JPH02225854A - Static-pressure fluid bearing - Google Patents

Static-pressure fluid bearing

Info

Publication number
JPH02225854A
JPH02225854A JP4747689A JP4747689A JPH02225854A JP H02225854 A JPH02225854 A JP H02225854A JP 4747689 A JP4747689 A JP 4747689A JP 4747689 A JP4747689 A JP 4747689A JP H02225854 A JPH02225854 A JP H02225854A
Authority
JP
Japan
Prior art keywords
shaft
drive shaft
roller
axial direction
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4747689A
Other languages
Japanese (ja)
Other versions
JP2759276B2 (en
Inventor
Takayuki Kato
高之 加藤
Shinji Takada
高田 真次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP4747689A priority Critical patent/JP2759276B2/en
Publication of JPH02225854A publication Critical patent/JPH02225854A/en
Application granted granted Critical
Publication of JP2759276B2 publication Critical patent/JP2759276B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H19/00Gearings comprising essentially only toothed gears or friction members and not capable of conveying indefinitely-continuing rotary motion
    • F16H19/02Gearings comprising essentially only toothed gears or friction members and not capable of conveying indefinitely-continuing rotary motion for interconverting rotary or oscillating motion and reciprocating motion
    • F16H19/025Gearings comprising essentially only toothed gears or friction members and not capable of conveying indefinitely-continuing rotary motion for interconverting rotary or oscillating motion and reciprocating motion comprising a friction shaft

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Details Of Measuring And Other Instruments (AREA)
  • Transmission Devices (AREA)

Abstract

PURPOSE:To enable the continuous regulation of a feeding quantity and a feeding speed from a high speed drive to a micro feeding by connecting one end of a driving shaft supported by a bearing with the other end to a sliding material, and locating a rotary roller having a rotary shaft inclined in the axial direction so as to contact to the peripheral surface of the driving shaft. CONSTITUTION:A motor 12 is rotated so that a rotary roller 7 is inclined with the inclination angle against a driving shaft 4. When the roller 7 is rotated by a motor 9 under this condition, the shaft 4 is rotated, but the shaft 4 is simultaneously moved in the axial direction because the roller 7 is inclined with the angle. The movement of the shaft 4 in the axial direction is transmitted to a sliding material 2 by a coupling part 3 to enable the reciprocating motion of the sliding material 2 on a guide shaft 1. When the angle alpha against the roller 7 is enlarged, the moving quantity of the shaft 4 is increased to enable a high speed drive. When the angle alpha is conversely made small, micro feeding is enabled.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、精密加工装置や精密測定装置などに使用され
る静圧流体軸受に関し、特にその駆動構造に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a hydrostatic fluid bearing used in precision processing equipment, precision measurement equipment, etc., and particularly relates to its drive structure.

〔従来の技術〕[Conventional technology]

従来より静圧流体軸受は広(利用されており、その駆動
装置としては例えば第4図に示すように、ガイド軸21
上に静圧流体により浮上する摺動体22を備えた静圧流
体軸受において、基体20の側板23.24に回転自在
に軸支されたネジ軸25を一方の側板23に固定された
モータ27により駆動する如く成し、前記摺動体22に
固着したナツト26と前記ネジ軸25とをボールネジ方
式で連結して前記モータ27の回転を制御して摺動体2
2をガイド軸21上に移動させるようになっていた。(
特公昭63−7903号、特開昭61−131841号
公報参照)また、上記ボールネジ方式の他には、高速駆
動用のりニアモータ方式や、微小送り用の圧電アクチュ
エータ方式等の駆動装置もあった。
Conventionally, hydrostatic fluid bearings have been widely used, and their driving devices include, for example, a guide shaft 21 as shown in FIG.
In a hydrostatic fluid bearing having a sliding body 22 floating on top by a hydrostatic fluid, a screw shaft 25 rotatably supported on side plates 23 and 24 of a base body 20 is driven by a motor 27 fixed to one side plate 23. A nut 26 fixed to the sliding body 22 and the threaded shaft 25 are connected by a ball screw method to control the rotation of the motor 27 to drive the sliding body 2.
2 onto the guide shaft 21. (
(Refer to Japanese Patent Publication No. 63-7903 and Japanese Patent Application Laid-Open No. 61-131841) In addition to the above-mentioned ball screw type, there were drive devices such as a linear motor type for high-speed drive and a piezoelectric actuator type for minute feed.

