JPS62288547A - Apparatus for analyzing living body-related substance, bacterium and cell - Google Patents

Apparatus for analyzing living body-related substance, bacterium and cell

Info

Publication number
JPS62288547A
JPS62288547A JP13148286A JP13148286A JPS62288547A JP S62288547 A JPS62288547 A JP S62288547A JP 13148286 A JP13148286 A JP 13148286A JP 13148286 A JP13148286 A JP 13148286A JP S62288547 A JPS62288547 A JP S62288547A
Authority
JP
Japan
Prior art keywords
living body
cell
cells
analyzer
quartz vibrator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13148286A
Other languages
Japanese (ja)
Inventor
Masao Karube
征夫 軽部
Hiroshi Muramatsu
宏 村松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP13148286A priority Critical patent/JPS62288547A/en
Priority to EP86307115A priority patent/EP0215669A3/en
Priority to US06/908,371 priority patent/US4789804A/en
Publication of JPS62288547A publication Critical patent/JPS62288547A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To analyze a plurality of living body-related substances, bacteria and cells continuously and rapidly with high sensitivity, by providing a plurality of quartz vibrator biosensors and using a quartz vibrator not subjected to immobilizing treatment as a reference sensor. CONSTITUTION:An apparatus for analyzing the temp. or components of a living body-related substance on the basis of the change in frequency due to the change in the wt. of the surface of a quartz vibrator is an analyzer of living body- related substances, bacteria and cells having a plurality of quartz vibrators. That is, by an analyzer wherein a plurality of quartz vibrator biosensors 1 capable of analyzing living body-related substances with high sensitivity are used to analyze living body related substances, bacteria and cells can be analyzed with higher sensitivity. Further, by an analyzer using a quartz vibrator 1 wherein any immobilizing treatment is not applied to the surface thereof as a reference sensor, the shift of oscillation frequency due to the effect of short-term aging, the conductivity of a solution or temp. is removed make it possible to perform accurate measurement.

Description

【発明の詳細な説明】 3、発明の詳細な説明 〔産業上の利用分野〕 本発明は、生体関連物質、微生物および細胞の分析装置
に関する。
Detailed Description of the Invention 3. Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a device for analyzing biological substances, microorganisms, and cells.

〔発明の概要〕[Summary of the invention]

それぞれ異なる物質を固定化または化学的処理をした複
数の水晶振動子バイオセンサーを有する生体関連物質等
の測定装置によって、複数の生体関連物質の測定を可能
にした。また、何も固定化されていない水晶振動子を参
照用のセンサーとして用いた生体関連物質の測定装置に
よって非定常状態での発振周波数から参照用水晶振動子
との周波数を求めることによって迅速な測定が可能とな
った。
It has become possible to measure a plurality of biologically related substances by using a measuring device for measuring biologically related substances, etc., which has a plurality of quartz crystal biosensors, each of which has a different substance immobilized or chemically treated. In addition, by using a bio-related substance measuring device that uses an unfixed crystal oscillator as a reference sensor, quick measurements can be made by determining the frequency with the reference crystal oscillator from the oscillation frequency in an unsteady state. became possible.

〔従来の技術〕[Conventional technology]

生体関連物質等の測定方法としては、これまで主に液体
クロマトグラフィーや電気泳動法、凝集を直接肉眼で確
認する方法などが用いられていた。
Up until now, liquid chromatography, electrophoresis, and direct visual confirmation of aggregation have been used as methods for measuring biological substances.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

これらの方法は、測定悪疫が低い、測定法が煩雑であっ
たり、測定に時間がかかるという問題点があった。
These methods have problems in that the measurement rate is low, the measurement method is complicated, and the measurement takes time.

〔問題点を解決するための手段〕[Means for solving problems]

本発明では、高感度な生体物質の分析が可能である水晶
振動子バイオセンサーを複数使用し、生体関連物質また
は微生物、細胞の分析装置によって、さらに高感度な複
数の生体関連成分や微生物・細胞の分析が可能となった
。また、表面になにも固定化等の処理を行っていない水
晶振動子を参照用センサーとして用いた分析装置によっ
て発振周波数の短期的なエージングや溶液の導電率や温
度の影響による周波数のずれを取り除いて測定すること
ができるようになり、迅速な測定が可能となった。
In the present invention, a plurality of quartz crystal biosensors capable of highly sensitive analysis of biological substances are used, and an analyzer for biological substances, microorganisms, and cells is used to analyze biological substances, microorganisms, and cells with even higher sensitivity. analysis became possible. In addition, using an analyzer that uses a quartz crystal resonator whose surface has not been subjected to any fixation or other treatment as a reference sensor, we can detect short-term aging of the oscillation frequency and frequency shifts due to the effects of the conductivity and temperature of the solution. It is now possible to remove and measure, making rapid measurements possible.

