JP3631373B2 - Immunoassay and immunoassay apparatus - Google Patents

Immunoassay and immunoassay apparatus Download PDF

Info

Publication number
JP3631373B2
JP3631373B2 JP15771498A JP15771498A JP3631373B2 JP 3631373 B2 JP3631373 B2 JP 3631373B2 JP 15771498 A JP15771498 A JP 15771498A JP 15771498 A JP15771498 A JP 15771498A JP 3631373 B2 JP3631373 B2 JP 3631373B2
Authority
JP
Japan
Prior art keywords
change
resonance
substance
resonance frequency
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP15771498A
Other languages
Japanese (ja)
Other versions
JPH11352045A (en
Inventor
宏 村松
英明 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP15771498A priority Critical patent/JP3631373B2/en
Publication of JPH11352045A publication Critical patent/JPH11352045A/en
Application granted granted Critical
Publication of JP3631373B2 publication Critical patent/JP3631373B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、有機分子、蛋白質、オルガネラ、微生物などの濃度を免疫的な反応を利用して、検出する免疫分析法および免疫分析装置に関する。
【0002】
【従来の技術】
従来、免疫分析法のなかで、免疫凝集を利用した手法が、比較的簡便な手法として用いられている。この免疫凝集法の中で、ラテックス粒子などの微小球に抗体を修飾して、反応を行わせることによって、より汎用的に免疫凝集法の手法が応用できることが知られている。この免疫凝集法は、基本的に目視による判定であるため、定量性の点で問題がある。また、凝集パターンが形成されるまでに数時間を要する場合もあり時間的な問題もあった。
【0003】
この凝集反応を水晶振動子によって、検出しようとする試みが、Muratsuguら(Anal.Chem.1992,64,2483−)によって、開示されている。水晶振動子を用いる免疫計測法としては、これに先立ち、水晶振動子表面に抗体を固定化し、抗体に抗原が結合することによって生じる重量変化に伴う共振周波数変化をもとに免疫計測を行う方法が開示されている。さらに、本発明者らによって、酵素反応に基づく凝固反応を水晶振動子の共振周波数あるいは共振抵抗によって測定し、生化学検出に用いる手法も開示されている。この場合、微粒子の沈降によって、凝固反応による共振周波数変化を高める手法についても開示されている。また、共振周波数と共振抵抗の変化の比を比較することによって、水晶振動子表面の物質の粘弾性的な変化を検出できることも本発明者らによって開示されている。
【0004】
【発明が解決しようとする課題】
Muratsuguらの手法では、水晶振動子に接した溶液中の免疫凝集反応の際の水晶振動子の共振周波数変化のみを計測するため、周波数変化の要因が、凝集によるものなのか、別の要因によるものなのかを判断する明確な判断基準がないという問題があった。したがって、凝集反応に基づく、変化量を明確に検出可能にする分析法と分析装置を提供することが本発明の課題である。
【0005】
【課題を解決するための手段】
抗体、レクチンなど特異的吸着性のある蛋白質の固定化された微小粒子と被測定物質である対象物質の反応によって、被測定物質の濃度を分析する方法において、微粒子単独で、水晶振動子上に堆積した場合と、微粒子と対象物質とが結合した凝集体が水晶振動子上に堆積した場合では、粘弾性的な性質が異なるため、共振周波数の変化と共振抵抗の変化の割合が異なることを利用して、沈降物質の違いを判定して、凝集体が沈降した際の変化量から被測定物質の濃度を検出する免疫分析法を考案した。
【0006】
この手法を実現する装置として、すくなくとも底面に水晶振動子を配置した液体保持チャンバー、温度制御手段、水晶振動子の共振周波数および共振抵抗の測定回路を有するとともに、抗体、レクチンなど特異的吸着性のある蛋白質の固定化された微小粒子と被測定物質である対象物質の反応によって微粒子と抗原物質とが結合したマトリクス粒子と微粒子の沈降を識別し共振周波数と共振抵抗の変化の割合および変化量を検出して被測定物質の濃度に変換するデータ処理手段を有する免疫分析装置を考案した。
【0007】
【発明の実施の形態】
以下図面を用いて、本発明の実施例について説明する。
図1は、本発明の免疫分析法の原理を測定操作手順に沿って説明したものである。図1(a)は、水晶振動子1を底面にした液体保持チャンバー2であり、この中に、図1(b)で示した抗体、レクチンなど特異的吸着性のある蛋白質の固定化されたラテックスビーズなどの微小粒子4の懸濁液を入れる(Step1)。この微小粒子は、底面に堆積を始め、図1(d)の中のAで示した堆積層を形成する(Step2)。続いて、図1(e)で示した被測定物である特異的吸着性を持つ物質を含む溶液をチャンバー内に加える(Step3)。これによって、図1(f)に示すように特異吸着反応が、開始され、微粒子と被測定物質5の免疫凝集体が形成されるようになる。この免疫凝集体は、沈降を始め、図1(g)で示すように、免疫凝集体の堆積層Bの堆積が始まる(Step4)。
【0008】
この堆積層をさらに詳しく見ると図2のようになる。微粒子のみが堆積したA層は、比較的粒子が密に堆積しており、粘性的には比較的高い状態になる。免疫凝集体の堆積したB層は、免疫凝集体が、構造的に粗な状態で結合しているため、粘性的には比較的小さい状態で堆積している。さらに、被測定物質の種類によっては、免疫反応の初期過程で、A層の堆積物表面に密な状態で、C層として示すような、免疫凝集層が形成することもある。C層は、結合が密になり粘性的性質は、高くなる。
【0009】
ラテックス粒子に硝化細菌抗体を固定化し、硝酸菌試料に対して測定を行った際の測定結果をもとに、以上で説明した工程における水晶振動子の共振周波数と共振抵抗の変化を以下に対応させて説明する。図3(a)は、共振周波数の時間変化を示したもので、図3(b)は、共振抵抗の時間変化を示したものである。まず、Step1(S1)の微粒子懸濁液のチャンバーへの注入によって、液体の粘性のため、共振周波数は大きく減少し、共振抵抗は、増加する。次に、Step2(S2)の微粒子の堆積によって、水晶振動子表面の重量変化が生じ、共振周波数は、ゆっくり減少し、共振抵抗は、堆積層の粘性的な性質によって、徐々に増加する。さらに、被測定物質の溶液を加えると(Step3:S3)、この後のStep4(S4)の免疫凝集体の堆積において、堆積による重量変化によって、共振周波数は急速に減少した後、沈降の収束に伴い緩やかな減少となる。これは、免疫凝集体の沈降が比較的短時間で起こるからである。共振抵抗も免疫凝集体の堆積による粘性的性質の増加によって、急速に増加した後、緩やかな増加になる。最終的には、どちらもほとんど増加は見られなくなる。
【0010】
以上の変化を、図3(c)に示す共振周波数と共振抵抗をプロットしたグラフにおいて説明すると、Step2の部分の傾きとStep4の部分の傾きが異なることがわかる。この傾きの違いは、重量変化を反映する共振周波数変化に対して、表面の粘性変化を反映する共振抵抗の変化の程度の違いを示しており、この違いによって堆積物の違いを識別することができる。すなわち、Step2の部分は、微粒子のみの堆積によるもので、Step4の部分が、免疫凝集体の堆積によるものである。図3(c)のStep4の部分には、さらに2つの傾き部分Step4aとStep4bが存在することがわかる。このStep4aが、図2で示した密な免疫凝集体のC層に相当するものであり、Step4bの部分が、図2のB層に相当するものである。Step4aの部分の傾きは、Step2の傾きより大きくなっており、Step4bの部分の傾きは、Step2よりも小さくなっていることがわかる。変化量の指標としては、このStep4の部分の共振周波数または共振抵抗の変化量を求め、あらかじめ求めた検量線から濃度を算出することができる。
【0011】
次に、被測定物質のブランク溶液を用いた場合の共振周波数−共振抵抗プロットを図3(d)に示す。図3(d)において、微粒子の堆積を表すStep2の部分の傾きは、図3(c)と同様に観察されるが、Step4の部分が大きく異なることがわかる。このStep4の部分の傾きは、Step2の傾きに近い値であり、ここでは、免疫凝集体が形成されず、微粒子の堆積が継続していることがわかる。ここで、Step2とStep4で傾きがわずかに異なるのは、溶液の組成の変化などによるものである。
【0012】
次に、図4は、本免疫分析を行うためのめの免疫分析装置の模式図を示したものである。図4において、免疫分析装置は、底面に水晶振動子を配置した液体保持チャンバー21、温度制御手段22、水晶振動子の共振周波数および共振抵抗の測定回路23、抗体、レクチンなど特異的吸着性のある蛋白質の固定化された微小粒子と被測定物質である抗原物質の反応によって前記微粒子と対象物質とが結合したマトリクス粒子と前記微粒子の沈降を識別し共振周波数と共振抵抗の変化の割合および変化量を検出して被測定物質の濃度に変換するデータ処理手段24、表示装置25、キースイッチ26によって構成されている。チャンバー21とそれに対応する測定回路23を複数個設置することで、複数の試料の同時測定を可能にすることもできる。
【0013】
実際の試料として、ラテックス粒子に硝化細菌抗体を固定化し、硝酸菌試料に対して、Step4部分の共振周波数変化と硝化細菌濃度の関係を測定した結果を図5に示す。測定は、30分程度で終了し、従来数時間かかっていたのに対して大幅に測定時間を低減することができた。また、測定感度も目視に比べて向上させることができた。
【0014】
さらに、本実施例では、ずり振動モードの水晶振動子を用いて説明を行ったが、水晶振動子以外のずり振動モードの圧電素子を用いることも可能である。
【0015】
【発明の効果】
本発明の免疫分析法および免疫分析装置によって、免疫凝集体の堆積を明確に見分けることができるようになり、確度および精度の高い免疫凝集法の測定を行えるようになった。さらに、本発明によって、測定時間が大幅に短縮でき、測定の定量化が可能になり、測定感度を感度を向上させることが可能になった。
【図面の簡単な説明】
【図1】本発明の免疫分析法の原理の説明図である。
【図2】本発明の免疫分析法の原理の説明図である。
【図3】本発明の免疫分析法の原理の説明図である。
【図4】本発明の免疫分析装置の構成図である。
【図5】本発明の免疫分析法の測定例を示す図である。
【符号の説明】
1 水晶振動子
2 液体保持チャンバー
4 蛋白質固定化微小粒子
5 被測定物質
21 液体保持チャンバー
22 温度制御手段
23 共振周波数および共振抵抗の測定回路
24 データ処理手段
25 表示装置
26 キースイッチ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an immunoassay method and an immunoassay apparatus for detecting the concentration of organic molecules, proteins, organelles, microorganisms, etc. using an immune reaction.
[0002]
[Prior art]
Conventionally, among immunoassays, a technique using immunoagglutination has been used as a relatively simple technique. In this immunoaggregation method, it is known that the technique of the immunoaggregation method can be applied more generally by modifying the antibody to microspheres such as latex particles and causing the reaction to occur. Since this immunoagglutination method is basically a visual determination, there is a problem in terms of quantitativeness. In addition, it may take several hours until the aggregation pattern is formed, which causes a problem in time.
[0003]
An attempt to detect this agglutination reaction with a quartz crystal resonator is disclosed by Muratsugu et al. (Anal. Chem. 1992, 64, 2483). As an immunoassay method using a quartz resonator, prior to this, an antibody is immobilized on the surface of the quartz resonator, and an immunoassay is performed based on a resonance frequency change accompanying a change in weight caused by binding of an antigen to the antibody. Is disclosed. Furthermore, the present inventors have also disclosed a method of measuring a coagulation reaction based on an enzyme reaction with a resonance frequency or a resonance resistance of a crystal resonator and using it for biochemical detection. In this case, a method of increasing the resonance frequency change due to the solidification reaction by sedimentation of fine particles is also disclosed. It has also been disclosed by the present inventors that the viscoelastic change of the substance on the surface of the crystal resonator can be detected by comparing the ratio of the change in the resonance frequency and the resonance resistance.
[0004]