〔従来技術の課題〕[Issues with conventional technology]

ところが、従来のボールネジ方式の駆動装置では、ピッ
チが一定であるため高速駆動と微小送りを同時に行うこ
とが困難であり、またボールネジの振動が摺動体22に
伝わって悪影響を及ぼしやすいという問題点があった。
However, with conventional ball screw type drive devices, since the pitch is constant, it is difficult to perform high-speed drive and minute feed at the same time, and the vibration of the ball screw is easily transmitted to the sliding body 22 and has a negative effect. there were.

さらにリニアモータ方式では微小送りが困難であり、圧
電アクチュエータ方式では高速駆動が困難であった。
Furthermore, it is difficult to perform minute feeds with the linear motor method, and it is difficult to drive at high speed with the piezoelectric actuator method.

このように、高速駆動と微小送りを同時に、かつ容易に
行えるような駆動装置は開発されていなかった。
As described above, a drive device that can simultaneously and easily perform high-speed drive and minute feed has not been developed.

〔課題を解決するための手段〕[Means to solve the problem]

上記に鑑みて本発明は、静圧流体軸受において、一端を
軸受で支持した駆動シャフトの他端を摺動体に結合する
と共に、該駆動シャフトの軸方向に対して傾いた回転軸
を有する回転ローラを前記駆動シャフトの外周面に接す
るように配置し、この回転ローラを回転させることによ
って駆動シャフトを往復動させ、摺動体を駆動させるよ
うにしたものであり、前記駆動シャフトに対する回転ロ
ーラの角度を変化させることによって高速駆動から微小
送りまで、送り量や送り速度を連続的に調整できるよう
にしたものである。
In view of the above, the present invention provides a hydrostatic fluid bearing in which one end of a drive shaft is supported by a bearing and the other end of the drive shaft is coupled to a sliding member, and a rotating roller having a rotating shaft inclined with respect to the axial direction of the drive shaft is provided. is arranged so as to be in contact with the outer peripheral surface of the drive shaft, and by rotating this rotary roller, the drive shaft is reciprocated and the sliding body is driven, and the angle of the rotary roller with respect to the drive shaft is By changing the feed amount and speed, it is possible to continuously adjust the feed amount and speed, from high-speed drive to minute feed.

〔実施例〕〔Example〕

以下本発明実施例を図によって説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図に斜視図を、第2図に平面図を示すように、本発
明実施例に係る静圧流体軸受はガイド軸lを挿通した慴
動体2と、この摺動体2を移動させるための駆動シャフ
ト4と、駆動シャフト4を駆動させる駆動部6から構成
されている。
As shown in a perspective view in FIG. 1 and in a plan view in FIG. It is composed of a drive shaft 4 and a drive section 6 that drives the drive shaft 4.

前記ガイド軸1はアルミナ等のセラミックスからなる角
軸であり、摺動体2も同じくアルミナ等のセラミックス
からなるもので、この摺動体2は空気等の静圧流体を噴
出させることによってガイド軸1上に浮上し、往復動可
能となっている。
The guide shaft 1 is a square shaft made of ceramic such as alumina, and the sliding body 2 is also made of ceramic such as alumina. It can levitate and move back and forth.

また、駆動シャフト4と摺動体2との結合は、駆動シャ
フト4の端部に形成したフランジ4aを摺動体2に固着
したカップリング部3で挟持するようになっており、か
つ該カップリング部3とフランジ4aの間には空気など
の流体を噴出させ、いわゆる静圧カップリングとなって
いる。更に、駆動シャフト4の他端側も静圧軸受5によ
って保持してあり、駆動部6より発生する振動などが摺
動体2に伝わりにくい構造となっている。
Further, the drive shaft 4 and the sliding body 2 are coupled by sandwiching a flange 4a formed at the end of the driving shaft 4 with a coupling part 3 fixed to the sliding body 2, and the coupling part A fluid such as air is ejected between the flange 3 and the flange 4a, forming a so-called static pressure coupling. Further, the other end of the drive shaft 4 is also held by a static pressure bearing 5, so that vibrations generated by the drive section 6 are not easily transmitted to the sliding body 2.