〔作用〕[Effect]

本発明の分析装置により、高感度な複数生体関連物質や
微生物・細胞の分析が連続的に迅速に行えるようになっ
た。
With the analyzer of the present invention, highly sensitive analyzes of multiple biological substances, microorganisms, and cells can be performed continuously and quickly.

〔実施例〕〔Example〕

(ABO式血液型センサー) 以下、図面に従い本発明のABO式血液型センサーへの
応用について詳述する。
(ABO blood type sensor) Hereinafter, the application of the present invention to an ABO blood type sensor will be described in detail with reference to the drawings.

第1図(alは、水晶振動子バイオセンサーとセルの斜
視図である。水晶振動子1はATカット9M11zのも
のを用いた。各水晶振動子1の両面には電極2が設けら
れており、それぞれの電極2にはり−ド3が接続されて
いる。前記水晶振動子1を覆う様にセル4が設けられ、
該セルには該セル中に液をil過させる為にパイプ5が
取り付けられている。前記リード3は該セル4の外部へ
引き出されている。ま吹、第1図(blは、水晶振動子
1としてGTカット4 M IIZのものを用いた水晶
振動子バイオセンサーとセルの斜視図である。この4つ
の水晶振動子のうち3つの振動子にそれぞれ、リママメ
レクチン、ハンディラマメレクチン11ハリエニシダレ
クチン■を固定化した。
FIG. 1 (Al is a perspective view of a crystal oscillator biosensor and a cell. The crystal oscillator 1 used is an AT cut 9M11z. Electrodes 2 are provided on both sides of each crystal oscillator 1. , a beam 3 is connected to each electrode 2.A cell 4 is provided so as to cover the crystal resonator 1,
A pipe 5 is attached to the cell to allow liquid to pass through the cell. The lead 3 is led out of the cell 4. Figure 1 (bl is a perspective view of a crystal oscillator biosensor and cell using a GT cut 4M IIZ crystal oscillator 1. Three of these four crystal oscillators Lima bean lectin, handicraft lance lectin 11, and gorse lectin ■ were immobilized on the plates, respectively.

第1図(C1は、水晶振動子を用いた生体関連物質測定
装面の概略を示したものである。水晶振動子Iの表面上
に設けられた電極2からのびたり−ド3は、発振回路6
に接続されており、また該発振回路6は、周波数カウン
タ7に接続されている。
Fig. 1 (C1 shows the outline of a biologically related substance measuring device using a crystal resonator.A electrode 3 extending from an electrode 2 provided on the surface of the crystal resonator I is used for oscillation. circuit 6
The oscillation circuit 6 is connected to a frequency counter 7.

前記水晶振動子1の外部を取り凹むセル4に設けられた
パイプ5の一方は該セル4中に液を通過される為のポン
プ9が接続されている。パイプ5の他の一端は電磁バル
ブ10の出口に接続されている。電磁弁の入口は、もう
1つの電磁弁11とサンプル注入口12に接続されてい
る。電磁弁11の入口は、pH7,5,0,05MIJ
ン酸1夏衝ン夜だめ13とp H7,5,0,1Mα−
L−フコース、0.1MN−アセチル−D−グルコサミ
ン?容?(lzだめ14に接続されている。前記周波数
カウンタ7、定量ポンプ9および@磁弁10,11はコ
ンピュータに接続され、測定および制御が行われた。
A pump 9 for passing liquid into the cell 4 is connected to one side of a pipe 5 provided in a cell 4 that takes in the outside of the crystal resonator 1. The other end of the pipe 5 is connected to the outlet of the electromagnetic valve 10. The inlet of the solenoid valve is connected to another solenoid valve 11 and to a sample inlet 12 . The inlet of the solenoid valve 11 has a pH of 7.5, 0.05 MIJ.
pH 7,5,0,1Mα-
L-fucose, 0.1M N-acetyl-D-glucosamine? Yong? (The frequency counter 7, metering pump 9, and magnetic valves 10 and 11 were connected to a computer for measurement and control.

