JPH02225673A - Production of thin amorphous carbonaceneous film - Google Patents
Production of thin amorphous carbonaceneous filmInfo
- Publication number
- JPH02225673A JPH02225673A JP1045776A JP4577689A JPH02225673A JP H02225673 A JPH02225673 A JP H02225673A JP 1045776 A JP1045776 A JP 1045776A JP 4577689 A JP4577689 A JP 4577689A JP H02225673 A JPH02225673 A JP H02225673A
- Authority
- JP
- Japan
- Prior art keywords
- gas
- film
- raw material
- silicon hydride
- carbonaceneous
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 10
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 claims abstract description 22
- 239000002994 raw material Substances 0.000 claims abstract description 13
- 229910052990 silicon hydride Inorganic materials 0.000 claims abstract description 12
- 238000005268 plasma chemical vapour deposition Methods 0.000 claims abstract description 11
- 239000010409 thin film Substances 0.000 claims description 14
- 229910003481 amorphous carbon Inorganic materials 0.000 claims description 13
- 230000003287 optical effect Effects 0.000 abstract description 14
- 230000015572 biosynthetic process Effects 0.000 abstract description 11
- 238000000034 method Methods 0.000 abstract description 9
- 229910000077 silane Inorganic materials 0.000 abstract description 8
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 abstract description 7
- 239000000758 substrate Substances 0.000 abstract description 7
- 239000007789 gas Substances 0.000 description 30
- 239000010408 film Substances 0.000 description 16
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 6
- 229910052799 carbon Inorganic materials 0.000 description 6
- 238000004544 sputter deposition Methods 0.000 description 5
- 238000000151 deposition Methods 0.000 description 4
- 230000008021 deposition Effects 0.000 description 4
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical class C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 3
- 239000005977 Ethylene Substances 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229910021417 amorphous silicon Inorganic materials 0.000 description 1
- PZPGRFITIJYNEJ-UHFFFAOYSA-N disilane Chemical compound [SiH3][SiH3] PZPGRFITIJYNEJ-UHFFFAOYSA-N 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 239000008207 working material Substances 0.000 description 1
Landscapes
- Chemical Vapour Deposition (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
Description
【発明の詳細な説明】
A、産業上の利用分野
本発明は、アモルファス炭素系薄膜の製造方法に関する
。DETAILED DESCRIPTION OF THE INVENTION A. Field of Industrial Application The present invention relates to a method for manufacturing an amorphous carbon-based thin film.
B1発明の概要
本発明は、アモルファス炭素系薄膜をプラズマCVD法
を用いて製造する方法において、原料ガスに微量の水素
化ケイ素ガスを添加してプラズマCVDを行なうことに
より、
光学バンドギャップE g oを水素化ケイ素ガスの添
加量のみで容易に制御し得るようにすると共に、成膜時
の基板温度を必要に応じて高めることを可能にし、特性
の向上を図ったものである。B1 Summary of the invention The present invention is a method for manufacturing an amorphous carbon-based thin film using a plasma CVD method, in which a trace amount of silicon hydride gas is added to a raw material gas and plasma CVD is performed, thereby reducing the optical band gap E g o This makes it possible to easily control the amount of silicon hydride gas added, and also makes it possible to increase the substrate temperature during film formation as necessary, thereby improving the characteristics.
C0従来の技術
アモルファス炭素系薄は、光学的エネルギーギャップか
広く、透明であり、硬度が大きい等の特徴を有し、水素
ガスを用いたスパッタ法や炭化水素ガスを原料ガスとす
るC V D (Dhemical VapourDe
position)法などで製造されている。C0 Conventional technology Amorphous carbon-based thin material has characteristics such as a wide optical energy gap, transparency, and high hardness, and can be used by sputtering using hydrogen gas or C V D using hydrocarbon gas as a raw material gas. (Dhemical VaporDe
position) method.
