JPH02226043A - Reaction measuring apparatus - Google Patents

Reaction measuring apparatus

Info

Publication number
JPH02226043A
JPH02226043A JP4613789A JP4613789A JPH02226043A JP H02226043 A JPH02226043 A JP H02226043A JP 4613789 A JP4613789 A JP 4613789A JP 4613789 A JP4613789 A JP 4613789A JP H02226043 A JPH02226043 A JP H02226043A
Authority
JP
Japan
Prior art keywords
frequency
reaction
relays
oscillating
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4613789A
Other languages
Japanese (ja)
Inventor
Hiroshi Muramatsu
宏 村松
Masayuki Suda
正之 須田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP4613789A priority Critical patent/JPH02226043A/en
Publication of JPH02226043A publication Critical patent/JPH02226043A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

PURPOSE:To shorten the measuring time by connecting an oscillating circuit to each of a plurality of cells provided with a piezoelectric oscillator, selecting one of the output signals from said oscillating circuit through a high frequency relay to measure the oscillating frequency, whereby a plurality of samples are measured through sequential switching over of said relays. CONSTITUTION:Quartz oscillators 11...1n are provided in a plurality of cells 21...2n fixed within a thermostat 3 so that one surface of each quartz oscillator is in touch with a liquid. Electrodes of quartz oscillators 11...1n are connected to respective oscillating circuits 41...4n. Output signals from the oscillating circuits 41...4n are led into a frequency counter 6 through respective high frequency relays 51...5n. Further, a microcomputer 7 is connected to the counter 6, and is also connected with a recording device 8, a display device 9, a key switch 10 and a relay driving circuit 11. One of the output signals from the oscillating circuits 41...4n is selected by the relays 51...5n for measurement. Therefore, by switching over the relays 51...5n sequentially, a plurality of samples can be measured simultaneously.

Description

【発明の詳細な説明】 〔産業上の利用分野) この発明は、化学、物理化学、生化学および食品、医療
、化学工業分野における反応計測を行う装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an apparatus for measuring reactions in the fields of chemistry, physical chemistry, biochemistry, food, medicine, and chemical industry.

〔発明の概要J この発明の反応計測装置は、片面に液体が接するように
した圧電振動子、特に水晶振動子を複数同時に使用し、
複数の液体の反応を同時に計測する装置である。この装
置は、圧電振動子を配置した複数個のセルと、これと同
数の発振回路と高周波リレー、および、周波数測定回路
、データ処理料(It表装置よび恒温槽より構成されて
いる。
[Summary of the Invention J The reaction measuring device of the present invention simultaneously uses a plurality of piezoelectric vibrators, particularly crystal vibrators, each of which is in contact with a liquid on one side,
This is a device that measures reactions of multiple liquids simultaneously. This device consists of a plurality of cells in which piezoelectric vibrators are arranged, the same number of oscillation circuits and high-frequency relays, a frequency measurement circuit, a data processing device (It table device, and a constant temperature oven).

この反応計測装置は、圧電振動子の発振周波数変化から
、液体の粘性変化や圧電振動子表面への吸着反応、沈降
反応などを計測するものである。
This reaction measuring device measures changes in the viscosity of a liquid, adsorption reactions on the surface of a piezoelectric vibrator, sedimentation reactions, etc. from changes in the oscillation frequency of the piezoelectric vibrator.

本装置において、複数の圧電振動子それぞれに発振回路
が接続されており、その出力信号は、高周波リレーを介
し、そのうち1つの信号が選択され、周波数カウンター
で発振周波数が測定される。そして、リレーを順次切り
替えることによって、複数の試料の測定を同時に行なえ
るようにしたものである。
In this device, an oscillation circuit is connected to each of the plurality of piezoelectric vibrators, and the output signals thereof are sent through a high frequency relay, one of the signals is selected, and the oscillation frequency is measured by a frequency counter. By sequentially switching the relays, multiple samples can be measured simultaneously.

