JPH02227138A - Catalyst carrier - Google Patents

Catalyst carrier

Info

Publication number
JPH02227138A
JPH02227138A JP1048788A JP4878889A JPH02227138A JP H02227138 A JPH02227138 A JP H02227138A JP 1048788 A JP1048788 A JP 1048788A JP 4878889 A JP4878889 A JP 4878889A JP H02227138 A JPH02227138 A JP H02227138A
Authority
JP
Japan
Prior art keywords
catalyst
acetylene black
catalyst carrier
electrode
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1048788A
Other languages
Japanese (ja)
Inventor
Toshikazu Amino
俊和 網野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibiden Co Ltd
Original Assignee
Ibiden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co Ltd filed Critical Ibiden Co Ltd
Priority to JP1048788A priority Critical patent/JPH02227138A/en
Publication of JPH02227138A publication Critical patent/JPH02227138A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • H01M4/926Metals of platinum group supported on carriers, e.g. powder carriers on carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M2004/8678Inert electrodes with catalytic activity, e.g. for fuel cells characterised by the polarity
    • H01M2004/8684Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0002Aqueous electrolytes
    • H01M2300/0005Acid electrolytes
    • H01M2300/0011Sulfuric acid-based
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Inert Electrodes (AREA)

Abstract

PURPOSE:To use catalysts effectively by forming a catalyst carrier having predetermined area using activated acetylene black and carrying catalysts in such a condition that the catalysts are distributed all over the catalyst carrier. CONSTITUTION:Catalyst carriers having a specific area of 100-500m<2>/g are formed using acetylene black to which activation treatment has been applied. When said carriers are applied to a phosphoric acid type fuel cell, the fuel cell is comprised of an electrolytic matrix 1, a fuel electrode 2 having three- phase interfacial electrodes on both surfaces thereof, an air electrode 5, and interconnectors 4, 5 covering the outer surfaces of the fuel cell. The fuel electrode 2 and air electrode 3 are composed of a porous carbon paper substrate 1, which catalyst carriers 6 are bonded to by means of polytetrafluoroethylene. Further, a number of recesses 6a are formed over the surfaces of carbon particles using activation agents.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は燃料電池等において使用される触媒を担持す
るための触媒担体に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a catalyst carrier for supporting a catalyst used in a fuel cell or the like.

[従来の技術及び発明が解決しようとする課題]従来の
リン酸型燃料電池では、水素ガス等の燃料の分解反応に
使用する触媒を担持するため、ガスの流通性及び導電性
に優れた鎖状構造のアセチレンブラックが使用されてい
る。ところが、通常のアセチレンブラックでは、比表面
積が少なくて80 m2/g程度であるため、触媒を担
体全体に分散して担持することが困難であり、触媒全体
を有効に利用できないおそれがあった。
[Prior art and problems to be solved by the invention] In conventional phosphoric acid fuel cells, a chain with excellent gas flow and electrical conductivity is used to support a catalyst used in the decomposition reaction of fuel such as hydrogen gas. Acetylene black with a similar structure is used. However, since ordinary acetylene black has a small specific surface area of about 80 m2/g, it is difficult to disperse and support the catalyst over the entire carrier, and there is a risk that the entire catalyst cannot be used effectively.

この発明は上記の問題を解消するためになされたもので
あって、その目的は触媒を触媒担体全体にわたって分散
させた状態で保持することができ、触媒を効率的に使用
することが可能な触媒担体を提供することにある。
This invention has been made to solve the above problems, and the purpose is to provide a catalyst that can maintain a catalyst in a dispersed state throughout the catalyst carrier and that can efficiently use the catalyst. The purpose is to provide a carrier.