水晶振動子バイオセンサーの作成は以下の手法に従った
。まず、水晶振動子の電極表面をパラジウムメッキし、
0.5N  NaOH中で1時間陽極酸化した。
The quartz crystal biosensor was created according to the following method. First, the electrode surface of the crystal resonator is plated with palladium,
Anodized in 0.5N NaOH for 1 hour.

次に、5%トリシルクロライド、1.2%ピリジンを含
むアセトン溶液で30分間処理を行い、5mMHcj!
で洗浄した。レクチンの固定化は、それぞれl mg/
m lに溶解させたレクチン溶液に水晶振動子を1時間
浸漬することによって行った。さらに0.1Mグリシン
溶液で30分間反応させ未反応店の処理を行った。
Next, treatment was performed for 30 minutes with an acetone solution containing 5% trisyl chloride and 1.2% pyridine, and 5mM Hcj!
Washed with. The immobilization of lectin was carried out at 1 mg/L, respectively.
The test was carried out by immersing the crystal resonator in a lectin solution dissolved in ml for 1 hour. Furthermore, the reaction was carried out for 30 minutes with a 0.1M glycine solution to treat unreacted portions.

本装置によるABO式血液型の判定は、以下のようにし
て行った。
ABO blood type determination using this device was performed as follows.

まず、3つのレクチンを固定化した水晶振動子と参照用
の水晶振動子は、あらかじめ、媛iJj液を通液したセ
ルの中で発振させておき、電磁弁IOを切り換え、サン
プル注入口12から血球試料を導入した。電磁弁10の
開閉により、試料は、如意の割合で希釈して測定を行っ
た。試料がセルを通過する際は、反応が十分進行するよ
うに、定量ポンプ9をII?′JrIして、流速が低く
なるようコントロールした。次に、リン酸緩衝液を流し
、非特異的な吸着を除去し、各水晶振動子の発振周波数
を測定し、3つのレクチンを固定化した水晶振動子の参
照用水晶振動子の差を求め、この値が、試料との反応前
とで変化しているかどうかによって、血液型の判定を行
った。
First, the crystal oscillator on which the three lectins are immobilized and the reference crystal oscillator are oscillated in advance in a cell through which the Hime iJj solution has been passed, and the solenoid valve IO is switched to allow the sample injection port 12 to be oscillated. A blood cell sample was introduced. By opening and closing the solenoid valve 10, the sample was diluted at a desired ratio and measured. When the sample passes through the cell, the metering pump 9 is set to II to ensure that the reaction progresses sufficiently. 'JrI to control the flow rate to be low. Next, a phosphate buffer solution was poured to remove non-specific adsorption, the oscillation frequency of each crystal unit was measured, and the difference between the reference crystal units and the three lectin-immobilized crystal units was determined. The blood type was determined based on whether this value changed before the reaction with the sample.

この結果、リママメレクチンを固定化した水晶振動子は
、A型因子を持つ赤血球だけに応答することがわかった
。パンディラマメレクチンIを固定化した水晶振動子は
、A型因子、B型因子ともに応答を示したが、B型因子
を持つ赤血球に対する応答が大きく、リママメレクチン
固定化水晶振動子の応答との比較によって、A、B、A
B型の判定ができることがわかった。ハリエニシダレク
チン■を固定化した水晶振動子は、0型の赤血球だけに
応答を示すことがわかった。
As a result, it was found that the quartz crystal oscillator immobilized with limamame lectin responded only to red blood cells containing type A factor. The quartz crystal oscillator immobilized with limanium lectin I showed a response to both type A and type B factors, but the response to red blood cells containing type B factor was large, and the response was different from that of the quartz oscillator immobilized with limanium lectin. By comparing A, B, A
It was found that type B can be determined. It was found that a quartz crystal oscillator immobilized with gorse lectin ■ responded only to type 0 red blood cells.