〔従来の技術〕[Conventional technology]

本発明の反応計測の対象としては、粘度変化が最も重要
である。従来、粘度測定には、細管法、回転法などが用
いられてきた。細管法は、試料液体が細管を落下する速
度から粘度を求めるものである。また、回転法は、試料
液中で円筒状の金属棒を回転させ、せん断応力を求める
ことによって、粘度を求めるものである。また、この反
応がゲル化反応である場合には、試料の濁度を光学的に
測定する方法、機械的な振動を与えゲル化による粘性変
化を検知する方法が取られていた。
The most important target for reaction measurement in the present invention is viscosity change. Conventionally, the capillary method, the rotation method, etc. have been used to measure viscosity. The capillary method determines the viscosity from the rate at which a sample liquid falls through a capillary. In addition, the rotation method is a method for determining viscosity by rotating a cylindrical metal rod in a sample liquid and determining shear stress. If this reaction is a gelation reaction, methods have been used to optically measure the turbidity of the sample, or to apply mechanical vibrations to detect changes in viscosity due to gelation.

【発明が解決しようとする課題] 従来の粘度測定法では、少量の試料では測定できないと
いう問題があり、測定に時間がかかり。
[Problems to be Solved by the Invention] Conventional viscosity measurement methods have the problem of not being able to measure a small amount of sample, and the measurement takes time.

反応に伴う変化を測定することは不可能であった。また
2ゲル化反応の測定では、従来の濁度を測定する方法の
場合1着色試料の測定には不向きであり、塩析によって
大きな誤差を生じるという問題点と光学的測定系を含む
ためにシステムが複雑になるという問題点があった。さ
らに、光学的な方法は、直接ゲル化を測定するものでな
いため、正確な測定法とはい人なかった。また、機械的
な振動を与える方法では、機械部分があるため小型軽量
化が雑しいという問題があった。これらの点に加え、い
ずれの方法も、最低0.2ml程度の試料を必要とする
という問題があった。
It was not possible to measure changes associated with the response. In addition, when measuring gelation reactions, the conventional method for measuring turbidity is unsuitable for measuring colored samples, and the problem is that large errors occur due to salting out, and the system requires an optical measurement system. The problem was that it became complicated. Furthermore, since the optical method does not directly measure gelation, it has not been considered an accurate measurement method. Furthermore, the method of applying mechanical vibrations has the problem that it is difficult to reduce the size and weight of the device due to the presence of mechanical parts. In addition to these points, each method has the problem of requiring a sample of at least about 0.2 ml.

本発明者らによって考案された水晶振動子による測定法
は、0.2ml以下の試料を測定することが可能であり
、システムの小型化も可能であるが、これまで、1つず
つ測定を行っているため、長い反応時間を要する試料で
は、処理能力の点で問題があった。
The measurement method using a crystal oscillator devised by the present inventors is capable of measuring samples of 0.2 ml or less, and it is also possible to downsize the system. Therefore, there was a problem in terms of throughput for samples that required a long reaction time.

[課題を解決するための手段) 上記課題を解決するために、本発明は、圧電振動子を検
出素子とする反応計測装置に複数の水晶振動子を用い、
同時に複数の反応計測を行う装置を考案した。この反応
計測装置は、片面に液体が接するようにした圧!振動子
、特に水晶振動子な?jl数同時に使用し、複数の液体
の反応を同時に計測する装置を考案した。この装置は、
圧電振動子を配置した複数のセルと、これと同数の発振
回路と高周波リレー、および、周波数測定回路、データ
処理制御装置および恒温槽より構成した。
[Means for Solving the Problems] In order to solve the above problems, the present invention uses a plurality of crystal oscillators in a reaction measuring device using a piezoelectric oscillator as a detection element,
We devised a device that can measure multiple reactions simultaneously. This reaction measuring device measures pressure so that liquid is in contact with one side! A resonator, especially a crystal resonator? We devised a device that uses jl numbers simultaneously to measure the reactions of multiple liquids at the same time. This device is
It consists of multiple cells with piezoelectric vibrators arranged, the same number of oscillation circuits and high-frequency relays, a frequency measurement circuit, a data processing control device, and a constant temperature oven.