前記駆動部6では、駆動シャフト4の外周に接するよう
に回転ローラ7が配置され、該回転ローラ7はカップリ
ング8によってモータ9と結合し、回転可能となってい
る。また、これらの回転ローラ7、モータ9はいずれも
支持体lOによって保持されているが、この支持体lO
自体がカップリング11によってモータ12、減速機1
3と結合されており、微小に回転可能となっている。即
ち第3図にモータ12側から見た回転ローラ7と駆動シ
ャフト4との位置関係を示すように、前記モータ】2を
回転させることによって、回転ローラ7を矢印方向に動
かすことができ、駆動シャフト4の軸方向に対して回転
ローラフの回転軸が角度αだけ傾いた状態とすることが
できるようになっている。
In the drive section 6, a rotary roller 7 is arranged so as to be in contact with the outer periphery of the drive shaft 4, and the rotary roller 7 is coupled to a motor 9 by a coupling 8 so as to be rotatable. Furthermore, both of these rotating rollers 7 and motor 9 are held by a support lO.
The motor 12 and the reducer 1 are connected by the coupling 11.
3, and can be rotated minutely. That is, as shown in FIG. 3, which shows the positional relationship between the rotating roller 7 and the drive shaft 4 as seen from the motor 12 side, by rotating the motor 2, the rotating roller 7 can be moved in the direction of the arrow, and the driving The rotational axis of the rotary roller rough can be tilted by an angle α with respect to the axial direction of the shaft 4.

次にこの静圧流体軸受の作動を説明する。Next, the operation of this hydrostatic fluid bearing will be explained.

まず、丑記のようにモータ12を回転させて、回転ロー
ラ7が駆動シャフト4に対して、ある傾き角度αとなる
ようにする。この状態のままで、モータ9を回転させて
、回転ローラ7を回転させれば、駆動シャフト4も回転
するが、同時に回転ローラ7が角度αで傾いていること
により、駆動シャフト4は軸方向にも移動することにな
る。この駆動シャフト4の軸方向の移動がカンプリング
部3によって摺動体2に伝わり、摺動体2をガイド軸1
上で往復動させることができる。
First, the motor 12 is rotated as shown in ox so that the rotating roller 7 forms a certain inclination angle α with respect to the drive shaft 4. In this state, if the motor 9 is rotated and the rotary roller 7 is rotated, the drive shaft 4 will also rotate, but at the same time, since the rotary roller 7 is tilted at an angle α, the drive shaft 4 will be rotated in the axial direction. It will also be moved to This axial movement of the drive shaft 4 is transmitted to the sliding body 2 by the compression ring 3, and the sliding body 2 is moved to the guide shaft 1.
It can be moved back and forth on the top.

上記駆動構造において、回転ローラ7を1回転させたと
きの、駆動シャフト4の軸方向への移動i1xは下記の
ように表わせる。
In the above drive structure, the movement i1x of the drive shaft 4 in the axial direction when the rotating roller 7 rotates once can be expressed as follows.

x=2πr−sinα r:回転ローラ7の半径 α:傾き角度 従って、駆動シャツ日に対する回転ローラフの傾き角度
αを大きくすると駆動シャフト4の移動量xが大きくな
って高速駆動することができ、逆に傾き角度αを小さく
すると微小送りをすることができるのである。このよう
な機構を利用すれば、例えば最初は前記傾き角度αを大
きく設定しておいて摺動体2を高速駆動させ、目的位置
近傍で、モータ12によって傾き角度αを小さくして摺
動体2を微小送りし精密位置決めを行うことが、容易に
できるようになる。
x=2πr-sinα r: Radius of the rotating roller 7 α: Inclination angle Therefore, if the inclination angle α of the rotating roller rough with respect to the drive shaft is increased, the amount of movement x of the drive shaft 4 will be increased and high-speed driving can be achieved, and vice versa. If the inclination angle α is made smaller, fine feeding can be achieved. If such a mechanism is used, for example, the tilt angle α is initially set to a large value and the sliding body 2 is driven at high speed, and near the target position, the tilt angle α is decreased by the motor 12 and the sliding body 2 is driven. Fine feeding and precise positioning can be easily performed.

