JPH02226691A - El display panel and drive method therefor - Google Patents

El display panel and drive method therefor

Info

Publication number
JPH02226691A
JPH02226691A JP1043332A JP4333289A JPH02226691A JP H02226691 A JPH02226691 A JP H02226691A JP 1043332 A JP1043332 A JP 1043332A JP 4333289 A JP4333289 A JP 4333289A JP H02226691 A JPH02226691 A JP H02226691A
Authority
JP
Japan
Prior art keywords
layer
voltage
pixel
electrodes
display panel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1043332A
Other languages
Japanese (ja)
Inventor
Katsuhiko Hirabayashi
克彦 平林
Masayoshi Ono
大野 正善
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP1043332A priority Critical patent/JPH02226691A/en
Publication of JPH02226691A publication Critical patent/JPH02226691A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Control Of El Displays (AREA)

Abstract

PURPOSE:To reduce the quantity of high voltage resistance ICs and reduce cost by applying the laminated construction of an electroluminescence layer and a photoconducting layer, alternately applying voltage to electrodes classified into a plurality of groups and displaying information via the shift of a luminous point within a display panel. CONSTITUTION:An Al rear electrode 7 is classified into groups (a), (b) and (c). The same group of electrodes is bundled and connected to drive power supplies A, B and C. Also, the rightmost picture element (i) is connected to a power supply I for writing data. In the aforesaid constitution, voltage is alternately applied to the electrode 7 and when one picture element becomes luminous, the photoconducting layer thereof drops in resistance and a picture element adjacent thereto turns to be luminous as well. As a result of the continuous occurrence of the aforesaid operation, a luminous point moves. According to the aforesaid construction, it is possible to display an arbitrary pattern by adding data to the picture element (i). Consequently, the quantity of high voltage resistance ICs can be reduced, thereby ensuring cost reduction.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は駆動方法が簡単で、低コストのEL表示・母ネ
ルに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an EL display/mother panel with a simple driving method and low cost.

〔従来の技術〕[Conventional technology]

近年、薄膜EL素子は高輝度、長寿命等の利点を有して
いることから、例えば平面デイスプレィなどの表示デバ
イスとして使用されつつある。特にZnS : Mn黄
橙色ELパネルは輝度が高く、視認性に優れているため
多くの分野に普及しつつある。
In recent years, thin film EL elements have been used as display devices such as flat displays because they have advantages such as high brightness and long life. In particular, ZnS:Mn yellow-orange EL panels have high brightness and excellent visibility, so they are becoming popular in many fields.

しかし駆動電圧が200v程度と高いため、高価な高耐
圧ICを電極の数だけ必要とし、薄膜E L/#ネルの
コストが高くなる。このため低電圧、低消費電力、低価
格の液晶デイスプレィに比べて広く一般に普及するのが
遅れている。
However, since the driving voltage is as high as about 200 V, expensive high-voltage ICs are required for the number of electrodes, which increases the cost of the thin film EL/# panel. For this reason, their widespread adoption has been delayed compared to low-voltage, low-power consumption, and low-cost liquid crystal displays.

駆動回路、駆動方法を簡単にするために、ELパネルに
メモリ機能を付与する研究が行われている。E L a
4ネル忙メモリ機能を付与する方法は2つある。従来の
第1の方法はZnS : Mn発光層のMn濃度を高く
する方法であり、従来の第2の方法はC′ase 、ア
モルファスSl、アモルファスSiC等の光伝導層と積
層する方法である。またELには薄膜ELの他に従来の
第3の方法によシ有機バインダに螢光体を分散させた分
散形ELがある。
In order to simplify the driving circuit and driving method, research is being conducted on adding memory functions to EL panels. EL a
There are two ways to provide the 4-channel busy memory function. The first conventional method is to increase the Mn concentration in the ZnS:Mn light-emitting layer, and the second conventional method is to stack it with a photoconductive layer of C'ase, amorphous Sl, amorphous SiC, or the like. In addition to the thin film EL, there is also a dispersed EL in which a phosphor is dispersed in an organic binder by a conventional third method.