〔作用1 圧電振動子は、圧電効果を利用したデバイスであり、発
振回路と接続することによって、発振させることができ
る。この際、圧電振動子の表面は、微小な振動を起こす
、このため振動子は、表面に物質が接することによって
、この振動に影響が及び、発振周波数の変化として反映
されてくる。ゆ久に、液体の粘性変化、物質の吸着、沈
降による物質堆積の測定を行うことが可能である。
[Operation 1 A piezoelectric vibrator is a device that utilizes the piezoelectric effect, and can be caused to oscillate by connecting it to an oscillation circuit. At this time, the surface of the piezoelectric vibrator generates minute vibrations, so when a substance comes into contact with the surface of the vibrator, this vibration is affected and reflected as a change in the oscillation frequency. For a long time, it has been possible to measure changes in the viscosity of liquids, adsorption of substances, and accumulation of substances due to sedimentation.

この圧電振動子と発振回路を複数個並べ5発振回路から
出力される発振周波数の信号をリレーで切り賛え1周波
数カウンターで測定することによって、複数の反応を同
時に測定することができる。
By arranging a plurality of piezoelectric vibrators and oscillation circuits and using a relay to receive the oscillation frequency signals output from the five oscillation circuits and measuring them with one frequency counter, it is possible to simultaneously measure a plurality of reactions.

〔実施例j 以下、この発明の実施例を図面に基づいて説明する。第
1図は、本発明の反応計測装置の一実施例を示す模式図
を示したものである。第1図において1両面に電極が形
成された水晶振動子112、・・・、17は、一方の面
が液体に接するようにセル2+、2*、・・・、2.に
設置され、そのセル23.2t 、・・・、2.、は恒
温I13内に固定され、この水晶振動子1+−1g、・
・・、1、の電極が発振回路4+、4重、・・・、47
に接続されている0発振回路43.4□、・・・、47
は、高周波リレー58,5□、・・・、511を介し周
波数カウンター6に接続され、されにデータをモニター
するためのマイクロコンピュータ(入出力インタフェー
スを含む)7に接続され、マイクロコンピュータ7には
、記録装置8、表示装置9、キースイッチ10、リレー
駆動回路11が接続されている。
[Embodiment j] Hereinafter, an embodiment of the present invention will be described based on the drawings. FIG. 1 shows a schematic diagram showing an embodiment of the reaction measuring device of the present invention. In FIG. 1, crystal oscillators 112, . The cells 23.2t, . . . , 2. , is fixed in a constant temperature I13, and this crystal oscillator 1+-1g, ・
..., 1, electrode is oscillation circuit 4+, quadruple, ..., 47
0 oscillation circuit connected to 43.4□,...,47
are connected to the frequency counter 6 via high frequency relays 58, 5□, ..., 511, and then to a microcomputer (including an input/output interface) 7 for monitoring data. , a recording device 8, a display device 9, a key switch 10, and a relay drive circuit 11 are connected.

測定は、試料液体をセル2..2.、・・・、21中に
入れ1発振周波数測定開始のスイッチを入れ、測定を開
始し、最初の発振周波数を基準としてこの後に求めた発
振周波数との差をΔFとじて記録する。
For measurement, sample liquid is placed in cell 2. .. 2. . . 21, turn on the switch to start measuring the first oscillation frequency, start measurement, and record the difference between the first oscillation frequency as a reference and the oscillation frequency found thereafter as ΔF.

(エンドトキシン分析への応用) 9MH,−ATカット水晶振動子を用い、恒温槽を37
 Cとした本装置に、エンドトキシン試料0.2mlと
規定量のカブトガニ血液抽出物の凍結乾燥品とを混合し
、水晶振動子セル中に注入し1発振周波数の変化の測定
を行った。この操作を順次複数の水晶振動子について行
い同時にゲル化時間(周波数が変化しなくなるまでの時
間)の測定を行った。ゲル化時間の算出はデータ処理部
で行った。ゲル化時間はエンドトキシン濃度0゜1、−
1.0’ pg−ml−’の間で濃度に依存して変化し
た。また、試料量は、20ulでも測定が可能だった。
(Application to endotoxin analysis) Using a 9MH, -AT cut crystal oscillator, a thermostatic chamber was heated to 37°C.
0.2 ml of the endotoxin sample and a specified amount of freeze-dried horseshoe crab blood extract were mixed into the apparatus designated as C, and the mixture was injected into a quartz crystal cell, and the change in one oscillation frequency was measured. This operation was performed sequentially for a plurality of crystal oscillators, and the gelation time (the time until the frequency stopped changing) was measured at the same time. The gelation time was calculated by the data processing section. Gelation time is endotoxin concentration 0゜1, -
It varied depending on the concentration between 1.0'pg-ml-'. Furthermore, measurement was possible even with a sample amount of 20 ul.

さらに、本装置は粘度変化の他、吸着反応の計測にも使
用が可能である。一つの例として、水晶振動子へのアル
ブミンの連続的な吸着を発振周波数の変化で追跡できる
ことがわかった。
Furthermore, this device can be used to measure not only viscosity changes but also adsorption reactions. As an example, we found that the continuous adsorption of albumin to a quartz crystal can be tracked by changes in the oscillation frequency.

従って、吸着反応とゲル化反応が同時に起こる場合は、
ゲル化反応の速度をゲル化時間だけでなく、ゲル化終了
後の共振周波数変化の値から推定おいても同時に吸着反
応が進行し、エンドトキシン濃度に対するゲル化終了後
の発振周波数変化の値によってもエンドトキシン濃度の
計測が可能であった。
Therefore, if the adsorption reaction and gelation reaction occur simultaneously,
If we estimate the speed of the gelation reaction not only from the gelation time but also from the value of the change in resonance frequency after the end of gelation, we can estimate that the adsorption reaction is proceeding at the same time, and also by the value of the change in oscillation frequency after the end of gelation with respect to the endotoxin concentration. It was possible to measure endotoxin concentration.

(沈降反応測定への応用) 本発明の装置を用いて、0.05−100μmの微粒子
の沈降現象の測定を行うことが可能である。抗体を固定
化したポリスチレン粒子の沈降現象の測定を行った。抗
体を固定化したポリスチレン粒子に抗原を加えると、粒
子の凝集反応を起こす、この凝集反応のため粒径が大き
くなり、沈降速度が速くなる。従って、懸濁液の平均沈
降時間を比較することによって、試料の抗原量を求める
ことができる。
(Application to sedimentation reaction measurement) Using the apparatus of the present invention, it is possible to measure the sedimentation phenomenon of fine particles of 0.05 to 100 μm. The sedimentation phenomenon of polystyrene particles immobilized with antibodies was measured. When an antigen is added to polystyrene particles on which antibodies have been immobilized, the particles undergo an agglutination reaction. This agglutination reaction increases the particle size and increases the sedimentation rate. Therefore, by comparing the average sedimentation times of the suspensions, the amount of antigen in the sample can be determined.

抗ヒトIgGを固定化した0、5μmポリスチレン粒子
(1mg−ml−’)、0.2mlと0.2mlのヒト
IgG試料液(10−’−10mg−m1”l)を混合
し、得られた懸濁液を水晶振動子セルに注入し、発振周
波数の測定を行った。
0.2 ml of anti-human IgG-immobilized polystyrene particles (1 mg-ml-') and 0.2 ml of human IgG sample solution (10-'-10 mg-ml) were mixed to obtain the The suspension was injected into a crystal resonator cell, and the oscillation frequency was measured.

このとき全体の周波数変化の1/2に達したときの時間
を沈降時間として求めたところ、ヒトIgG試料液と沈
降時間の間に相関性が詔められた。この場合も本装置に
よって、同時に複数の測定を行うことができた。
At this time, when the time taken to reach 1/2 of the total frequency change was determined as the sedimentation time, a correlation was found between the human IgG sample solution and the sedimentation time. In this case as well, the present device was able to perform multiple measurements simultaneously.