また、上記の如き本発明の静圧流体軸受においては、駆
動シャフト4と回転ローラ7は互いに外周面が接触して
駆動を伝えるようになっているため、耐摩耗性の点から
、駆動シャフト4と回転ローラフの少なくとも一方の接
触面はセラミックスにより形成し、且つ両方の接触面は
中心線平均粗さ(Ra)0.2μm以下の鏡面で、エツ
ジのない清ら・かな形状としたものが優れていた。特に
、駆動シャフト4と回転ローラ7をいずれも窒化珪素質
セラミックスにより形成したものが最も優れた結果を示
した。
In addition, in the hydrostatic fluid bearing of the present invention as described above, the drive shaft 4 and the rotary roller 7 have their outer circumferential surfaces in contact with each other to transmit drive, so from the viewpoint of wear resistance, the drive shaft 4 It is preferable that at least one contact surface of the rotating roller rough is made of ceramic, and that both contact surfaces have a mirror surface with a center line average roughness (Ra) of 0.2 μm or less, and have a clean and clear shape without edges. was. In particular, the best results were obtained when both the drive shaft 4 and the rotating roller 7 were made of silicon nitride ceramics.

更に、上記実施例では駆動シャフト4に対する回転ロー
ラフの傾き角度αを調整する手段としてモータ12を用
いたが、他の手段であって♂狂特に速度調整の必要がな
い用途であれば前記傾き角度αを一定として固定したも
のでもよい。
Further, in the above embodiment, the motor 12 is used as a means for adjusting the inclination angle α of the rotating roller rough with respect to the drive shaft 4, but if other means are used and the application does not require speed adjustment, the inclination angle can be adjusted. It is also possible to fix α as a constant.

また、上記実施例では駆動シャフト4を移動させるため
の回転ローラ7を1個だけ配置したものを示したが、複
数の回転ローラ7をそれぞれ駆動シャフト4に接する位
置に配置すれば、高負荷の駆動を行うことができる。さ
らに、本発明の駆動構造は、静圧流体軸受に限らず、一
般のスライドテーブルにも適用することが可能である。
Further, in the above embodiment, only one rotary roller 7 for moving the drive shaft 4 is arranged, but if a plurality of rotary rollers 7 are arranged at positions in contact with the drive shaft 4, it is possible to handle high loads. can be driven. Furthermore, the drive structure of the present invention can be applied not only to hydrostatic fluid bearings but also to general slide tables.

ここで、実際に第1図、第2図に示す構造の静圧流体軸
受を試作し、駆動テストを行った。
Here, a prototype hydrostatic fluid bearing having the structure shown in FIGS. 1 and 2 was actually fabricated and a driving test was conducted.

駆動シャフト4は窒化珪素質セラミックスにより形成し
、直径20IIllW、外周面の表面粗さ(Ra)0.
2μmとし、回転ローラ7も窒化珪素質セラミックスに
より形成し、直径40mm、外周面の表面粗さ(1?a
)0.2μmとした。また回転ローラ7を駆動するため
のモータ9は1/1000回転のステップで制御するこ
とができ、傾き角度αを変化させるためのモータ12は
減速機13を備えていることから、更に微小な回転制御
が可能で傾き角度αを1分(角度)のステップで制御で
きた。
The drive shaft 4 is made of silicon nitride ceramic, has a diameter of 20IIllW, and has an outer peripheral surface roughness (Ra) of 0.
The rotating roller 7 is also made of silicon nitride ceramics, has a diameter of 40 mm, and a surface roughness of the outer peripheral surface (1?a).
) 0.2 μm. Furthermore, the motor 9 for driving the rotating roller 7 can be controlled in steps of 1/1000 rotation, and since the motor 12 for changing the inclination angle α is equipped with a speed reducer 13, even smaller rotations can be achieved. It was possible to control the tilt angle α in steps of 1 minute (angle).