なお、ここにELとはエレクトロルミネッセンスをいう
Note that EL here refers to electroluminescence.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、前記従来の第1および第2の方法により
、駆動方法は簡単になるが、依然として高耐圧ICの数
は同じだけ必要であるので、大幅には低価格化できない
という間理があった。
However, although the first and second conventional methods simplify the driving method, they still require the same number of high-voltage ICs, so there is a problem in that the price cannot be reduced significantly.

また従来の第3の方法の分散形EL素子は輝度が低く、
輝度−電圧特性が急峻なスイッチング特性を持たないこ
とから、液晶のバックライトとして用いられるのみであ
49XYマトリクス表示は行われていない・ 本発明の目的は、従来の単純XYマトリクス駆動に代え
て、後から詳記する如(、ELパネルをEL層と光伝導
層を積層した構造とし、各電極ごとに駆動回路を設ける
のでなく、交互に3群に電極を分は同じ群の電極を束ね
、それぞれに交互に電圧を印加し、信号電荷転送形個体
撮像素子(CCD)のごとく発光点をパネル内を移動さ
せたシ停止することによpELパネルに希望する情報を
表示して、駆動用の高耐圧ICの数を大幅に減少させ、
駆動方法を簡単にしコストを大幅に低下させることにあ
る。
Furthermore, the conventional third method of dispersion type EL elements has low brightness;
Since the luminance-voltage characteristic does not have a sharp switching characteristic, it is used only as a backlight for liquid crystals and 49XY matrix display is not performed.The purpose of the present invention is to replace the conventional simple XY matrix drive. As will be described in detail later, the EL panel has a structure in which an EL layer and a photoconductive layer are laminated, and instead of providing a drive circuit for each electrode, the electrodes are arranged alternately in three groups, and the electrodes in the same group are bundled. Voltage is alternately applied to each of them, and the light emitting point is moved within the panel like a signal charge transfer solid state image sensor (CCD).By stopping, the desired information is displayed on the pEL panel, and the driving Significantly reduces the number of high-voltage ICs,
The objective is to simplify the driving method and significantly reduce costs.

〔課題を解決するための手段〕[Means to solve the problem]

前記課題を解決するため、EL表示パネルを、EL層と
光伝導層を積層したEL表示パネルであって、EL層と
光伝導層の間に透明電極を有しこの電極が隣接する画素
とつながっており、さらに背面電極が交互に分かれた複
数群の電極群からなシ、これらの電極に交互に電圧が印
加され、所定の1画素の発光にともない上記光伝導層の
抵抗が低下して該所定の1画素に隣接する画素を発光せ
しめ、該発光動作が連続伝搬して起こらしめるようにE
L表示パネルを形成したのである。
In order to solve the above problems, an EL display panel is an EL display panel in which an EL layer and a photoconductive layer are laminated, and a transparent electrode is provided between the EL layer and the photoconductive layer, and this electrode is connected to an adjacent pixel. Furthermore, the back electrode is composed of a plurality of electrode groups divided alternately, and a voltage is applied alternately to these electrodes, and as a predetermined one pixel emits light, the resistance of the photoconductive layer decreases and the corresponding The E
This led to the formation of an L display panel.

〔作用〕[Effect]

前記の通りEL表示i+ネルを形成したので、駆動用の
高耐圧ICの数を大幅に減少でき、駆動方法が簡単とな
りコストを大幅に低下できるのである。
Since the EL display i+ channel is formed as described above, the number of high-voltage ICs for driving can be significantly reduced, the driving method can be simplified, and costs can be significantly reduced.

〔実施例〕〔Example〕

本発明の実施例を図面とともに説明する。 Embodiments of the present invention will be described with reference to the drawings.

本発明のきっかけとなったのはsiの信号電荷転送形固
体撮像素子の着想である。信号電荷転送形固体撮像素子
は非常に多くのXY電極を持つが、Y電極は3つの群に
分けて束ねられて接続されているため、駆動する回路は
3つで済む。これらの電極に交互に電圧を印加すること
により、撮像素子内に発生した空間電荷を、素子の面内
で走らせることができる。従って駆動用ICの数が少な
くて済み、駆動も簡単である。
The origin of the present invention was the idea of an Si signal charge transfer type solid-state image sensor. A signal charge transfer type solid-state image sensor has a large number of XY electrodes, but since the Y electrodes are divided into three groups and connected together, only three driving circuits are required. By alternately applying voltages to these electrodes, space charges generated within the image sensor can be caused to run within the plane of the element. Therefore, the number of driving ICs is small, and driving is simple.

本発明のE L ノ4ネルの基本的動作は上に記述した
Stの信号電荷転送形固体撮像素子と同じである。
The basic operation of the E L channel of the present invention is the same as that of the St signal charge transfer type solid-state imaging device described above.

すなわちEL層と光伝導層を積層したEL表示・母ネル
において、EL層と光伝導層の間に透明電極を有し、こ
の電極が隣接する画素とつながっている。さらに背面電
極が交互に分かれた3群の電極群からなり、これらの電
極に交互に電圧が印加され、1画素が発光した場合、そ
の光伝導層の抵抗が低下して隣接する画素も発光状態と
なる。この動作が連続で起きることにより、発光点が移
動して行く。
That is, in an EL display/main panel in which an EL layer and a photoconductive layer are laminated, a transparent electrode is provided between the EL layer and the photoconductive layer, and this electrode is connected to an adjacent pixel. Furthermore, the back electrode consists of three groups of electrodes separated alternately, and when a voltage is applied alternately to these electrodes and one pixel emits light, the resistance of the photoconductive layer decreases and the adjacent pixels also become emissive. becomes. As this operation occurs continuously, the light emitting point moves.

以下に好ましい態様として実施例1.2.3に分は詳細
に説明する。
Preferred embodiments will be described in detail in Examples 1.2.3 below.

実施例1 先ず本発明の基本的原理を説明する。本発明の最も簡単
な薄膜EL/ぐネルの断面構造を第1図に示す。1はガ
ラス基板、2は透明電極、3はCdSe光伝導層、4は
透明電極、5は5102絶縁層、6は薄膜EL層、7は
Aj背面電極であり、AL背面電極はa、b、c群に分
かれ、同じ群の電極は束ねられて、駆動電源A、B、C
(8)に接続されている。このE L i!ネルの最も
左の画素はデータ書き込み画素1であシ、データ書き込
み用電源Iに接続されている。第2図は駆動用電源のA
、B、Cおよび書き込み用電源Iの印加電圧のタイムチ
ャートである。第3図にEL層に印加される電圧と輝度
の関係を示す。電圧が隣の低抵抗状態の光伝導層を通じ
て印加された場合はEL層にはVの電圧が印加され、輝
度はBとなる。
Example 1 First, the basic principle of the present invention will be explained. The cross-sectional structure of the simplest thin film EL/gunnel of the present invention is shown in FIG. 1 is a glass substrate, 2 is a transparent electrode, 3 is a CdSe photoconductive layer, 4 is a transparent electrode, 5 is a 5102 insulating layer, 6 is a thin film EL layer, 7 is an AJ back electrode, and the AL back electrodes are a, b, The electrodes in the same group are bundled and driven by power sources A, B, and C.
(8). This EL i! The leftmost pixel of the channel is a data write pixel 1, which is connected to a data write power supply I. Figure 2 shows drive power supply A.
, B, C, and a time chart of the applied voltages of the writing power supply I. FIG. 3 shows the relationship between the voltage applied to the EL layer and the brightness. When a voltage is applied through the adjacent photoconductive layer in a low resistance state, a voltage of V is applied to the EL layer, and the brightness becomes B.

電圧が自らの低抵抗状態の光伝導層を通じて印加された
場合には、8102層にかかる電圧分(vsio)が除
かれた電圧(”’5io)が印加され、輝度はB′とな
る。また電圧が自らの高抵抗状態の光伝導層を通じて印
加された場合には、電圧はv−vsio−vcdseと
なシ、発光しない。図4にt1〜t4における発光点の
シフトの様子を示す。また第4図の画素に印加される電
圧、輝度を画素の下に示す。
When a voltage is applied through the photoconductive layer which is in its own low resistance state, a voltage ('5io) with the voltage applied to the 8102 layer (vsio) removed is applied, and the brightness becomes B'. When a voltage is applied through the photoconductive layer in its own high resistance state, the voltage becomes v-vsio-vcdse and no light is emitted. Figure 4 shows the shift of the light emitting point from t1 to t4. The voltage and brightness applied to the pixels in FIG. 4 are shown below the pixels.