(樹脂の硬化の測定) 第2図は、本発明の反応計測装置の他の実施例を示す模
式図である。
(Measurement of Curing of Resin) FIG. 2 is a schematic diagram showing another embodiment of the reaction measuring device of the present invention.

第2図において、水晶振動子I1.lt、・・・Inは
、水晶振動子の片面のみが試料に接するようにした構造
のセル2..2.、・・・、2.1に設置されており、
硬化前の樹脂12が入った容器13の中に配置されてい
る。容器13は恒温槽3の中に入れられ、温度がコント
ロールされる。エポキシ樹脂を使用し、測定を行ったと
ころ、pA脂砂硬化したがい周波数の現象が観測され、
水晶振動子の位置と周波数変化との対比から、硬化の進
行についての知見を得ることができた。
In FIG. 2, crystal oscillator I1. lt, . .. 2. , ..., is installed in 2.1,
It is placed in a container 13 containing resin 12 before hardening. The container 13 is placed in a constant temperature bath 3, and the temperature is controlled. When measuring using epoxy resin, a frequency phenomenon was observed as pA oil sand hardened.
By comparing the position of the crystal oscillator and frequency changes, we were able to obtain knowledge about the progress of hardening.

以上の実施例において、水晶振動子は1MHz−20M
Hzまで使用可能であった。また、lKHz −10M
Hzの圧電セラミックス振動子も使用可能であった5ま
た、セル付き圧電振動子は容易に装置から着脱でき、使
い捨てにすることが可能である。
In the above embodiments, the crystal resonator is 1MHz-20M
It was usable up to Hz. Also, lKHz -10M
Hz piezoelectric ceramic vibrators could also be used.5 Furthermore, piezoelectric vibrators with cells can be easily attached and removed from the device and can be disposable.

〔発明の効果1 本発明の粘度測定装置によって、きわめて少量の液体試
料の反応の測定が同時に複数、また、容器中の変化を複
数の場所で測定することができるようになった。また、
本装置は機械的な部分がないので、振動などの影響を受
けず、高い精度で再現性良い測定が可能となるとともに
小型軽量化することが可能であった。
[Effect of the Invention 1] The viscosity measuring device of the present invention makes it possible to simultaneously measure the reactions of extremely small amounts of liquid samples in multiple locations, and to measure changes in the container at multiple locations. Also,
Since this device does not have any mechanical parts, it is not affected by vibrations, allows for highly accurate and reproducible measurements, and is also able to be made smaller and lighter.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の反応計測装置の一実施例を示す模式図
、第2図は本発明の反応計測装置に他の実施例を示す模
式図である。 以上 ネ光明の反兄訂」・1罠lの4仇の大徳例と示T楳式図
第 図
FIG. 1 is a schematic diagram showing one embodiment of the reaction measuring device of the present invention, and FIG. 2 is a schematic diagram showing another embodiment of the reaction measuring device of the present invention. The above is an example of the great virtues of the 4 enemies of 1 trap 1

Claims (4)

【特許請求の範囲】[Claims] (1)圧電振動子を配置した複数個のセルと、これと同
数の発振回路と高周波リレー、および、周波数測定回路
、データ処理制御装置および恒温槽より構成される反応
計測装置。
(1) A reaction measurement device consisting of a plurality of cells in which piezoelectric vibrators are arranged, the same number of oscillation circuits and high-frequency relays, a frequency measurement circuit, a data processing control device, and a constant temperature bath.
(2)上記圧電振動子がATカット水晶振動子である請
求項1記載の反応計測装置。
(2) The reaction measuring device according to claim 1, wherein the piezoelectric vibrator is an AT-cut crystal vibrator.
(3)上記データ処理制御装置が、マイクロコンピュー
ター、キー入力スイッチ、表示装置、記録装置、入出力
信号インターフェース、リレー駆動回路より構成される
請求項1記載の反応計測装置。
(3) The reaction measuring device according to claim 1, wherein the data processing control device comprises a microcomputer, a key input switch, a display device, a recording device, an input/output signal interface, and a relay drive circuit.
(4)上記圧電振動子が、上記恒温槽中で使用される構
造である請求項1記載の反応計測装置。
(4) The reaction measuring device according to claim 1, wherein the piezoelectric vibrator has a structure to be used in the thermostatic oven.
JP4613789A 1989-02-27 1989-02-27 Reaction measuring apparatus Pending JPH02226043A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4613789A JPH02226043A (en) 1989-02-27 1989-02-27 Reaction measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4613789A JPH02226043A (en) 1989-02-27 1989-02-27 Reaction measuring apparatus