この静圧流体軸受における微小送りは、傾き角度αを1
分(角度)とし、モータ9を1/1000回転のステッ
プで動かせば、摺動体2の最小移動量を0.03〜0.
04μmとすることができた。また、高速駆動の場合は
、傾き角度αを90@とし、モータ9の回転数を2回転
/秒とすれば摺動体2の移動速度を25抛misとする
ことが可能であった。
The fine feed in this hydrostatic fluid bearing is achieved by changing the inclination angle α to 1
minute (angle), and if the motor 9 is moved in steps of 1/1000 rotation, the minimum amount of movement of the sliding body 2 will be 0.03 to 0.0.
04 μm. Further, in the case of high-speed drive, if the inclination angle α was set to 90 @ and the rotation speed of the motor 9 was set to 2 revolutions/second, it was possible to set the moving speed of the sliding body 2 to 25 min.

〔発明の効果〕〔Effect of the invention〕

畝上のように本発明によれば、静圧流体軸受において、
一端を軸受で支持した駆動シャフトの他端を摺動体に結
合すると共に、該駆動シャフトの軸方向に対して傾いた
回転軸を有する回転ローラを前記駆動シャフトの外周面
に接するように配置したことによって、前記駆動シャフ
トに対する回転ローラの傾き角度を変化させれば容易に
高速駆動から微小送りまで、送り量、送り速度を連続的
に調整することができ、特に非常に微小なステップの送
りが可能となる。また、前記駆動シャフトを静圧軸受、
静圧カップリングで保持すれば、振動等を摺動体に伝え
にくく、より精密な位置決めが可能となるなど、高性能
の静圧流体軸受を提供できる。
According to the present invention, in a hydrostatic fluid bearing,
One end of the drive shaft is supported by a bearing, and the other end of the drive shaft is coupled to a sliding body, and a rotating roller having a rotating shaft inclined with respect to the axial direction of the drive shaft is arranged so as to be in contact with the outer circumferential surface of the drive shaft. By changing the inclination angle of the rotating roller with respect to the drive shaft, the feed amount and feed speed can be easily adjusted continuously, from high-speed drive to minute feed, and in particular, very minute step feed is possible. becomes. Further, the drive shaft may include a hydrostatic bearing,
If held using a static pressure coupling, it is difficult to transmit vibrations to the sliding body, and more precise positioning is possible, thereby providing a high-performance hydrostatic fluid bearing.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明実施例に係る静圧流体軸受を示す斜視図
、第2図は同じく平面図である。 第3図は本発明の静圧流体軸受における駆動シャフトと
回転ローラの位置関係を示す図である。 第4図は従来の静圧流体軸受の駆動構造を示す側面図で
ある。 1ニガイド軸       2:摺動体4:駆動シャフ
ト     6;駆動部7:回転ローラ   9.12
:モータ10:支持体
FIG. 1 is a perspective view showing a hydrostatic fluid bearing according to an embodiment of the present invention, and FIG. 2 is a plan view thereof. FIG. 3 is a diagram showing the positional relationship between the drive shaft and the rotating roller in the hydrostatic fluid bearing of the present invention. FIG. 4 is a side view showing the drive structure of a conventional hydrostatic fluid bearing. 1 Guide shaft 2: Sliding body 4: Drive shaft 6; Drive unit 7: Rotating roller 9.12
:Motor 10:Support

Claims (2)

【特許請求の範囲】[Claims] (1)ガイド軸を挿通した摺動体を静圧流体によって浮
上させ往復動を可能とした静圧流体軸受において、一端
を軸受で支持した駆動シャフトの他端を前記摺動体に結
合すると共に、該駆動シャフトの軸方向に対して傾いた
回転軸を有する回転ローラを前記駆動シャフトの外周面
に接するように配置し、この回転ローラを回転させるこ
とによって前記駆動シャフトを回転しながら軸方向に移
動させて前記摺動体を往復動させるようにしたことを特
徴とする静圧流体軸受。
(1) In a hydrostatic fluid bearing in which a sliding body through which a guide shaft is inserted is levitated by hydrostatic fluid to enable reciprocating motion, one end of a drive shaft supported by a bearing is coupled to the sliding body, and the other end of the drive shaft is supported by a bearing. A rotating roller having a rotating shaft inclined with respect to the axial direction of the drive shaft is disposed so as to be in contact with the outer peripheral surface of the drive shaft, and by rotating this rotating roller, the drive shaft is moved in the axial direction while rotating. A hydrostatic fluid bearing, characterized in that the sliding body is caused to reciprocate by moving the slider.
(2)前記駆動シャフトの軸方向に対する回転ローラの
回転軸の角度を変化させる手段を備えたことを特徴とす
る請求項第1項記載の静圧流体軸受。
(2) The hydrostatic fluid bearing according to claim 1, further comprising means for changing the angle of the rotating shaft of the rotating roller with respect to the axial direction of the drive shaft.
JP4747689A 1989-02-27 1989-02-27 Hydrostatic bearing Expired - Fee Related JP2759276B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4747689A JP2759276B2 (en) 1989-02-27 1989-02-27 Hydrostatic bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4747689A JP2759276B2 (en) 1989-02-27 1989-02-27 Hydrostatic bearing