透明電極2は常にアースされている。tlにおいて電圧
を印加すると画素iが発光し、下地のCdSe層の抵抗
が下がる。tlにおいて、画素■のAt電極に電圧が印
加され、画素■の透明電極4は画素iのCdSe層を通
じてアースに落ちるため、画素■のEL層には電圧Vが
印加され輝度Bで発光する。
Transparent electrode 2 is always grounded. When a voltage is applied at tl, pixel i emits light and the resistance of the underlying CdSe layer decreases. At tl, a voltage is applied to the At electrode of pixel (2), and the transparent electrode 4 of pixel (2) is grounded through the CdSe layer of pixel i, so voltage V is applied to the EL layer of pixel (2) and it emits light with a brightness of B.

画素■以外のb群の発光画素はCdSe層が高抵抗であ
り、絶縁層5io2を積層しているため、EL層には■
が印加されるのみであり発光しない。t2においては画
素lに電圧が印加されないので画素tは発光しない。ま
た画素■には5i02層を通して電圧V′が印加され輝
度B′で発光する。t、では画素■が発光を続けておシ
、さらに画素■のEL層には画素■のCdSeを通じて
電圧Vが印加され、画素■が輝度Bで発光する。以上の
動作を繰り返し、発光点があたかも左から右ヘシフトす
るように見える。
In the light emitting pixels of group b other than pixel ■, the CdSe layer has high resistance and the insulating layer 5io2 is laminated, so the EL layer has ■
is applied, and no light is emitted. At t2, no voltage is applied to pixel l, so pixel t does not emit light. Further, a voltage V' is applied to the pixel (2) through the 5i02 layer, so that it emits light with a brightness of B'. At t, the pixel (2) continues to emit light, and a voltage V is applied to the EL layer of the pixel (2) through the CdSe of the pixel (2), causing the pixel (2) to emit light at a brightness of B. By repeating the above operations, the light emitting point appears to shift from left to right.

以上は1次元の例について説明したが、これらを数10
個並べることによシー2次元の平面ディスグレイを実現
できる。すなわち左の書き込み画素にデータを与えてや
ることによシ、任意の・母ターンを左から右へシフトで
き、印加電圧を固定することにより、・母ターンを止め
ることもできる。この場合左端の画素X行を書き込むた
め、X桁分を駆動するための高耐圧ICが必要となる。
Above we have explained one-dimensional examples, but these can be expressed as
By arranging them, a two-dimensional planar disk gray can be realized. That is, by giving data to the left writing pixel, an arbitrary mother turn can be shifted from left to right, and by fixing the applied voltage, it is also possible to stop the mother turn. In this case, since X rows of leftmost pixels are written, a high voltage IC is required to drive X digits.

しかしY列を駆動するには、Yの数に関わらず3つの電
源で済むため、従来に比べて高耐圧ICの数を半分以下
に低減できる。
However, in order to drive the Y column, three power supplies are required regardless of the number of Y, so the number of high voltage ICs can be reduced to less than half compared to the conventional technology.

また本実施例では光伝導層が下地、EL発光層が上地の
例について説明したが、光伝導層が透明でない場合でも
本実施例は有効である。例えばアモルファスSlを下地
層に用いた場合、光がアモルファスSi層を通過しない
ので光はガラス方向からは取り出せない。このような場
合第5図に示すようにアモルファスStをパターニング
して光を取5出す窓を作製するか、あるいは第6図のご
とくアモルファスStを上地層に用いればよい。
Further, in this embodiment, an example in which the photoconductive layer is the underlayer and the EL light-emitting layer is the upper layer has been described, but this embodiment is also effective even when the photoconductive layer is not transparent. For example, when amorphous Sl is used as the underlayer, light does not pass through the amorphous Si layer, so light cannot be extracted from the glass direction. In such a case, amorphous St may be patterned to create a window for taking out light as shown in FIG. 5, or amorphous St may be used as the upper layer as shown in FIG. 6.

また本実施例では光伝導層としてCdSe 、アモルフ
ァスSiを用いたが、 SiCでも同様の効果がある。
Further, although CdSe and amorphous Si were used as the photoconductive layer in this embodiment, the same effect can be obtained using SiC.

また本実施例では薄膜形BILLについて説明したが、
これが分散形のELであってもなんら問題ない。
In addition, in this embodiment, a thin film type BILL was explained, but
There is no problem even if this is a distributed EL.

実施例2 実施例1では書き込み画素を左端に設けた1次元素子を
縦に並べて平面デイスプレィを実現した。
Example 2 In Example 1, a flat display was realized by vertically arranging primary elements with writing pixels provided at the left end.

ここで、は左上端に書き込み画素を1つ設けるのみで平
面表示できるパネルについて説明する。
Here, a panel will be described that can display a flat image by providing only one writing pixel at the upper left corner.

第7図は本発明の実施例2の平面デイスプレィの概略図
である。左上の画素はデータ書き込み画素である。断面
構造は実施例1と同じである。このパネルにデータを書
き込む様子を第8図に示す。
FIG. 7 is a schematic diagram of a flat display according to a second embodiment of the present invention. The upper left pixel is a data writing pixel. The cross-sectional structure is the same as in Example 1. FIG. 8 shows how data is written to this panel.

T1において電源■で書き込み画素を発光させてデータ
を入れ、次に電源A、B、Cを周期的に電圧を印加する
ことにより、実施例1のごとく発光点をシフトさせ、左
端のX行全体にデータを書き込む。T2でY列駆動電源
A/ 、 B/ 、 CIに電圧を1周期分印加しX行
にかかれたデータを右側へシフ)−t−る。T3でまた
新しいデータを左端のX行全体て書き込む。T4でこれ
らのデータを右側ヘシフトする。
At T1, the writing pixels are made to emit light using the power supply ■ to input data, and then by periodically applying voltages from the power supplies A, B, and C, the light emitting point is shifted as in Example 1, and the entire leftmost X row is Write data to. At T2, one cycle of voltage is applied to the Y column drive power supplies A/, B/, and CI, and the data applied to the X row is shifted to the right. At T3, new data is written to the entire leftmost X row. At T4, these data are shifted to the right.

以上の動作を繰シ返すことによシ、1つの書き込み画素
から、Aネル全体へデータを書き込むことができる。
By repeating the above operations, data can be written from one writing pixel to the entire A channel.

これによシ駆動回路は、書き込み画素用1つとX及びY
電極を駆動する6つが必要となるのみであシ、通常1個
の高耐圧ICで事足りる。
This requires one drive circuit for the write pixel and one for the X and Y pixels.
Only six ICs are required to drive the electrodes, and one high-voltage IC is usually sufficient.

実施例3 実施例1.2では、あたかもメツセージざ−ドのように
、書き込み情報が左から右ヘシフトしていくのが人間の
目で認識できる。これに対し、このような途中経過は人
間の目では認識できず、最終的な情報のみが認識できる
方法について説明する。
Embodiment 3 In Embodiment 1.2, the human eye can see that the written information shifts from left to right, just like a message card. In contrast, a method will be described in which such intermediate progress cannot be recognized by the human eye and only the final information can be recognized.

発光点がシフトするのを人間の目で認識できないように
するためには、シフトの速度を上げればよく、そのため
には印加電圧の・ぐルス幅を短くすればよい。但し、発
光の減衰時間より・臂ルス幅を短くすると、1周期のシ
フトが終了しても、本来発光が停止しなくてはいけない
画素がまだ発光状態であるので、全画素が発光してしま
うことになる。したがって印加電圧・セルス幅は減衰時
間と同程度までにしか短くできない。
In order to prevent the human eye from perceiving the shift of the light emitting point, it is sufficient to increase the speed of the shift, and for this purpose, the pulse width of the applied voltage may be shortened. However, if the arm pulse width is made shorter than the decay time of light emission, all pixels will emit light even after one cycle of shifting is completed, as pixels that should normally stop emitting light will still be in the light emitting state. It turns out. Therefore, the applied voltage and cell width can only be shortened to the same extent as the decay time.

第1表にそれぞれの発光層材料の減衰時間と1000画
素をシフトさせるのに必要な時間を示す0 ZnS : Mn e ZnS : TbF3系では1
.0.0.5 secの時間を要するので人間の目でシ
フトの様子が認識できる。これに対し、CaS : m
u 、 SrS : Ce系では0.01secで操作
できるので人間の目にはシフトの様子が認識できない。
Table 1 shows the decay time of each luminescent layer material and the time required to shift 1000 pixels.
.. Since a time of 0.0.5 seconds is required, the state of the shift can be recognized with the human eye. On the other hand, CaS: m
u, SrS: Since the Ce system can be operated in 0.01 sec, the shift cannot be recognized by the human eye.

このようにアルカリ土類系発光材料を用いることによシ
、発光点のシフトの様子を認識させず、表示できる。
By using an alkaline earth luminescent material in this manner, it is possible to display the shift of the luminescent point without making it perceptible.

〔発明の効果〕〔Effect of the invention〕

EL層と光伝導層を積層し、請求項1の如く構成するこ
とにより、駆動用の高耐圧ICの数を大幅に減らすこと
ができ、駆動方法が簡単となり、コストを大幅に低減で
きるという利点があるという効果がある。
By laminating the EL layer and the photoconductive layer and configuring it as claimed in claim 1, the number of high voltage ICs for driving can be significantly reduced, the driving method becomes simple, and the cost can be significantly reduced. There is an effect that there is.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例1の薄膜gLパネルの断面構成
図、 第2図は駆動用電源のA、B、Cおよび書き込み用電源
Iの印加電圧のタイムチャ7ト、第3図は本発明実施例
素子のEL層にかかる電圧と輝度の関係を示すグラフ、 第4図は実施例1の平面デイスプレィのt1〜t4にお
ける発光点のシフトの様子の説明図、第5図は本発明の
実施例1の平面デイスプレィの光伝導層としてa −S
tを用い、光取シ出し用に窓を設けた概略図、 第6図は本発明の実施例1の平面デイスプレィの光伝導
層としてa −Siを用い、下地にEL、層、上地に光
伝導層を設けた構造の概略図、第7図は本発明の実施例
2の平面デイスプレィの書き込み画素が左上の端に1つ
設けられている概略図、 第8図は本発明の実施例2の平面デイスプレィのT1〜
T4における光のシフトの様子を示す説明図である。 1・・・ガラス基板、2・・・透明電極、3・・・Cd
Se光伝導層、4・・・透明電極、5・・・5i02絶
縁層、6・・・薄膜EL層、7・・・At背面電極、a
、b、c・・・At背面電極7の分かれた群、8・・・
駆動電源、A、B、C・・・同じ群の電源が束ねられ筬
続された駆動電源、l・・・データ書き込み画素、■・
・・データ書き込み用電源。
Fig. 1 is a cross-sectional configuration diagram of a thin film gL panel according to Example 1 of the present invention, Fig. 2 is a time chart of applied voltages of drive power supplies A, B, and C and write power supply I, and Fig. 3 is a main A graph showing the relationship between the voltage applied to the EL layer and the brightness of the device according to the embodiment of the invention. FIG. 4 is an explanatory diagram of the shift of the light emitting point from t1 to t4 of the flat display of the embodiment 1. FIG. As the photoconductive layer of the flat display of Example 1, a-S
Fig. 6 is a schematic diagram of a planar display according to Example 1 of the present invention, in which a-Si is used as the photoconductive layer, an EL layer is used as the base layer, and a window is provided as the top layer. A schematic diagram of a structure provided with a photoconductive layer, FIG. 7 is a schematic diagram of a flat display according to a second embodiment of the present invention, in which one writing pixel is provided at the upper left corner, and FIG. 8 is an embodiment of the present invention. 2 flat display T1~
FIG. 3 is an explanatory diagram showing how light shifts at T4. 1...Glass substrate, 2...Transparent electrode, 3...Cd
Se photoconductive layer, 4... Transparent electrode, 5... 5i02 insulating layer, 6... Thin film EL layer, 7... At back electrode, a
, b, c...Divided groups of At back electrodes 7, 8...
Drive power supplies, A, B, C... Drive power supplies in which the same group of power supplies are bundled and connected, l... Data writing pixels, ■.
...Power supply for data writing.