Publications (1)

Publication Number Publication Date
JPH02226043A true JPH02226043A (en) 1990-09-07

Family

ID=12738591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4613789A Pending JPH02226043A (en) 1989-02-27 1989-02-27 Reaction measuring apparatus

Country Status (1)

Country Link
JP (1) JPH02226043A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018048865A (en) * 2016-09-21 2018-03-29 パナソニックIpマネジメント株式会社 Resistance measurement device and method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62288547A (en) * 1986-06-06 1987-12-15 Seiko Instr & Electronics Ltd Apparatus for analyzing living body-related substance, bacterium and cell
JPS63171340A (en) * 1987-01-09 1988-07-15 Shimadzu Corp Crystal oscillator type moisture meter
JPS6447932A (en) * 1987-08-19 1989-02-22 Seiko Instr & Electronics Viscosity measuring apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62288547A (en) * 1986-06-06 1987-12-15 Seiko Instr & Electronics Ltd Apparatus for analyzing living body-related substance, bacterium and cell
JPS63171340A (en) * 1987-01-09 1988-07-15 Shimadzu Corp Crystal oscillator type moisture meter
JPS6447932A (en) * 1987-08-19 1989-02-22 Seiko Instr & Electronics Viscosity measuring apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018048865A (en) * 2016-09-21 2018-03-29 パナソニックIpマネジメント株式会社 Resistance measurement device and method thereof
US10302582B2 (en) * 2016-09-21 2019-05-28 Panasonic Intellectual Property Management Co., Ltd. Resistance-measurement apparatus and method for measuring resistance of powdery materials

Similar Documents

Publication Publication Date Title
US8448496B2 (en) Piezoelectric coagulation sensors
Kößlinger et al. A quartz crystal biosensor for measurement in liquids
Benes et al. Comparison between BAW and SAW sensor principles
EP0177858B1 (en) Ultrasonic coagulation monitor and method
GB2236591A (en) Vibrating element apparatus for fluid density and/or viscosity determination
US5211054A (en) Method and system for analyzing a gelation reaction by utilizing a piezoelectric resonator
JPS63243877A (en) Method and apparatus for detecting antigen-antibody reaction
JP4083621B2 (en) Analysis method using vibrator
CA2271179A1 (en) Process for monitoring and detecting small molecule - biomolecule interactions
EP1034430A1 (en) Sensor for detecting biological matter
KR20100133254A (en) Saw sensor device
EP0304283B1 (en) Apparatus for measuring a characteristic of a liquid
JPH02226043A (en) Reaction measuring apparatus
JPH03257346A (en) Apparatus for measuring reaction
JP2010044075A (en) Wave motion sensor device with gas removal unit and method for detecting target substance in liquid sample
JPH049744A (en) Quartz vibrator cell
JP4755965B2 (en) Method of stirring liquid using quartz crystal
JP4009221B2 (en) Analysis method using vibrator
Ogi et al. Replacement-free electrodeless quartz crystal microbalance biosensor using nonspecific-adsorption of streptavidin on quartz
JPH03165235A (en) Reaction measuring instrument
JPH01311250A (en) Method and device for measuring fluid viscosity
JP3631373B2 (en) Immunoassay and immunoassay apparatus
Chang et al. Determination of coagulation time in whole blood containing anticoagulant by piezoelectric quartz crystal sensor
da Silva Granja et al. Characterisation of particle-surface interactions via anharmonic acoustic transduction
Ohashin et al. Temperature control of a droplet on disposable type microfluidic system based on a surface acoustic wave device for blood coagulation monitoring