次に、電磁弁11を切り換え、p H7,5,0,1M
α−L−フコース、0.1MN−アセチル−D−グルコ
サミン溶液をセル中に導入することによって、表面のレ
クチンに結合した赤血球を除去した。引き続き、pH7
,5’Jン酸緩衝液を十分通液した後、再び、測定を行
った。
Next, switch the solenoid valve 11 and set the pH to 7, 5, 0, 1M.
Red blood cells bound to lectin on the surface were removed by introducing a solution of α-L-fucose and 0.1M N-acetyl-D-glucosamine into the cell. Continue to pH 7
, 5'J acid buffer was sufficiently passed through the tube, and the measurement was carried out again.

以上のように、本発明の分析装置により、ABO式血液
型の測定が、連続的に迅速に行えるようになった。また
、GTカット水晶振動子を用いた装置では、セルを小さ
くすることができるため、試料の量が少量ですむという
利点がある。
As described above, the analyzer of the present invention enables continuous and rapid measurement of ABO blood types. Further, in an apparatus using a GT-cut crystal resonator, the cell can be made small, so there is an advantage that a small amount of sample is required.

〔発明の効果〕〔Effect of the invention〕

本発明の生体関連物質の測定装置によって、高感度な複
数の生体関連物質、微生物、細胞の分析が連続的に迅速
に行えるようになった。
With the measuring device for biologically related substances of the present invention, highly sensitive analyzes of multiple biologically related substances, microorganisms, and cells can be performed continuously and rapidly.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(alは、本発明の生体関連物質測定装置におけ
るATカフト水晶振動子を用いたバイオセンサーとセル
の斜視図であり、第1図(blは、GTカット水晶振動
子を用いた場合のバイオセンサーとセルの斜視図である
。第1図(C1は、本発明の測定装置を示すブロック図
である。 以上 出願人 セイコー電子工業株式会社 バイオセンナとセルの@現図 第1 図(b)
Figure 1 (al is a perspective view of a biosensor and cell using an AT-cut crystal oscillator in the biologically related substance measuring device of the present invention, and Figure 1 (bl is a perspective view of a cell using a GT-cut crystal oscillator) Fig. 1 (C1 is a block diagram showing the measuring device of the present invention. b)

Claims (3)

【特許請求の範囲】[Claims] (1)水晶振動子表面の重量変化による周波数変化によ
って、生体関連物質の濃度や成分を分析する装置におい
て、複数の水晶振動子を有する生体関連物質、微生物お
よび細胞の分析装置。
(1) An analyzer for analyzing biological substances, microorganisms, and cells having a plurality of crystal oscillators, which analyzes the concentration and components of biological substances by changing the frequency due to changes in the weight of the surface of a crystal oscillator.
(2)表面にそれぞれ種類の異なる物質を固定化または
、化学的な処理をした水晶振動子をセンサーとして用い
たことを特徴とする特許請求の範囲第1項記載の生体関
連物質、微生物および細胞の分析装置。
(2) Biological substances, microorganisms, and cells according to claim 1, characterized in that a crystal oscillator having different types of substances immobilized on its surface or chemically treated is used as a sensor. analysis equipment.
(3)複数の水晶振動子のうち少なくとも一つが表面に
固定化された物質を持たない水晶振動子を用いることを
特徴とする特許請求の範囲第1項記載の生体関連物質、
微生物および細胞の分析装置。
(3) A biologically related substance according to claim 1, characterized in that at least one of the plurality of crystal oscillators uses a quartz crystal oscillator that does not have a substance immobilized on its surface;
Microbial and cellular analysis equipment.
JP13148286A 1985-09-17 1986-06-06 Apparatus for analyzing living body-related substance, bacterium and cell Pending JPS62288547A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP13148286A JPS62288547A (en) 1986-06-06 1986-06-06 Apparatus for analyzing living body-related substance, bacterium and cell
EP86307115A EP0215669A3 (en) 1985-09-17 1986-09-16 Analytical device and method for analysis of biochemicals, microbes and cells
US06/908,371 US4789804A (en) 1985-09-17 1986-09-17 Analytical device and method utilizing a piezoelectric crystal biosensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13148286A JPS62288547A (en) 1986-06-06 1986-06-06 Apparatus for analyzing living body-related substance, bacterium and cell

Publications (1)

Publication Number Publication Date
JPS62288547A true JPS62288547A (en) 1987-12-15