[課題を解決するための手段及び作用]上記の目的を達
成するために、この発明では、賦活処理を施したアセチ
レンブラッ、り、にょって触媒担体を形成している。賦
活処理が施されていると、水素等の燃料ガスの流通性及
び導電性を損なうことなく、比表面積が確実に増加され
る。比表面積が増加される事により電極単位面積当たり
の触媒量が増加し、発電能力をアンプできる為、必然的
に構造体容積を縮小でき、燃料電池の1つの問題である
カーボン材のコストを低減できる。
[Means and effects for solving the problems] In order to achieve the above object, in the present invention, a catalyst carrier is formed using an activated acetylene resin. When the activation treatment is performed, the specific surface area is reliably increased without impairing the flowability and conductivity of fuel gas such as hydrogen. By increasing the specific surface area, the amount of catalyst per unit area of the electrode increases and power generation capacity can be amplified, which naturally reduces the structure volume and reduces the cost of carbon materials, which is one of the problems with fuel cells. can.

又、比表面積は100〜500rrr/gであることが
望ましい、100m2/g未満であると、触媒の分散状
態が低下し、更に50rrf/gを以下となると、鎖状
構造とならず、導電性の低下を招くがらである。
In addition, it is desirable that the specific surface area is 100 to 500 rrr/g. If it is less than 100 m2/g, the dispersion state of the catalyst will deteriorate, and if it is less than 50 rrrf/g, it will not form a chain structure and the conductivity will decrease. However, this results in a decrease in

さて、リン酸型燃料電池の構造について説明すると、第
2図に示すように、燃料電池セルは電解質マトリックス
lと、そのマトリックス1の両側面に接合された三相界
面電極と呼ばれる燃料電極2及び空気電極3と、画電極
2.3の外面を覆うインターコネクタ4.5とを備えて
いる。各インターコネクタ4.5には各電極2.3との
間に水素からなる燃料ガス及び酸化剤としての空気を供
給するための通路4a、5aが形成されている。
Now, to explain the structure of a phosphoric acid fuel cell, as shown in FIG. It includes an air electrode 3 and an interconnector 4.5 that covers the outer surface of the picture electrode 2.3. Passages 4a and 5a are formed between each interconnector 4.5 and each electrode 2.3 for supplying fuel gas consisting of hydrogen and air as an oxidizing agent.

前記電解質マトリックスlは炭化珪素粉末とポリテトラ
フルオロエチレンとの混合物を焼成したものであって、
焼成後にリン酸が含浸されている。
The electrolyte matrix l is obtained by firing a mixture of silicon carbide powder and polytetrafluoroethylene,
It is impregnated with phosphoric acid after firing.

燃料電極2及び空気電極3は多孔性カーボンペーパーを
基材とし、その基材に、第1図に示す触媒担体6をポリ
テトラフルオロエチレンによって結着させたものである
。この触媒担体6には白金。
The fuel electrode 2 and the air electrode 3 have porous carbon paper as a base material, and a catalyst carrier 6 shown in FIG. 1 is bound to the base material using polytetrafluoroethylene. This catalyst carrier 6 contains platinum.

銀及びニッケル等の金属触媒が担持されている。Metal catalysts such as silver and nickel are supported.

燃料電極2の触媒担体6には約1mg/+aaの白金触
媒が担持され、空気電極3の触媒担体6には約005w
+g/aJの白金−ルビジウム触媒が担持されている。
Approximately 1 mg/+aa of platinum catalyst is supported on the catalyst carrier 6 of the fuel electrode 2, and approximately 0.005 W of platinum catalyst is supported on the catalyst carrier 6 of the air electrode 3.
+g/aJ of platinum-rubidium catalyst is supported.

そして、燃料電極2及び空気電極3にそれぞれ水素ガス
及び空気が供給されることにより、各電極2.3ではそ
れぞれ下記の反応が生じて、画電極2.3間に所定の起
電力が生じるようになっている。
By supplying hydrogen gas and air to the fuel electrode 2 and air electrode 3, the following reactions occur in each electrode 2.3, and a predetermined electromotive force is generated between the picture electrodes 2.3. It has become.