D1発明が解決しようとする課題
しかしながら、上記したスパッタ法においては、作製し
た1w膜の光学的エネルギーギャップが大きいと硬度が
低くなり、さらに成膜速度が小さくなるという問題点が
あった。D1 Problems to be Solved by the Invention However, in the above-described sputtering method, there was a problem that if the optical energy gap of the produced 1W film was large, the hardness would be low and the film formation rate would be low.
また、CVD法においては、成膜速度並びに硬度は、ス
パッタ法より大きいが、エネルギーギャップの点で及ば
ないという問題点があった。Further, in the CVD method, although the film formation speed and hardness are higher than those of the sputtering method, there is a problem in that the energy gap is not as high as that of the sputtering method.
さらに、従来のスパッタ法及びCVD法にあっては、そ
の作製条件、例えば高周波電力、JI空槽内圧力、W5
板温度等を制御して、一つの特性を向トさせる条件を選
択すると、それに伴ない他の特性が低下する(例えば、
成膜速度を向上するために高周波電力を上げると光学エ
ネルギーギャップが低下する)傾向にあり、特性の制御
性に問題があった。Furthermore, in the conventional sputtering method and CVD method, the manufacturing conditions such as high frequency power, JI chamber pressure, W5
If you control plate temperature, etc. and select conditions that improve one property, other properties will decrease accordingly (for example,
There is a tendency for the optical energy gap to decrease when the high-frequency power is increased in order to improve the film-forming rate, which poses problems in the controllability of characteristics.
本発明は、このような従来の問題点に着目して創案され
たものであって、光学バンドギャップEg0を水素化ケ
イ素ガスの添加量のみで容易に制御し得るようにすると
共に、成膜時の基板温度を必要に応じて高めることを可
能にし、特性の向上を図ることを可能にするアモルファ
ス炭素系薄膜の製造方法を得んとするものである。The present invention was devised by focusing on these conventional problems, and allows the optical bandgap Eg0 to be easily controlled only by the amount of silicon hydride gas added, and also allows for easy control of the optical band gap Eg0 during film formation. The purpose of the present invention is to provide a method for manufacturing an amorphous carbon-based thin film, which makes it possible to increase the substrate temperature as necessary and improve the characteristics.
89課題を解決するための手段
そこで、本発明は、アモルファス炭素系薄膜をプラズマ
CVD法を用いて製造する方法において、原料ガスに微
量の水素化ケイ素ガスを添加してプラズマCVDを行な
うことを、その解決手段としている。89 Means for Solving the Problems Therefore, the present invention provides a method for manufacturing an amorphous carbon-based thin film using a plasma CVD method, in which a trace amount of silicon hydride gas is added to the raw material gas and plasma CVD is performed. This is the solution.
F1作用
原料ガス(カーボンソースガス)に水素化ケイ素ガスを
添加することにより、光学エネルギーギャップ(EKo
)、成膜速度、膜硬度の大きなアモルファス炭素系薄膜
の形成を可能にする。By adding silicon hydride gas to the F1 working material gas (carbon source gas), the optical energy gap (EKo
), which enables the formation of amorphous carbon-based thin films with high film formation speed and film hardness.
G 実施例
以下、本発明に係るアモルファス炭素系薄膜の製造方法
の詳細を図面に基づいて説明する。G Example Hereinafter, details of the method for manufacturing an amorphous carbon-based thin film according to the present invention will be explained based on the drawings.
第1図は、本実施例に用いたプラズマCVD装置の概略
図である。FIG. 1 is a schematic diagram of a plasma CVD apparatus used in this example.
同図中、AはプラズマCVD装置であり、反応器1内に
平行平板電極(カソード2.アノード3)が配設され、
高周波電圧を印加した状態で、ガス導入管4から原料ガ
スを導入し、排気W5から排気ガスを排出することに上
りカソード2にアモルファス炭素系薄膜が堆積するよう
になっている。In the figure, A is a plasma CVD apparatus, in which parallel plate electrodes (cathode 2, anode 3) are arranged in a reactor 1,
While a high frequency voltage is applied, raw material gas is introduced from the gas introduction pipe 4, and exhaust gas is discharged from the exhaust W5, so that an amorphous carbon-based thin film is deposited on the cathode 2.