Family

ID=15059009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13148286A Pending JPS62288547A (en) 1985-09-17 1986-06-06 Apparatus for analyzing living body-related substance, bacterium and cell

Country Status (1)

Country Link
JP (1) JPS62288547A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02226043A (en) * 1989-02-27 1990-09-07 Seiko Instr Inc Reaction measuring apparatus
JPH04307351A (en) * 1991-04-04 1992-10-29 Hitachi Ltd Method for detecting trace of gaseous component in atmosphere and applied machinery
JPH04337462A (en) * 1991-05-13 1992-11-25 Inax Corp Quantitative analyzing method for total protein in urine
JPH05322884A (en) * 1992-05-22 1993-12-07 Inax Corp Method for measuring bio-component
JPH0694591A (en) * 1992-09-14 1994-04-05 Sogo Yatsukou Kk Detection method for biochemical substance and biochemical substance detection sensor used for the method
JP2008512673A (en) * 2004-09-16 2008-04-24 コリア インスティテュート オブ サイエンス アンド テクノロジー Method and system for detecting biological components

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02226043A (en) * 1989-02-27 1990-09-07 Seiko Instr Inc Reaction measuring apparatus
JPH04307351A (en) * 1991-04-04 1992-10-29 Hitachi Ltd Method for detecting trace of gaseous component in atmosphere and applied machinery
JPH04337462A (en) * 1991-05-13 1992-11-25 Inax Corp Quantitative analyzing method for total protein in urine
JPH05322884A (en) * 1992-05-22 1993-12-07 Inax Corp Method for measuring bio-component
JP2673980B2 (en) * 1992-05-22 1997-11-05 株式会社イナックス Measuring method of biological components
JPH0694591A (en) * 1992-09-14 1994-04-05 Sogo Yatsukou Kk Detection method for biochemical substance and biochemical substance detection sensor used for the method
JP2008512673A (en) * 2004-09-16 2008-04-24 コリア インスティテュート オブ サイエンス アンド テクノロジー Method and system for detecting biological components

Similar Documents

Publication Publication Date Title
US4789804A (en) Analytical device and method utilizing a piezoelectric crystal biosensor
US20220082575A1 (en) Nmr detection of coagulation time
US4735906A (en) Sensor having piezoelectric crystal for microgravimetric immunoassays
Muramatsu et al. Piezoelectric crystal biosensor system for detection of Escherichia coli
DE502004008216D1 (en) APPARATUS AND METHOD FOR THE SIMULTANEOUS PROCESSING OF BLOOD GROUP DETERMINATION, SERUM COMPOST AND ANTIBODY TESTING TEST
EP0614081B1 (en) A method and a system for measuring the concentration of a substance in a fluid, and the use thereof
KR20000075628A (en) Method and apparatus for detecting a magnetically responsive substance
GB1395223A (en) Method and apparatus for chemical analysis
Galbusera et al. Molecular interaction in capillary electrophoresis
JPS62288547A (en) Apparatus for analyzing living body-related substance, bacterium and cell
JP2003000223A (en) Microorganism determination apparatus, electrode chip for microorganism determination by the apparatus and microorganism determination method
EP0805350A1 (en) An apparatus and method for the determination of substances in solution, suspension or emulsion by differential pH measurement
Campanella et al. Enzyme sensor for the determination of choline-containing phospholipids in some biological fluids
WO2000045697A1 (en) Method and apparatus for detecting a magnetically responsive substance
Subryan et al. Measurement of serum ionized calcium with the ion-exchange electrode
RU164923U1 (en) CARTRIDGE FOR ANALYSIS OF INDUCED BLOOD Platelet Aggregation by Impedance Aggregometry Method
JP2673980B2 (en) Measuring method of biological components
RU2225437C1 (en) Apparatus for recording consumption of oxygen by mitochondria or cells
Pethig Dielectric-based biosensors
JPH0758249B2 (en) Device for simultaneous measurement of physical and electrochemical properties of fluids
RU177742U1 (en) Cartridge for determining hemostasis in human blood
Shi‐Hui et al. Electrochemically modified piezoelectric crystal biosensor for detection of Staphylococcus aureus
Gurbatov et al. Acoustic analysis of the composition of human blood serum
JPH06308130A (en) Method and apparatus for detecting anti-thrombotic properties of material
JPS59187249A (en) Analyzing device of urea nitrogen