燃料電極での反応 H2−一→ 2H++ 20 空気電極での反応 2H” +  1/202 +2 e     H20
上記の触媒担体6はアセチレンブラックによって形成さ
れている。このアセチレンブラックはアセチレンを分解
炉内で約800℃に加熱することによって生成され、炭
素粒子が鎖状に連結したものである。従って、ガスの流
通性及び導電性に優れている。
Reaction H2-1 at fuel electrode → 2H++ 20 Reaction 2H” at air electrode + 1/202 +2 e H20
The above catalyst carrier 6 is made of acetylene black. This acetylene black is produced by heating acetylene to about 800° C. in a decomposition furnace, and is composed of carbon particles connected in a chain. Therefore, it has excellent gas flowability and electrical conductivity.

アセチレンブラックの賦活に際しては、アセチレンブラ
ックが所定時間(1−12時間)にわたって500℃以
上の温度で加熱され、その間に試料に対して賦活剤が噴
射される。この賦活剤により炭素粒子表面が攻撃され、
その結晶構造の欠陥部分が拡大されることにより、第1
図に示すように多数の凹所6aが粒子表面に形成される
。その結果、比表面積の大きなアセチレンブラックが得
られる。比表面積は100〜500 rd/ gである
ことが望ましい。100rrr/g未満であると、賦活
前後における比表面積の増加率が小さくなって、触媒の
分散が十分に行われず、500rrr/gを超えると、
鎖状構造が破壊されて、導電性が低下するからである。
When activating acetylene black, acetylene black is heated at a temperature of 500° C. or higher for a predetermined period of time (1 to 12 hours), and an activator is injected onto the sample during that time. This activator attacks the carbon particle surface,
By enlarging the defective part of the crystal structure, the first
As shown in the figure, a large number of recesses 6a are formed on the particle surface. As a result, acetylene black with a large specific surface area is obtained. The specific surface area is preferably 100 to 500 rd/g. If it is less than 100 rrr/g, the rate of increase in the specific surface area before and after activation will be small and the catalyst will not be sufficiently dispersed, and if it exceeds 500 rrr/g,
This is because the chain structure is destroyed and the conductivity decreases.

賦活剤としては、安価に入手可能な水蒸気を使用するこ
とが望ましい。
As the activator, it is desirable to use steam, which is available at low cost.

[実施例1] 表1に示す物性を備えたアセチレンブラックに水蒸気を
噴射し、かつ攪拌しながら、1000℃で4時間にわた
って加熱することによって賦活処理を施した。賦活され
たアセチレンブラックの物性を表2に示す0表2から明
らかなように、賦活されたアセチレンブラックの比表面
積及び沃素吸着量は賦活前のものに対してそれぞれ約2
.7倍及び約1. 9倍にまで増加し、触媒を均一に分
散して担持することが可能になった。又、嵩密度には大
きな変化が見られず、更に、粉末X線回折におけるピー
クのサイズからも結晶変化がなく賦活前のガス流通性及
び導電性が賦活によって損なわれることもない。
[Example 1] Acetylene black having the physical properties shown in Table 1 was activated by injecting water vapor and heating at 1000° C. for 4 hours while stirring. The physical properties of activated acetylene black are shown in Table 2.0 As is clear from Table 2, the specific surface area and iodine adsorption amount of activated acetylene black are each about 2
.. 7 times and about 1. This has increased up to 9 times, making it possible to uniformly disperse and support the catalyst. Moreover, no large change is observed in the bulk density, and furthermore, there is no crystal change in the size of the peak in powder X-ray diffraction, and the gas flowability and conductivity before activation are not impaired by activation.

[実施例2] 上記実施例1と同様の試料に対し、加熱時間のみを1.
5時間に変更して賦活処理を施した。その結果を表2に
併せて示す、この場合の比表面積及び沃素吸着量は、約
2倍及び1.7倍に増加し、前記実施例1と同様に、ア
セチレンブラックのガス流通性及び導電性を損なうこと
なく、触媒を均一に分散して担持することが可能となっ
た。
[Example 2] For the same sample as in Example 1 above, only the heating time was changed to 1.
The activation treatment was performed for 5 hours. The results are also shown in Table 2. In this case, the specific surface area and iodine adsorption amount increased approximately 2 times and 1.7 times, and as in Example 1, the gas flowability and conductivity of acetylene black increased. It became possible to uniformly disperse and support the catalyst without damaging the properties.

[比較例1,2] 各実施例と同一の試料に対し、賦活剤のみを二酸化炭素
に変更し、その他の条件を各実施例1゜2と同一にして
熱処理を施した。その結果、表2から明らかなように、
比表面積の増加は殆ど認められず、沃素吸着量も1.2
倍弱というように低い水準であった。
[Comparative Examples 1 and 2] The same samples as in each Example were subjected to heat treatment except that only the activator was changed to carbon dioxide, and the other conditions were the same as in Examples 1 and 2. As a result, as is clear from Table 2,
Almost no increase in specific surface area was observed, and the amount of iodine adsorbed was 1.2.
It was at a low level, just under twice that.

のアセチレンブラックの 嵩密度 水分   (a)   (b)g/aJ   
 χ  m2/g  鴎gelO,0240,1283
100 2賦  のアセチレンブラックの 嵩密度 水分  (a)   (bl   単位電極面
積g/cgi    χ rd/g  vag/ l 
 当りの白金量mg/aJ 実施 例1 実施 例2 比較 例1 比較 例2 0.028 0.031 0.033 0.030 0.32  225   185   0.1950.
20 0.112 0.02 0.03〜0.05 0.03 0.03〜0.07 尚、上記の各表におい、て、(a)は窒素ガスを用いて
測定した比表面積を示し、(b)は沃素の吸着量を示す
Bulk density of acetylene black Moisture (a) (b) g/aJ
χ m2/g seaweed gelO, 0240, 1283
Bulk density of acetylene black of 100 2 volumes Moisture (a) (bl Unit electrode area g/cgi χ rd/g vag/l
Amount of platinum per mg/aJ Example 1 Example 2 Comparative example 1 Comparative example 2 0.028 0.031 0.033 0.030 0.32 225 185 0.1950.
20 0.112 0.02 0.03~0.05 0.03 0.03~0.07 In each of the above tables, (a) indicates the specific surface area measured using nitrogen gas, (b) shows the amount of iodine adsorbed.

[発明の効果] 以上詳述したように、この発明は触媒を触媒担体全体に
わたって分散させた状態で保持することができ、触媒を
効率的に使用することができるという優れた効果を発揮
する。又、電極材カーボン量を低減でき、更にコンパク
ト化及び発電能力のアップが期待できる。
[Effects of the Invention] As described in detail above, the present invention exhibits the excellent effect that the catalyst can be maintained in a dispersed state throughout the catalyst carrier and the catalyst can be used efficiently. Furthermore, the amount of carbon in the electrode material can be reduced, and further compactness and increased power generation capacity can be expected.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は賦活後のアセチレンブラックを示す部分拡大断
面図、第2図は燃料電池セルの概略を示す分解斜視図で
ある。 6・・・触媒担体。 特許出願人       イビデン 株式会社代理人 
       弁理士  恩1)博宣味
FIG. 1 is a partially enlarged sectional view showing acetylene black after activation, and FIG. 2 is an exploded perspective view schematically showing a fuel cell. 6... Catalyst carrier. Patent applicant IBIDEN Co., Ltd. Agent
Patent Attorney On 1) Bosenmi

Claims (1)

【特許請求の範囲】 1 賦活処理を施したアセチレンブラックによって形成
されていることを特徴とする触媒担体。 2 比表面積が100〜500m^2/gであることを
特徴とする請求項1に記載の触媒担体。
[Scope of Claims] 1. A catalyst carrier characterized by being formed of acetylene black subjected to activation treatment. 2. The catalyst carrier according to claim 1, having a specific surface area of 100 to 500 m^2/g.
JP1048788A 1989-02-28 1989-02-28 Catalyst carrier Pending JPH02227138A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1048788A JPH02227138A (en) 1989-02-28 1989-02-28 Catalyst carrier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1048788A JPH02227138A (en) 1989-02-28 1989-02-28 Catalyst carrier

Publications (1)

Publication Number Publication Date
JPH02227138A true JPH02227138A (en) 1990-09-10

Family

ID=12812973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1048788A Pending JPH02227138A (en) 1989-02-28 1989-02-28 Catalyst carrier

Country Status (1)

Country Link
JP (1) JPH02227138A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013168309A (en) * 2012-02-16 2013-08-29 Toyota Motor Corp Fuel cell, catalyst ink, and method for manufacturing catalyst ink
JP2013209504A (en) * 2012-03-30 2013-10-10 Denki Kagaku Kogyo Kk Acetylene black and catalyst for fuel cell using the same
WO2016047775A1 (en) * 2014-09-26 2016-03-31 電気化学工業株式会社 Carbon black and fuel cell catalyst using same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013168309A (en) * 2012-02-16 2013-08-29 Toyota Motor Corp Fuel cell, catalyst ink, and method for manufacturing catalyst ink
JP2013209504A (en) * 2012-03-30 2013-10-10 Denki Kagaku Kogyo Kk Acetylene black and catalyst for fuel cell using the same
WO2016047775A1 (en) * 2014-09-26 2016-03-31 電気化学工業株式会社 Carbon black and fuel cell catalyst using same

Similar Documents

Publication Publication Date Title
Matsuki et al. Oxygen reduction electrocatalysis on some manganese oxides
Savadogo et al. Five percent platinum‐tungsten oxide‐based electrocatalysts for phosphoric acid fuel cell cathodes
JPS6120114B2 (en)
JPH10302804A (en) Gas dispersion electrode for polymeric membrane fuel cell
Maruyama et al. Fuel cell cathode catalyst with heme-like structure formed from nitrogen of glycine and iron
JPS58156B2 (en) Fuel cell with electrolyte retention matrix made of silicon carbide
JP3755840B2 (en) Electrode for polymer electrolyte fuel cell
JPS62163746A (en) Platinum alloy electrode catalyst and electrode for acidic electrolyte fuel cell using same
JP2000123842A (en) Fuel cell
JP3407320B2 (en) Polymer electrolyte fuel cell
JP2003157857A (en) Electrode catalyst body for fuel cell, air electrode for fuel cell using it, and evaluating method of its catalystic activity
JPH06140047A (en) Manufacture of carbon carrier for phosphoric acid type fuel cell catalyst
EP0101423A3 (en) Fuel cell anode
JP2000273351A (en) Preparation of graphitized carbon black
US3348974A (en) Fuel cell containing a metalliized paper electrode
JP2020047429A (en) Anode catalyst layer for fuel cell and fuel cell arranged by use thereof
JPH02227138A (en) Catalyst carrier
EP3855544A1 (en) Anode catalyst layer for fuel cell and fuel cell using same
JPH0258740B2 (en)
JPS58145609A (en) Manufacture of graphitizing carbon at low temperature by using boron and silicon
JPS6023962A (en) Electrode for fuel cell
WO2006112368A1 (en) Electrode catalyst for fuel cell and process for producing the same
CN108511766A (en) A kind of bifunctional electrocatalyst and preparation method thereof
JPH0888011A (en) Solid polymer electrolyte fuel cell
JP3873387B2 (en) Method for producing polymer electrolyte membrane-reaction part assembly