なお、図中6はマツチングボックスを、7は高周波電源
を示している。In the figure, 6 indicates a matching box, and 7 indicates a high frequency power source.
(第1実施例)
本実施例においては、原料ガス(カーボンソースガス)
としてメタン(CH,)に微mのシラン(SjH,)を
添付したらのを用いた。この原料ガスの流量はIOsc
cmであり、反応器I内圧力は27Pa (0,2To
r r)に保った。また、カソード2側に設置する基
板の温度は、250℃に設定した。さらに、高周波電力
はIOWに設定した。(First Example) In this example, raw material gas (carbon source gas)
As a sample, methane (CH,) to which a minute amount of silane (SjH, ) was added was used. The flow rate of this raw material gas is IOsc
cm, and the pressure inside reactor I is 27Pa (0,2To
r r). Further, the temperature of the substrate installed on the cathode 2 side was set to 250°C. Furthermore, the high frequency power was set to IOW.
そして、原料ガス(CH4+ S i 84)中のSi
H,の看を除々に増加して光学エネルギーギャップ(E
go)及び成膜速度(DR)を求めた。And Si in the raw material gas (CH4+ Si 84)
By gradually increasing the value of H, the optical energy gap (E
go) and film deposition rate (DR) were determined.
第2図は、上記の特性を求めた結果を示すグラフである
。なお、ここでX値とは、メタン(CH,)+シラン(
SiHi)全潰を1としたときのSiH,の量を表わし
たものである。同グラフから明らかなように、光学エネ
ルギーギャップ(Ego)。FIG. 2 is a graph showing the results of determining the above characteristics. Note that the X value here refers to methane (CH,) + silane (
SiHi) represents the amount of SiH when total collapse is taken as 1. As is clear from the graph, the optical energy gap (Ego).
成膜速度(DR)ともに大きく向上した。なお、x=0
の場合、基板温度250’Cでは成膜しにくいため、1
50℃の場合のデータをプロブトしている。さらに、本
実施例においては、X値が大きくなるとそれに伴って膜
硬度も大きくなることが確認された。一方、抵抗率Pは
、2XlO”〜3x l Q InΩ・cmと大きな変
化はなかった。Both the film deposition rate (DR) were greatly improved. Note that x=0
In the case of 1, it is difficult to form a film at a substrate temperature of 250'C.
The data is based on the case of 50°C. Furthermore, in this example, it was confirmed that as the X value increases, the film hardness also increases. On the other hand, the resistivity P did not change significantly, ranging from 2XlO'' to 3xlQ InΩ·cm.
(第2実施例)
本実施例においては、原料ガス(カーボンソースガス)
としてエチレン(C2H4)に微量のシラン(SiH,
)を添加したものを用いた。このエチレンガスの流量は
55cc−であり、また、この他に水素ガス55ec−
を反応器l内に流した。なお、その他の条件は、第1実
施例と同様である。ここでエチレンガス(CyH+)を
5 secmとしたのはカーボンソースガス中の炭素c
c>mを第1実施例とそろえるためであり、水素ガスを
加えたのは、圧力を27Pa (0,2Torr)にそ
ろえるためである。第3図は、本実施例においてシラン
(SiHa)を添加したことによる特性向上の結果を示
すグラフである。(Second Example) In this example, raw material gas (carbon source gas)
As a trace amount of silane (SiH,
) was used. The flow rate of this ethylene gas is 55cc-, and in addition to this, hydrogen gas is 55cc-
was flowed into the reactor 1. Note that other conditions are the same as in the first embodiment. Here, the reason why the ethylene gas (CyH+) was set to 5 sec is because the carbon c in the carbon source gas
This was to make c>m the same as in the first embodiment, and the reason why hydrogen gas was added was to make the pressure equal to 27 Pa (0.2 Torr). FIG. 3 is a graph showing the improvement in characteristics due to the addition of silane (SiHa) in this example.
なお、同グラフに示したX値は、エチレン(C! H4
)とシラン(SiH,)全量を1としたときの5iHa
の量を示したものである。In addition, the X value shown in the same graph is ethylene (C! H4
) and 5iHa when the total amount of silane (SiH,) is 1
It shows the amount of
同グラフから明らかなように、光学エネルギーギャップ
(Ego)及び成膜速度(DR)ともに大きく向−Eし
ているのが確認される。また、第!実施例と同様に、X
値に伴い膜硬度は大きくなる。As is clear from the graph, it is confirmed that both the optical energy gap (Ego) and the deposition rate (DR) are significantly shifted toward -E. Also, no. Similar to the example, X
The film hardness increases with the value.
一方、抵抗率ρ 2×10目〜5XIO”Ω・amと大
きな変化はなかった。On the other hand, the resistivity ρ was 2×10 to 5×IO”Ω·am, and there was no significant change.
以上、実施例について説明したが上記量実施例より、ア
モルファス炭素系薄膜(a−S i XC+−11:H
)の成膜において、シランを原料ガスに微量添加するこ
とによって上記した各種特性を向上させることが可能で
ある。Examples have been described above, but from the above quantity examples, amorphous carbon-based thin film (a-S i XC+-11:H
), it is possible to improve the various properties described above by adding a small amount of silane to the source gas.
また、シリコン(Si)は、X値に伴って、アモルファ
ス炭素系薄膜中に取り込まれる竜が増大する。したがっ
て、添加するSiH,量を増し過ぎるとアモルファス炭
化ケイ素(a−SiC:H)薄膜に近くなるため、X値
は0.2以下に抑えることが望ましい。Furthermore, as the X value increases, the amount of silicon (Si) incorporated into the amorphous carbon-based thin film increases. Therefore, if the amount of added SiH is increased too much, the film becomes close to an amorphous silicon carbide (a-SiC:H) thin film, so it is desirable to suppress the X value to 0.2 or less.
なお、上記両実施例において用いた原料ガスは、これら
に限られるものではなく他のカーボンブースガスを用い
てもよい。Note that the raw material gases used in both of the above examples are not limited to these, and other carbon booth gases may be used.
また、上記両実施例においては、水素化ケイ素ガスとし
て、シラン(S i )44.)を用いたが、ジシラン
(S i *I4 e)などを用いてもよい。In both of the above examples, silane (S i ) was used as the silicon hydride gas. ), but disilane (S i *I4 e) or the like may also be used.
[(1発明の効果
以」二の説明から明らかなように、本発明に係るアモル
ファス炭素系薄膜の製造方法にあっては、従来のように
、ソースガス流量9灰応器内圧力高周波電力を変えて薄
膜特性を制御する方法に比べ、光学エネルギーギャップ
(Ego)及び成膜速度(DR)を水素化ケイ素ガスの
添加量のみで簡単にコントロールすることができる(
E g oの制御幅は1.9〜3.6eVとなる)効果
がある。[(1) Effects of the Invention As is clear from the explanation in 2, in the method for manufacturing an amorphous carbon thin film according to the present invention, the source gas flow rate 9 ash reactor internal pressure high frequency power is Compared to the method of controlling thin film properties by changing the amount of silicon hydride gas added, the optical energy gap (Ego) and deposition rate (DR) can be easily controlled by simply changing the amount of silicon hydride gas added (
The control width of E go is 1.9 to 3.6 eV).
また、他の特性を損なうことなく各種の特性を向上させ
る効果がある。Moreover, it has the effect of improving various properties without impairing other properties.
さらに、成膜時の基板温度を必要に応じて高温にするこ
とが可能となる効果がある。Furthermore, there is an effect that the substrate temperature during film formation can be raised to a high temperature as necessary.