Publications (2)

Publication Number Publication Date
JPH02225854A true JPH02225854A (en) 1990-09-07
JP2759276B2 JP2759276B2 (en) 1998-05-28

Family

ID=12776192

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4747689A Expired - Fee Related JP2759276B2 (en) 1989-02-27 1989-02-27 Hydrostatic bearing

Country Status (1)

Country Link
JP (1) JP2759276B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0549210A (en) * 1991-08-06 1993-02-26 Kazuhiro Higuchi Friction-driven roller type linear operating machine
JPH0866877A (en) * 1994-08-25 1996-03-12 Hiihaisuto Seiko Kk Linear feed mechanism
CN102501226A (en) * 2011-10-31 2012-06-20 西安理工大学 Accurate rotation device for macro-micro driving deformation guide rail
WO2020085515A1 (en) * 2018-10-26 2020-04-30 イースロジック株式会社 Power transmission device and power transmission method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200474205Y1 (en) * 2010-09-08 2014-08-28 대우조선해양 주식회사 H type guide roller for preventing break-away

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0549210A (en) * 1991-08-06 1993-02-26 Kazuhiro Higuchi Friction-driven roller type linear operating machine
JPH0866877A (en) * 1994-08-25 1996-03-12 Hiihaisuto Seiko Kk Linear feed mechanism
CN102501226A (en) * 2011-10-31 2012-06-20 西安理工大学 Accurate rotation device for macro-micro driving deformation guide rail
WO2013063880A1 (en) * 2011-10-31 2013-05-10 西安理工大学 Macro-micro actuated distended guide rail precision rotation apparatus
US9199350B2 (en) 2011-10-31 2015-12-01 Xi'an University Of Technology Macro-micro actuated distended guide rail precision rotation apparatus
WO2020085515A1 (en) * 2018-10-26 2020-04-30 イースロジック株式会社 Power transmission device and power transmission method

Also Published As

Publication number Publication date
JP2759276B2 (en) 1998-05-28

Similar Documents

Publication Publication Date Title
US5593344A (en) Wafer polishing machine with fluid bearings and drive systems
KR20000069686A (en) Linear drive system for chemical mechanical polishing
JP4309178B2 (en) 3-axis control type flat processing machine
JPH02225854A (en) Static-pressure fluid bearing
JP2000094306A (en) Machining method for cylindrical body-outside diametric surface, and cylindrical body
JP6468056B2 (en) Sphere polishing apparatus and sphere polishing method
JPH09174427A (en) Three-dimensional micro-inclining device
JP7248339B1 (en) Polishing equipment
JP7003553B2 (en) Polishing machine, sphere polishing device and sphere polishing method
JPH0481655B2 (en)
JPH1026203A (en) Friction drive mechanism
JP6520357B2 (en) Sphere polishing apparatus and sphere polishing method
JP6497214B2 (en) Sphere polishing apparatus and truing method thereof
JP2002025951A (en) Double-sided machining apparatus and truing method of grinding means
US6074285A (en) Reciprocating friction drive-type ultra precision machine
JPH01316145A (en) Friction feed mechanism
JPH022659B2 (en)
JPS59106722A (en) Static-pressure gas bearing apparatus
JPH0372442B2 (en)
JP2003117812A (en) Turn table device
JPH1094926A (en) Table device
JP2024013968A (en) Grinding device
JPS63232944A (en) Polishing tool
JPH01302197A (en) Positioning apparatus
KR930003931B1 (en) Grinding device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees