7, the AlAs 0.4 Sb 0.6 barrier layers 3a and 7a are thicker as they get closer to the active layer 5, but this is because the average bandwidth is This is because it is increased as the layer 5 is approached, and favorable carrier injection is realized. In this embodiment, the barrier layer 3
The AlAs 0.4 Sb 0.6 constituting a and 7a have an indirect transition type band structure and a lattice constant similar to that of the InP substrate, so that the cladding layers 3 and 7 having few crystal defects are present.
Can be formed. In the conventional structure, χ shown in the formula (1) is as large as 2-3, but in the present embodiment, χ is 1.
It can be 5 or less. Therefore, the carrier injection efficiency 1 / χ is improved to 2 to 3 times that of the conventional case, and the differential gain is also increased to 2 to 3 times as much as the conventional case. As the 3-5 group compound semiconductor having an indirect transition type band structure which constitutes the barrier layer, AlAs 0.4
Besides Sb 0.6 , it is also possible to use GaP, AlAs, AlSb, etc. which are lattice-matched to a GaAs substrate, a sapphire substrate or the like. Further, the structure of the multiple quantum well structure is not limited to the structure of the above embodiment.

【0009】[0009]

【発明の効果】以上説明したように本発明によれば、3
−5族化合物半導体基板上に、一対の光閉じ込め層およ
びクラッド層で挟んだ、量子井戸構造を有する活性層を
設けた半導体発光素子において、光閉じ込め層およびク
ラッド層の少なくとも一方は、少なくとも対をなす片側
に多重量子井戸構造を含み、該多重量子井戸構造を構成
する障壁層は、前記基板に格子整合する間接遷移型バン
ド構造を有する3−5族化合物半導体からなるため、活
性層へのキャリア注入効率が向上し、低しきい値、高効
率な半導体発光素子が得られるという優れた効果があ
る。
As described above, according to the present invention, 3
In a semiconductor light-emitting device in which an active layer having a quantum well structure sandwiched between a pair of optical confinement layers and a clad layer is provided on a Group-5 compound semiconductor substrate, at least one of the optical confinement layers and the clad layers has at least a pair. Since a barrier layer that includes a multiple quantum well structure on one side of the device and the barrier layer that constitutes the multiple quantum well structure is made of a Group 3-5 compound semiconductor having an indirect transition type band structure lattice-matched to the substrate, carriers to the active layer are formed. There is an excellent effect that the injection efficiency is improved and a low threshold and high efficiency semiconductor light emitting device can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る半導体発光素子の一実施例の断面
図である。
FIG. 1 is a cross-sectional view of an embodiment of a semiconductor light emitting device according to the present invention.

【図2】上記実施例の活性層近傍の導電帯側のバンド構
造を示す図である。
FIG. 2 is a diagram showing a band structure on a conductive band side in the vicinity of an active layer in the above-mentioned embodiment.

【符号の説明】[Explanation of symbols]

1 基板 2 バッファ層 3、7 クラッド層 3a、5a、7a 障壁層 3b、5b、7b 井戸層 4、6 光閉じ込め層 5 活性層 8 コンタクト層 1 substrate 2 buffer layer 3, 7 clad layer 3a, 5a, 7a barrier layer 3b, 5b, 7b well layer 4, 6 optical confinement layer 5 active layer 8 contact layer

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 3−5族化合物半導体基板上に、一対の
光閉じ込め層およびクラッド層で挟んだ、量子井戸構造
を有する活性層を設けた半導体発光素子において、光閉
じ込め層およびクラッド層の少なくとも一方は、少なく
とも対をなす片側に多重量子井戸構造を含み、該多重量
子井戸構造を構成する障壁層は、前記基板に格子整合す
る間接遷移型バンド構造を有する3−5族化合物半導体
からなることを特徴とする半導体発光素子。
1. A semiconductor light-emitting device comprising an active layer having a quantum well structure sandwiched between a pair of optical confinement layers and a cladding layer on a Group 3-5 compound semiconductor substrate, wherein at least the optical confinement layers and the cladding layers are provided. One includes a multiple quantum well structure on at least one side forming a pair, and the barrier layer forming the multiple quantum well structure is made of a Group 3-5 compound semiconductor having an indirect transition type band structure lattice-matched with the substrate. A semiconductor light-emitting device characterized by.
JP20507594A 1994-08-30 1994-08-30 Semiconductor light emitting element Pending JPH0870161A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20507594A JPH0870161A (en) 1994-08-30 1994-08-30 Semiconductor light emitting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20507594A JPH0870161A (en) 1994-08-30 1994-08-30 Semiconductor light emitting element

Publications (1)

Publication Number Publication Date
JPH0870161A true JPH0870161A (en) 1996-03-12

Family

ID=16501016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20507594A Pending JPH0870161A (en) 1994-08-30 1994-08-30 Semiconductor light emitting element

Country Status (1)

Country Link
JP (1) JPH0870161A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006303147A (en) * 2005-04-20 2006-11-02 Opnext Japan Inc Optical semiconductor element
JP2016197616A (en) * 2015-04-02 2016-11-24 日本電信電話株式会社 Semiconductor laser

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006303147A (en) * 2005-04-20 2006-11-02 Opnext Japan Inc Optical semiconductor element
JP4664725B2 (en) * 2005-04-20 2011-04-06 日本オプネクスト株式会社 Semiconductor laser element
JP2016197616A (en) * 2015-04-02 2016-11-24 日本電信電話株式会社 Semiconductor laser

Similar Documents

Publication Publication Date Title
JP3052552B2 (en) Surface emitting semiconductor laser
JP2724827B2 (en) Infrared light emitting device
JPH09213918A (en) Photoelectronic integrated circuit element
JPH0661570A (en) Strain multiple quantum well semiconductor laser
JPH0143472B2 (en)
US5519722A (en) II-VI compound semiconductor laser with burying layers
JP2778454B2 (en) Semiconductor laser
JP3242958B2 (en) Optical semiconductor device
JPH04234184A (en) Semiconductor laser
EP0528439B1 (en) Semiconductor laser
JP2812273B2 (en) Semiconductor laser
JPH0870161A (en) Semiconductor light emitting element
JPH04350988A (en) Light-emitting element of quantum well structure
JPH06209139A (en) Semiconductor laser
JP2748838B2 (en) Quantum well semiconductor laser device
JP2556288B2 (en) Semiconductor laser
JP2748570B2 (en) Semiconductor laser device
JP3033333B2 (en) Semiconductor laser device
JPH07321409A (en) Semiconductor laser element
JPH06350193A (en) Semiconductor laser element
JP3638305B2 (en) Quantum well crystal, semiconductor laser and manufacturing method thereof
JPH05175601A (en) Multiple quantum well semiconductor laser
JPH07122811A (en) Semiconductor laser element
JPH054833B2 (en)
JPH05335682A (en) Quantum well type semiconductor light emitting element