第1図は本発明に係るアモルファス炭素系薄膜の製造方
法の実施例に用いるプラズマCVD装置の概略図、第2
図は第1実施例において添加Si■(4量と光学エネル
ギーギャップ及び成膜速度との関係を示すグラフ、第3
図は第2実施例において添加SiH4量と光学エネルギ
ーギャップ及び成膜速度との関係を示すグラフである。
第1図
ブブス゛マCOV梗Xf)具Bみ図
外2名FIG. 1 is a schematic diagram of a plasma CVD apparatus used in an embodiment of the method for producing an amorphous carbon-based thin film according to the present invention, and FIG.
The figure is a graph showing the relationship between the amount of added Si (4) and the optical energy gap and film formation rate in the first example.
The figure is a graph showing the relationship between the amount of SiH4 added, the optical energy gap, and the film formation rate in the second example. Figure 1 Bubusuma COV stroke
Claims (1)
いて製造する方法において、 原料ガスに微量の水素化ケイ素ガスを添加してプラズマ
CVDを行なうことを特徴とするアモルファス炭素系薄
膜の製造方法。(1) A method for producing an amorphous carbon-based thin film using a plasma CVD method, characterized in that plasma CVD is performed by adding a trace amount of silicon hydride gas to a raw material gas.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1045776A JPH02225673A (en) | 1989-02-27 | 1989-02-27 | Production of thin amorphous carbonaceneous film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1045776A JPH02225673A (en) | 1989-02-27 | 1989-02-27 | Production of thin amorphous carbonaceneous film |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02225673A true JPH02225673A (en) | 1990-09-07 |
Family
ID=12728697
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1045776A Pending JPH02225673A (en) | 1989-02-27 | 1989-02-27 | Production of thin amorphous carbonaceneous film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02225673A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5750422A (en) * | 1992-10-02 | 1998-05-12 | Hewlett-Packard Company | Method for making integrated circuit packaging with reinforced leads |
US5750210A (en) * | 1989-04-28 | 1998-05-12 | Case Western Reserve University | Hydrogenated carbon composition |
-
1989
- 1989-02-27 JP JP1045776A patent/JPH02225673A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5750210A (en) * | 1989-04-28 | 1998-05-12 | Case Western Reserve University | Hydrogenated carbon composition |
US5750422A (en) * | 1992-10-02 | 1998-05-12 | Hewlett-Packard Company | Method for making integrated circuit packaging with reinforced leads |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5366713A (en) | Method of forming p-type silicon carbide | |
JPH0459390B2 (en) | ||
US5391410A (en) | Plasma CVD of amorphous silicon thin film | |
JPH02225673A (en) | Production of thin amorphous carbonaceneous film | |
Verkerk et al. | Compensation of decreased ion energy by increased hydrogen dilution in plasma deposition of thin film silicon solar cells at low substrate temperatures | |
JP2659394B2 (en) | Semiconductor thin film manufacturing method | |
JPH0492893A (en) | Vapor-phase synthesis of diamond thin film | |
JP2659400B2 (en) | Formation method of carbon-containing silicon thin film | |
JPH0341435B2 (en) | ||
JPS60100675A (en) | Formation of deposited film | |
JPH03222321A (en) | Manufacture of amorphous semiconductor thin film | |
JPH04372118A (en) | Manufacture of amorphous semiconductor thin film | |
JPS62142780A (en) | Formation of deposited film | |
JPS63136514A (en) | Manufacture of amorphous silicon carbide film | |
JPS63123802A (en) | Production of carbon film | |
JP2562662B2 (en) | Method for forming amorphous silicon film | |
JPH042767A (en) | Production of thin film | |
JPS59182521A (en) | Formation of silicon hydrite thin film | |
JPS5727914A (en) | Manufacture of thin silicon carbide film | |
JPH0831742A (en) | Deposition of non-single-crystal silicon carbide alloy | |
JPS56140021A (en) | Manufacture of silicon carbide thin film | |
JPS62116773A (en) | Electrically conductive transparent film | |
JP2968085B2 (en) | Vapor phase growth equipment | |
JPS6345465B2 (en) | ||
JPS63155610A (en) | Manufacture of semiconductor film |