Claims (1)

【特許請求の範囲】 1 ガラス基板上に順次積層された透明電極と、光伝導
層と、マトリックス状に配列され薄膜EL層・背面電極
及び絶縁層を介して設けた透明電極とにより形成される
複数群の画素と該画素群を順次駆動する駆動手段とデー
タを入力するデータ書き込み画素とにより構成されたこ
とを特徴とするEL表示パネル 2 EL層と光伝導層を積層したEL表示パネルであっ
て、EL層と光伝導層の間に透明電極を有しこの電極が
隣接する画素とつながっており、さらに背面電極が交互
に分かれた複数群の電極群からなり、これらの電極に交
互に電圧が印加され、所定の1画素の発光にともない上
記光伝導層の抵抗が低下して該所定の1画素に隣接する
画素を発光せしめ、該発光動作が連続伝搬して起こらし
めることを特徴としたEL表示パネルの駆動方法
[Scope of Claims] 1. Formed by transparent electrodes sequentially laminated on a glass substrate, a photoconductive layer, and transparent electrodes arranged in a matrix and provided through a thin film EL layer, a back electrode, and an insulating layer. EL display panel 2 comprising a plurality of groups of pixels, driving means for sequentially driving the pixel groups, and data writing pixels for inputting data.An EL display panel in which an EL layer and a photoconductive layer are laminated. A transparent electrode is provided between the EL layer and the photoconductive layer, and this electrode is connected to an adjacent pixel, and the back electrode is composed of multiple groups of electrodes separated alternately, and a voltage is applied alternately to these electrodes. is applied, and as a predetermined pixel emits light, the resistance of the photoconductive layer decreases, causing pixels adjacent to the predetermined pixel to emit light, and the light emitting operation is caused to occur through continuous propagation. How to drive an EL display panel
JP1043332A 1989-02-27 1989-02-27 El display panel and drive method therefor Pending JPH02226691A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1043332A JPH02226691A (en) 1989-02-27 1989-02-27 El display panel and drive method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1043332A JPH02226691A (en) 1989-02-27 1989-02-27 El display panel and drive method therefor

Publications (1)

Publication Number Publication Date
JPH02226691A true JPH02226691A (en) 1990-09-10

Family

ID=12660880

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1043332A Pending JPH02226691A (en) 1989-02-27 1989-02-27 El display panel and drive method therefor

Country Status (1)

Country Link
JP (1) JPH02226691A (en)

Similar Documents

Publication Publication Date Title
JP4702459B2 (en) Liquid crystal display device assembly and driving method of liquid crystal display device assembly
US6987365B2 (en) Light-emitting device, and electric device using the same
CN101673518B (en) Liquid crystal display device and driving method thereof
CN111243496B (en) Pixel circuit, driving method thereof and display device
CN107154239A (en) A kind of image element circuit, driving method, organic electroluminescence display panel and display device
KR20000064789A (en) Active Matrix Electroluminescent Display and Driving Method
CN100530313C (en) Electroluminescent display devices
CN109872684B (en) Display panel, display device and driving method of display panel
JP2003043952A (en) Scan structure of display device, its driving method and its manufacturing method
CN110706653A (en) Drive circuit, display panel, drive method and display device
CN113223420A (en) Display panel and display device
CN108776789A (en) Display panel and display device
CN207149230U (en) A kind of display panel and display device
CN112466244B (en) Display panel and display device
KR100578843B1 (en) Display apparatus and driving method thereof
CN110687731A (en) Display panel, driving method and display device
CN113870771A (en) Display panel and display device
JP2005122183A (en) Electro-luminescence display device
CN114974084B (en) Driving circuit and method of display unit and display device
KR20120068425A (en) Liquid crystal display and low power driving method thereof
TWI771895B (en) Pixel circuit and driving method thereof
JPH02226691A (en) El display panel and drive method therefor
JP2007065614A (en) Electroluminescence display device and driving method therefor, and electroluminescence display panel
JP2628766B2 (en) Driving method of thin film EL display device
KR100459166B1 (en) driving circuit of current driving display element