[Problems to be solved by the invention]
In the method of Muratsugu et al., Only the resonance frequency change of the crystal resonator during the immune aggregation reaction in the solution in contact with the crystal resonator is measured, so whether the cause of the frequency change is due to aggregation or another factor There was a problem that there was no clear standard for judging whether it was. Accordingly, it is an object of the present invention to provide an analysis method and an analysis apparatus that can clearly detect the amount of change based on the agglutination reaction.
[0005]
[Means for Solving the Problems]
In a method of analyzing the concentration of a substance to be measured by the reaction of a target substance that is a substance to be measured with a fixed microparticle of a protein having specific adsorptive properties such as an antibody or a lectin , a fine particle alone is placed on a crystal resonator. Since the viscoelastic properties are different between the case where the particles are deposited and the aggregate in which the fine particles and the target substance are combined on the quartz resonator, the ratio between the change in the resonance frequency and the change in the resonance resistance is different. Utilizing this method, we devised an immunoassay method that detects the concentration of a substance to be measured from the amount of change when the aggregate settles by judging the difference between the precipitated substances.
[0006]
As a device that realizes this method, it has a liquid holding chamber with a quartz resonator at least on the bottom, temperature control means, a measurement circuit for the resonance frequency and resonance resistance of the quartz resonator, and has specific adsorptive properties such as antibodies and lectins. Based on the reaction between the immobilized microparticles of a protein and the target substance as the substance to be measured, the matrix particles in which the microparticles and the antigenic substance are combined and the sedimentation of the microparticles are identified, and the rate and amount of change in the resonance frequency and resonance resistance are determined An immunoassay device having a data processing means for detecting and converting to the concentration of a substance to be measured has been devised.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 illustrates the principle of the immunoassay method of the present invention along the measurement procedure. FIG. 1A shows a liquid holding chamber 2 having a quartz resonator 1 as a bottom surface, in which a protein having a specific adsorptivity such as an antibody and a lectin shown in FIG. 1B is immobilized. A suspension of microparticles 4 such as latex beads is added (Step 1). The fine particles start to be deposited on the bottom surface and form a deposited layer indicated by A in FIG. 1D (Step 2). Subsequently, a solution containing a substance having specific adsorptivity as the object to be measured shown in FIG. 1E is added to the chamber (Step 3). As a result, the specific adsorption reaction is started as shown in FIG. 1 (f), and an immunoaggregate of the fine particles and the substance to be measured 5 is formed. The immunoaggregates start to settle, and as shown in FIG. 1 (g), deposition of the immunoaggregate deposition layer B begins (Step 4).
[0008]
A more detailed view of this deposited layer is shown in FIG. The A layer in which only the fine particles are deposited has a relatively dense particle accumulation and is relatively high in viscosity. The B layer on which the immune aggregates are deposited is deposited in a relatively small state in terms of viscosity because the immune aggregates are bonded in a structurally rough state. Furthermore, depending on the type of the substance to be measured, an immune aggregation layer as shown as a C layer may be formed in a dense state on the surface of the deposit of the A layer in the initial stage of the immune reaction. In the C layer, the bond is dense and the viscous property is high.
[0009]
Based on the measurement results when the nitrifying bacteria antibody is immobilized on latex particles and the measurement is performed on a nitrate bacteria sample, the changes in the resonance frequency and resonance resistance of the crystal resonator in the above-described process are handled as follows. Let me explain. FIG. 3 (a) shows the change over time of the resonance frequency, and FIG. 3 (b) shows the change over time of the resonance resistance. First, due to the injection of Step 1 (S1) into the chamber, the resonance frequency is greatly reduced and the resonance resistance is increased due to the viscosity of the liquid. Next, the deposition of the fine particles of Step 2 (S2) causes a change in the weight of the surface of the crystal resonator, the resonance frequency decreases slowly, and the resonance resistance gradually increases due to the viscous nature of the deposited layer. Furthermore, when a solution of the substance to be measured is added (Step 3: S3), in the subsequent deposition of immune aggregates in Step 4 (S4), the resonance frequency rapidly decreases due to the weight change due to the deposition, and then the sedimentation converges. Along with this, it will decrease gradually. This is because sedimentation of immune aggregates occurs in a relatively short time. The resonance resistance also increases rapidly after increasing rapidly due to the increase in viscous properties due to the accumulation of immune aggregates. Eventually, there will be little increase in either.
[0010]
If the above change is described in the graph plotting the resonance frequency and the resonance resistance shown in FIG. 3C, it can be seen that the slope of the Step 2 portion is different from the slope of the Step 4 portion. This difference in slope shows the difference in the degree of change in the resonance resistance that reflects the change in the viscosity of the surface with respect to the change in the resonance frequency that reflects the change in the weight. it can. That is, the Step 2 portion is due to the deposition of only fine particles, and the Step 4 portion is due to the deposition of immune aggregates. It can be seen that there are two more inclined portions Step 4a and Step 4b in the Step 4 portion of FIG. This Step 4a corresponds to the C layer of the dense immune aggregate shown in FIG. 2, and the portion of Step 4b corresponds to the B layer in FIG. It can be seen that the slope of the Step 4a portion is larger than the slope of Step 2, and the slope of the Step 4b portion is smaller than Step 2. As an index of the amount of change, the amount of change in the resonance frequency or resonance resistance of this Step 4 portion can be obtained, and the concentration can be calculated from a calibration curve obtained in advance.
[0011]
Next, FIG. 3D shows a resonance frequency-resonance resistance plot when a blank solution of the substance to be measured is used. In FIG. 3D, the slope of the Step 2 portion representing the deposition of fine particles is observed in the same manner as in FIG. 3C, but it can be seen that the Step 4 portion is greatly different. The slope of the portion of Step 4 is a value close to the slope of Step 2, and here, it can be seen that immune aggregates are not formed and deposition of fine particles continues. Here, the slight difference in slope between Step 2 and Step 4 is due to a change in the composition of the solution.
[0012]
Next, FIG. 4 shows a schematic diagram of an immune analyzer for performing this immunoassay. In FIG. 4, the immunoassay device has a liquid holding chamber 21 having a quartz resonator placed on the bottom surface, a temperature control means 22, a measurement circuit 23 for the resonance frequency and resonance resistance of the quartz resonator, an antibody, a lectin and the like. The matrix particles in which the microparticles and the target substance are bound and the sedimentation of the microparticles are identified by the reaction between the immobilized microparticles of a protein and the antigenic substance to be measured, and the rate and change of the change in the resonance frequency and resonance resistance. It comprises data processing means 24 for detecting the amount and converting it to the concentration of the substance to be measured, a display device 25, and a key switch 26. By installing a plurality of chambers 21 and corresponding measurement circuits 23, it is possible to simultaneously measure a plurality of samples.
[0013]
As an actual sample, nitrifying bacteria antibody is immobilized on latex particles, and the relationship between the change in resonance frequency of Step 4 portion and the nitrifying bacteria concentration is measured with respect to the nitrate bacteria sample in FIG. The measurement was completed in about 30 minutes, and the measurement time could be greatly reduced as compared to the conventional time of several hours. Moreover, the measurement sensitivity could be improved as compared with visual observation.
[0014]
Furthermore, although the present embodiment has been described by using a shear vibration mode crystal resonator, a shear vibration mode piezoelectric element other than the crystal resonator may be used.
[0015]
【The invention's effect】
With the immunoassay method and the immunoassay apparatus of the present invention, it has become possible to clearly identify the accumulation of immune aggregates, and to measure the immunoaggregation method with high accuracy and accuracy. Furthermore, according to the present invention, the measurement time can be greatly shortened, the measurement can be quantified, and the measurement sensitivity can be improved.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of the principle of an immunoassay method of the present invention.
FIG. 2 is an explanatory diagram of the principle of the immunoassay method of the present invention.
FIG. 3 is an explanatory diagram of the principle of the immunoassay method of the present invention.
FIG. 4 is a configuration diagram of an immune analyzer according to the present invention.
FIG. 5 shows a measurement example of the immunoassay method of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Crystal oscillator 2 Liquid holding chamber 4 Protein fixed microparticle 5 Measuring substance 21 Liquid holding chamber 22 Temperature control means 23 Resonance frequency and resonance resistance measurement circuit 24 Data processing means 25 Display device 26 Key switch

Claims (4)

特異的吸着性のある蛋白質が固定化された微小粒子と被測定物質との反応によって、被測定物質の濃度を分析する方法であって、圧電振動子の共振周波数および共振抵抗の時間変化を測定し、前記微粒子と前記被測定物質とが結合した凝集体の沈降を圧電振動子の共振周波数の変化と共振抵抗の変化の割合から識別し、前記凝集反応に基づく共振周波数または共振抵抗の変化量から被測定物質の濃度を検出する免疫分析法。A method of analyzing the concentration of a substance to be measured by the reaction between the substance to be measured and a microparticle on which a protein having specific adsorptivity is immobilized, and measuring temporal changes in the resonance frequency and resonance resistance of the piezoelectric vibrator. Then, the sedimentation of the aggregate in which the fine particles and the substance to be measured are combined is identified from the ratio of the change in the resonance frequency of the piezoelectric vibrator and the change in the resonance resistance, and the amount of change in the resonance frequency or resonance resistance based on the aggregation reaction An immunoassay that detects the concentration of a substance to be measured from 前記圧電振動子が底面に配置された試料チャンバーに前記微粒子溶液を添加し、前記圧電振動子の共振周波数および共振抵抗の変化を測定する工程(A)と、前記試料チャンバーにさらに被測定物質溶液を添加し、前記圧電振動子の共振周波数および共振抵抗の変化を測定する工程(B)とを有し、前記工程(A)における共振周波数と共振抵抗との変化の割合に対し、前記工程(B)における共振周波数と共振抵抗との変化の割合が異なる場合に凝集反応が進行したと判定し、前記凝集反応に基づく共振周波数または共振抵抗の変化量から被測定物質の濃度を検出することを特徴とする請求項1記載の免疫分析法。A step (A) of adding the fine particle solution to a sample chamber in which the piezoelectric vibrator is disposed on the bottom surface and measuring a change in a resonance frequency and a resonance resistance of the piezoelectric vibrator; was added, the and a step (B) measuring the change in the resonant frequency and resonant resistance of the piezoelectric vibrator, with respect to the rate of change of the resonance resistance and the resonance frequency in the step (a), the step ( B) determining that the agglutination reaction has progressed when the rate of change between the resonance frequency and the resonance resistance is different, and detecting the concentration of the substance to be measured from the amount of change in the resonance frequency or resonance resistance based on the agglutination reaction. The immunoassay method according to claim 1, wherein 少なくとも底面に圧電振動子を配置した液体保持チャンバー、温度制御手段、前記圧電振動子の共振周波数および共振抵抗の時間変化を測定する測定回路を有するとともに、特異的吸着性のある蛋白質が固定化された微小粒子と被測定物質との反応によって前記微粒子と被測定物質とが結合した凝集体と前記微粒子の沈降を、共振周波数と共振抵抗の変化の割合から識別し、前記凝集反応に基づく共振周波数または共振抵抗の変化量から被測定物質の濃度を得るデータ処理手段を有する免疫分析装置。At least a liquid holding chamber having a piezoelectric vibrator disposed on the bottom surface, temperature control means, a measurement circuit for measuring temporal changes in the resonance frequency and resonance resistance of the piezoelectric vibrator, and a protein having specific adsorptivity is immobilized. Agglomerates in which the microparticles and the substance to be measured are combined by the reaction between the microparticles and the substance to be measured, and sedimentation of the microparticles are identified from the ratio of change in the resonance frequency and the resonance resistance, and the resonance frequency based on the aggregation reaction Alternatively, an immunoassay device having data processing means for obtaining the concentration of a substance to be measured from the amount of change in resonance resistance. 前記圧電振動子が、ずり振動モードの水晶振動子であることを特徴とする請求項3記載の免疫分析装置Said piezoelectric vibrator, the immune analyzer according to claim 3, characterized in that the quartz oscillator of shear vibration mode.
JP15771498A 1998-06-05 1998-06-05 Immunoassay and immunoassay apparatus Expired - Fee Related JP3631373B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15771498A JP3631373B2 (en) 1998-06-05 1998-06-05 Immunoassay and immunoassay apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15771498A JP3631373B2 (en) 1998-06-05 1998-06-05 Immunoassay and immunoassay apparatus

Publications (2)

Publication Number Publication Date
JPH11352045A JPH11352045A (en) 1999-12-24
JP3631373B2 true JP3631373B2 (en) 2005-03-23

Family

ID=15655782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15771498A Expired - Fee Related JP3631373B2 (en) 1998-06-05 1998-06-05 Immunoassay and immunoassay apparatus

Country Status (1)

Country Link
JP (1) JP3631373B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001077624A2 (en) 2000-04-05 2001-10-18 The Charles Stark Draper Laboratory, Inc. Apparatus and method for measuring the mass of a substance
US8620059B2 (en) 2007-12-13 2013-12-31 Fpinnovations Characterizing wood furnish by edge pixelated imaging
CN109946192A (en) * 2019-04-19 2019-06-28 四川省劲腾环保建材有限公司 A method of preparing detection clay content during extruding dregs porcelain granule
CN109946193A (en) * 2019-04-19 2019-06-28 四川省劲腾环保建材有限公司 A kind of inspection method for preparing extruding dregs porcelain granule and detecting clod content in the process

Also Published As

Publication number Publication date
JPH11352045A (en) 1999-12-24

Similar Documents

Publication Publication Date Title
EP0295965B1 (en) Oscillator-based methods of detecting a member of a specific binding pair
Bunde et al. Piezoelectric quartz crystal biosensors
Ogi Wireless-electrodeless quartz-crystal-microbalance biosensors for studying interactions among biomolecules: A review
US5501986A (en) Piezoelectric specific binding assay with mass amplified reagents
EP2122355A1 (en) Improvements in or relating to detection and/or characterisation of oligomers
EP1034430B1 (en) Sensor for detecting biological target complexes
Bizet et al. Biosensors based on piezolectric transducers
Bizet et al. Immunodetection by quartz crystal microbalance: A new approach for direct detection of rabbit IgG and peroxidase
Xu et al. Micro-machined piezoelectric membrane-based immunosensor array
McBride et al. A high sensitivity assay for the inflammatory marker C-Reactive protein employing acoustic biosensing
JPH08320322A (en) Surface second-harmonics and sum-frequency generation immunoassay and enzyme assay
Muratsugu et al. Detection of antistreptolysin O antibody: application of an initial rate method of latex piezoelectric immunoassay
Liu et al. High sensitivity detection of human serum albumin using a novel magnetoelastic immunosensor
JP3631373B2 (en) Immunoassay and immunoassay apparatus
US20190250154A1 (en) Method for re-using test probe and reagents in an immunoassay based on interferometry
JPH10505899A (en) Milk assay
Zhang et al. Antibody/antigen affinity behavior in liquid environment with electrical impedance analysis of quartz crystal microbalances
EP0408641A1 (en) Piezoelectric specific binding assay with mass amplified reagents.
Saffari et al. Label-Free Real-Time Detection of HBsAg Using a QCM Immunosensor.
US20110177584A1 (en) Acoustic wave sensor and detection method using acoustic wave sensor
Imai et al. Total urinary protein sensor based on a piezoelectric quartz crystal
Dickert et al. Imprinted polymers in chemical recognition for mass-sensitive devices
Kato et al. Application of sandwich assay to resonance acoustic microbalance with naked-embedded quartz biosensor for high-selectivity detection of C-reactive protein
Lee et al. Capacitive micromachined ultrasonic transducer (CMUT)-based biosensor for detection of low concentration neuropeptide
CN113740385A (en) Determination method for detecting chip characteristic response

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20031202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040202

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040302

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040928

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041216

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081224

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091224

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101224

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101224

Year of fee payment: 6

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D03

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101224

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111224

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111224

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121224

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees