JPS63136514A - Manufacture of amorphous silicon carbide film - Google Patents

Manufacture of amorphous silicon carbide film

Info

Publication number
JPS63136514A
JPS63136514A JP61283386A JP28338686A JPS63136514A JP S63136514 A JPS63136514 A JP S63136514A JP 61283386 A JP61283386 A JP 61283386A JP 28338686 A JP28338686 A JP 28338686A JP S63136514 A JPS63136514 A JP S63136514A
Authority
JP
Japan
Prior art keywords
gas
sic film
film
substrate
amorphous silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61283386A
Other languages
Japanese (ja)
Inventor
Takao Kawamura
河村 孝夫
Naooki Miyamoto
宮本 直興
Hitoshi Takemura
仁志 竹村
Hiroshi Ito
浩 伊藤
Kazumasa Okawa
大川 和昌
Kokichi Ishiki
石櫃 鴻吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP61283386A priority Critical patent/JPS63136514A/en
Publication of JPS63136514A publication Critical patent/JPS63136514A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)
  • Photoreceptors In Electrophotography (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To generate an a-SiC film of desired composition by using as C- containing gas of reaction gas C2H2 gas and ethylene unsaturated hydrocarbon or saturated hydrocarbon thereby to control decomposing capacity as the C- containing gas. CONSTITUTION:In order to form, for example, an a-SiC film doped with B on a substrate 17, first, second, third and fourth regulating valves 5, 6, 7 and 8 are opened to discharge SiH4 gas, mixture gas of C2H2, CmHn (m>=1, n>=4), B2H6 gas and H2 gas from first, second, third and fourth tanks l, 2, 3 and 4, respectively. These discharging amounts are controlled by mass flow controllers 9, 10, 11 and 12, respectively to be fed through a main pipe 13 to a reaction tube 15. The tube 15 is evacuated in vacuum stage of 0.1-2.0 Torr, at 50 to 40 deg.C of substrate temperature, a high frequency power is applied to a capacity type discharging electrode 16 to generate a glow discharge. Thus, the gas is decomposed to form a B-containing a-SiC film on the substrate at a high speed. Thus, since the C amount of the a-SiC film can be freely varied, the a-SiC film of desired characteristics can be formed.

Description

【発明の詳細な説明】 〔発明の分野〕 本発明はアモルファスシリコンカーバイド膜の製法に関
し、より詳細には原料ガスの取り扱いを容易となすとと
もに膜質の制御を容易にしたアモルファスシリコンカー
バイド膜の製法に関する。
[Detailed Description of the Invention] [Field of the Invention] The present invention relates to a method for manufacturing an amorphous silicon carbide film, and more particularly to a method for manufacturing an amorphous silicon carbide film that facilitates the handling of raw material gas and the control of film quality. .

〔従来技術〕[Prior art]

近年、単結晶材料から成る半導体に加えて非晶質(アモ
ルファス)3膜から成る半導体が注目され、太陽電池等
の光電変換素子或いは電子写真用感光体としてのその利
用が活発に行われている。
In recent years, in addition to semiconductors made of single crystal materials, semiconductors made of three amorphous films have attracted attention, and their use as photoelectric conversion elements such as solar cells or photoreceptors for electrophotography is being actively carried out. .

その半導体材料としてはアモルファスシリコン(a−5
i )或いはアモルファスシリコンカーバイド(a−3
iC)が注目されており、特にa−3iCはa−3iに
比べて大きなバンドギャップをもつと共に耐熱性、耐熱
衝撃性、耐摩耗性に優れていることがら感光体や発光、
受光素子としての応用が進められている。
The semiconductor material is amorphous silicon (A-5
i) or amorphous silicon carbide (a-3
iC) is attracting attention, and in particular a-3iC has a larger band gap than a-3i and has excellent heat resistance, thermal shock resistance, and abrasion resistance, so it is suitable for photoreceptors, light emitting materials,
Applications as light-receiving elements are being advanced.

この3−5iC膜は、例えばグロー放電分解法により生
成され、その生成用ガスはメタン、エタン、プロパン、
エチレンなどのC(炭素)含有ガス、並びにシラン、ジ
シラン、トリシラン、4フツ化ケイ素などのSi(ケイ
素)含有ガスが用いられている。
This 3-5iC film is produced, for example, by a glow discharge decomposition method, and the production gas is methane, ethane, propane,
C (carbon)-containing gases such as ethylene, and Si (silicon)-containing gases such as silane, disilane, trisilane, and silicon tetrafluoride are used.

しかし乍ら、上記ガスを用いてa−3iCpIiを形成
すると1μm /h以下という低い成膜速度でしか生成
されず、実用化するに当たり高い成膜速度が要求される
例えば電子写真用感光体の製造に際しては、約5〜30
μmの厚みが要求されることから成膜速度の向上が望ま
れている。
However, when a-3iCpIi is formed using the above gas, it is produced only at a low film formation rate of 1 μm/h or less, and for practical use, for example, in the production of electrophotographic photoreceptors, which require a high film formation rate. Approximately 5 to 30
Since a thickness of μm is required, it is desired to improve the film formation rate.

かかる要求に対して、本発明者等は前記C含有ガスとし
てアセチレン(C2H□)を用いると著しく高い成膜速
度が得られることを見出し、a−3iC膜の感光体とし
ての応用が可能であること提塞した。
In response to such demands, the present inventors have found that a significantly high film formation rate can be obtained by using acetylene (C2H□) as the C-containing gas, and it is possible to apply the a-3iC film as a photoreceptor. It was suggested.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかて乍ら、C211□ガスを原料ガスとして反応管内
に供給する場合、Cz!Izガスは高圧封入されたボン
ベを使用することができるが、CZH2自体の性質とし
て高純度の0211□は高圧下(充填性IKg/cm2
以上)で分解爆発性を有することから、その取り扱いに
際し細心の注意を払う必要があると共に製造効率の点で
問題がある。即ちボンベの充填圧は0゜5Kg/cm”
以下に設定される必要があり、そのためにボンベ1本当
たりのガス純量が他のC含有ガスに比べ格段に少なくボ
ンベの交換回数が頻繁になり効率を低下させる。
However, when C211□ gas is supplied into the reaction tube as a raw material gas, Cz! A high-pressure sealed cylinder can be used for Iz gas, but due to the nature of CZH2 itself, highly purified 0211
Since these materials have decomposition and explosive properties, it is necessary to take great care when handling them, and there are problems in terms of manufacturing efficiency. In other words, the filling pressure of the cylinder is 0゜5Kg/cm"
Therefore, the pure amount of gas per cylinder is much smaller than that of other C-containing gases, and the cylinders must be replaced frequently, reducing efficiency.

また、a−SiCの成膜に際し、C211□ガスはSi
含有ガスと比較しても高い分解能を有するが、それゆえ
に流量の調整が難しく、生成されるa−5iC膜自体C
量の多くなる傾向になり、所望の組成を有する改質の優
れたa−5iC膜を得るのが難しいという問題があった
In addition, when forming a-SiC film, C211□ gas is
Although it has a high resolution compared to the contained gas, it is difficult to adjust the flow rate, and the produced a-5iC film itself C
There is a problem that the amount tends to increase, making it difficult to obtain a highly modified a-5iC film having a desired composition.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者等は蒸気問題点に対し研究を重ねた結果、反応
ガスのC含有ガスとしてCZI!□ガスおよびエチレン
系不飽和炭素水素或いは飽和炭素水素を併用して用いる
ことにより、高圧下におけるcznzの分解爆発性を抑
制することができることにより反応ガスの取り扱いを容
易となすことができると共にボンベ1本当たりのC2H
2ガス純量を多くすることができるため、製造効率を向
上させることができ、また、C含有ガスとしての分解能
を制御し、流量の調整を容易にすることができることに
よって生成させるa−5iC膜の膜質を向上させ、所望
の組成のa−SiC膜を生成することができることを知
見し本発明に至った。
As a result of repeated research into the steam problem, the present inventors found that CZI! □ By using gas and ethylenically unsaturated carbon hydrogen or saturated carbon hydrogen, the decomposition and explosiveness of cznz under high pressure can be suppressed, making it possible to easily handle the reaction gas and reducing the C2H per book
Since the pure amount of the two gases can be increased, production efficiency can be improved, and the a-5iC film produced by controlling the resolution of the C-containing gas and making it easier to adjust the flow rate. The inventors have discovered that it is possible to improve the film quality and produce an a-SiC film with a desired composition, leading to the present invention.

以下、本発明を詳述する。The present invention will be explained in detail below.

本発明の製造方法によれば、反応ガスとして少なくとも
Si含有ガスおよびC含有ガスを用いるものであって、
C含有ガスとしてはCzHzガスおよびCmHn (但
し、m≧1、n≧4)ガスの混合ガスを用いることが本
発明における大きな特徴である。
According to the production method of the present invention, at least a Si-containing gas and a C-containing gas are used as the reaction gas,
A major feature of the present invention is that a mixed gas of CzHz gas and CmHn (where m≧1, n≧4) gas is used as the C-containing gas.

CmHnガスとしては具体的にはエチレン系不飽和炭化
水素、飽和炭素水素であってそれ自体室温で気体である
ことが望ましく、例えばCzH6,C3!(a、CtH
+。+C3HI□、CzH4,CJ6.CtHa+Cs
11.。等で表わされる直鎖状あるいはこれらの異性体
が挙げられる。
Specifically, the CmHn gas is preferably an ethylenically unsaturated hydrocarbon or a saturated carbon hydrogen gas which itself is a gas at room temperature, such as CzH6, C3! (a, CtH
+. +C3HI□, CzH4, CJ6. CtHa+Cs
11. . Examples include linear chains represented by the following and isomers thereof.

C2H2ガスとCmHnガスの割合は(CmHn/Cz
llz + Cmtln)比で0.1乃至0.9、特に
0.3乃至0.8が望ましく、この比が0.1を下回る
と本発明の目的が達成され難<、0.9を超えるとC2
H,ガスを用いることによる高速成膜化ができなくなる
The ratio of C2H2 gas and CmHn gas is (CmHn/Cz
llz + Cmtln) ratio of 0.1 to 0.9, particularly 0.3 to 0.8; if this ratio is less than 0.1, it will be difficult to achieve the purpose of the present invention; if it exceeds 0.9, C2
High-speed film formation using H gas becomes impossible.

なお、このC含有ガスはC2H2の高圧下における分解
爆発性を抑制する目的からC2H2とCmHnガスとは
ボンベ等への密封時、常に両者を混合した状態で高圧密
封しておくことが必要である。
In addition, for the purpose of suppressing the decomposition and explosiveness of C2H2 under high pressure, this C-containing gas must always be mixed with C2H2 and CmHn gas and sealed at high pressure when sealed in a cylinder, etc. .

Si含有ガスとしてはS iII 4+ S i t 
Hbなどを用いることができ、このSi含有ガスは上記
のC含有ガスに対してC含有ガス:Si含有ガス・0.
01:1乃至3:l、特に0.01:1乃至1:lの割
合で配合することが望ましい。
As the Si-containing gas, SiII 4+ Si t
Hb etc. can be used, and this Si-containing gas is C-containing gas:Si-containing gas・0.
It is preferable to blend in a ratio of 0.01:1 to 3:l, particularly 0.01:1 to 1:l.

本発明の製造方法によれば、前述したC含有ガスおよび
Si含有ガスの他に種々のガスを混入することができ、
例えば、生成されるa−5iCのダングリングボンドを
終端させることを目的として+1.F。
According to the manufacturing method of the present invention, various gases can be mixed in addition to the above-mentioned C-containing gas and Si-containing gas,
For example, for the purpose of terminating the generated a-5iC dangling bond, +1. F.

CI等の一価元素を含有するガスを導入することができ
る。
A gas containing a monovalent element such as CI can be introduced.

これらの反応ガスは反応系内に導入された後、例えば熱
、光、直流グロー放電、高周波グロー放電、マイクロ波
プラズマ等のエネルギー供給手段によって分解され、所
望の基板上にa−5iC或いはa−SiC:)Iとして
生成する。具体的に半導体としての用途から生成される
a−3iCは 5i(1−X、CM・・・(1) 但し、0.01≦X≦0.9、特に0.05≦X≦0.
5で表わされる。
After these reaction gases are introduced into the reaction system, they are decomposed by energy supply means such as heat, light, DC glow discharge, high frequency glow discharge, microwave plasma, etc., and a-5iC or a- Generate as SiC:)I. Specifically, a-3iC generated from use as a semiconductor is 5i(1-X, CM...(1) However, 0.01≦X≦0.9, especially 0.05≦X≦0.
It is represented by 5.

本発明の製造方法によれば、a−3iCとしての用途に
よっては、そのa−3iC膜の特性を変えるために各種
の元素をドープすることができる。a−5iC膜自体は
弱いn型半導体であって例えばP、N、As、Sb等の
周期律表第Va族元素を10. OOOppm以下の範
囲でドープさせることによりさらにn型を強めることが
でき、逆にB、AI、Ga+ In等の周期律表第■a
族元素を0.1乃至10.OOOppmの範囲でドープ
させることによってP型半導体とすることができる。
According to the manufacturing method of the present invention, various elements can be doped to change the characteristics of the a-3iC film depending on the use as the a-3iC. The a-5iC film itself is a weak n-type semiconductor, and contains elements of Group Va of the periodic table such as P, N, As, and Sb. It is possible to further strengthen the n-type by doping in a range of OOOppm or less, and conversely, it is possible to strengthen the n-type by doping in the range of OOO ppm or less, and conversely,
group elements from 0.1 to 10. It can be made into a P-type semiconductor by doping in the range of OOOppm.

このような場合には、反応ガス中に各ドーピング元素を
含有するガス、例えば周期律表第ma族元素含有ガスと
して82+1.、BF3.At(Cll3) :+、G
a(Cll:+) 3In(CH3)z等を反応ガス中
に10−b乃至1モルχ、特に10−5乃至0.1モル
χの割合で含有させ、また周期律表第Va族元素含有ガ
スとしてPHi+Nz+Ast13+AsF3,5bF
ff等を反応ガス中に1モル%以下、特に0゜1モル%
以下の割合で含有すれば良い。
In such a case, a gas containing each doping element in the reaction gas, for example, 82+1. , BF3. At(Cll3):+,G
a(Cll:+) 3In(CH3)z etc. is contained in the reaction gas at a ratio of 10-b to 1 mol χ, especially 10-5 to 0.1 mol χ, and also contains Group Va elements of the periodic table. PHi+Nz+Ast13+AsF3,5bF as gas
ff etc. in the reaction gas at 1 mol% or less, especially 0°1 mol%
It may be contained in the following proportions.

次に本発明の製造方法の一実施例として高周波グロー放
電分解法を採用した場合を詳述する。
Next, a case in which a high frequency glow discharge decomposition method is adopted as an embodiment of the manufacturing method of the present invention will be described in detail.

第1図は一実施例に用いられる容量結合型グロー放電分
解装置を説明するための図である。なお、ドーピング元
素としてホウ素を選択した。
FIG. 1 is a diagram for explaining a capacitively coupled glow discharge decomposition device used in one embodiment. Note that boron was selected as the doping element.

図中、第1、第2、第3、第4タンク(1) (2) 
(3)(4)にはそれぞれS i H、ガス、BzHb
ガス、112およびC,H2ガスとCmHnガスが前述
した割合で混合されたガスが圧縮密封されており、H2
はキャリアーガスとしても用いられる。これらのガスは
対応する第1、第2、第3、第4調整弁(5) (6)
 (7) (8)を開放することにより放出され、その
流量がマスフローコントローラ(9) (10) (1
1) (12)により制御されてメインパイプ(13)
へ送られる。尚、(14)は止め弁である。
In the diagram, 1st, 2nd, 3rd, and 4th tanks (1) (2)
(3) and (4) respectively contain S i H, gas, and BzHb.
Gas, 112, C, H2 gas and CmHn gas are mixed in the above-mentioned ratio and are compressed and sealed.
is also used as a carrier gas. These gases are controlled by the corresponding first, second, third, and fourth regulating valves (5) (6)
(7) It is released by opening (8), and its flow rate is adjusted to the mass flow controller (9) (10) (1
1) Main pipe (13) controlled by (12)
sent to. Note that (14) is a stop valve.

メインパイプ(13)を通じて流れるガスは反応管(1
5)へと送り込まれるが、この反応管内部には容量結合
型放電用電極(16)が設置されており、これに印加さ
れる電力は50−乃至3 KWが、また周波数はIMH
2乃至10MIIzが適当である。反応管(15)の内
部には、アルミニウムから成る筒状の成膜用導電性基板
(17)が試料保持台(18)の上に載置されており、
この保持台(18)はモーター(19)により回転駆動
されるようになっており、そして、基板(17)は適当
な加熱手段により約50乃至400°C好ましくは約1
50乃至300℃の温度に均一に加熱される。更に、反
応管(15)の内部はa−5i膜又はa−5iC膜等の
形成時に高度の真空状態(放電圧0.1乃至2.0To
rr)を必要とすることにより回転ポンプ(20)と拡
散ポンプ(21)に連結される。
The gas flowing through the main pipe (13) flows through the reaction tube (1
A capacitively coupled discharge electrode (16) is installed inside this reaction tube, and the power applied to this is 50-3 KW, and the frequency is IMH.
2 to 10 MIIz is suitable. Inside the reaction tube (15), a cylindrical conductive substrate for film formation (17) made of aluminum is placed on a sample holding table (18).
This holding table (18) is rotatably driven by a motor (19), and the substrate (17) is heated to about 50 to 400°C, preferably about 1°C, by suitable heating means.
It is heated uniformly to a temperature of 50 to 300°C. Furthermore, the inside of the reaction tube (15) is kept in a high vacuum state (discharge voltage 0.1 to 2.0 To
rr) is connected to the rotary pump (20) and the diffusion pump (21).

以上のように構成されたグミ−放電分解装置において、
例えばBがドーピングされたa−3iC膜を基板(17
)上に形成するに当たって第1、第2、第3、第4調整
弁(5) (6) (7) (8)を開放して第1、第
2、第3、第4タンク(1) (2) (3) (4)
よりそれぞれS i II 4ガス、CzHzとCmt
lnの混合ガス、B 2tl bガス及び11□ガスを
放出し、これらの放出量はマスフローコントローラ(9
) (10) (11) (12)により規制されてメ
インパイプ(13)を介して反応管(15)へと送り込
まれ、そして、反応管(15)の内部が0.1乃至2.
 QTorrの真空状態、基板温度が50乃至400°
C5容量型放電用電極(16)に周波数1乃至10 M
 II zの高周波電力が50W乃至3 KW印加され
るのに相撲ってグロー放電が起こり、ガスが分解してB
含有のa−3iC膜が基板上に高速で形成される。
In the gummy discharge decomposition device configured as above,
For example, a B-doped a-3iC film is used as a substrate (17
), open the first, second, third, and fourth regulating valves (5), (6), (7), and (8) to form the first, second, third, and fourth tanks (1). (2) (3) (4)
S i II 4 gases, CzHz and Cmt, respectively.
1n mixed gas, B 2tl b gas, and 11□ gas are released, and the amount of these emissions is controlled by a mass flow controller (9
) (10) (11) (12) and is fed into the reaction tube (15) via the main pipe (13), and the inside of the reaction tube (15) is regulated by 0.1 to 2.
QTorr vacuum state, substrate temperature 50 to 400°
Frequency 1 to 10 M to C5 capacitive discharge electrode (16)
II Z high frequency power of 50 W to 3 KW is applied, a glow discharge occurs, the gas decomposes, and B
A containing a-3iC film is formed on the substrate at high speed.

なお、本発明の製造方法は上述した高周波グロー放電分
解法に限定されるものではなく他の成膜手段を採用して
も同様に高速成膜化を達成することができ、他の成膜手
段としては光CVD法、レーザーCVD法、熱CVD法
、直流グロー放電分解法、マイクロ波プラズマCVD法
、ECRプラズマCVD法等の化学気相成長法が挙げら
れ、これらの手段においても前述した反応ガス組成比と
同様の組成比で系内に導入してこれを分解することによ
って高速にa−3iC膜を生成することができる。
Note that the manufacturing method of the present invention is not limited to the above-mentioned high-frequency glow discharge decomposition method, and high-speed film formation can be similarly achieved even if other film-forming methods are employed. Examples include chemical vapor deposition methods such as optical CVD, laser CVD, thermal CVD, direct current glow discharge decomposition, microwave plasma CVD, and ECR plasma CVD. By introducing the same composition ratio into the system and decomposing it, an a-3iC film can be produced at high speed.

以下、本発明を次の例で説明する。The invention will now be explained with the following examples.

実施例 ダイヤモンドバイトを用いた超精密旋盤により鏡面に仕
上げた基板用アルミニウム製円筒状ドラムを有機溶剤を
用いた超音波洗浄及び蒸気洗浄を行った後乾燥し、第1
図に示した容量結合型グロー放電分解装置の反応管(1
5)内に設置した。
Example An aluminum cylindrical drum for a substrate finished to a mirror finish using an ultra-precision lathe using a diamond cutting tool was subjected to ultrasonic cleaning and steam cleaning using an organic solvent, and then dried.
The reaction tube (1
5) It was installed inside.

そして第1タンク(1)より5illaガス、第2タン
ク(2)より82H,ガス、第3タンク(3)より11
2ガス、第4タンク(4)より第1表に示された割合で
混合されたCzHzとCmtlnと混合ガスをそれぞれ
第1表に示す流量で放出し、ガス圧を0.5Torr 
、高周波電力を100Wに設定するとともに基板温度3
00℃に設定して前述したグロー放電分解法に基づいて
1時間成膜を行ったところ優れた膜質のP型のa−5i
C:H;B膜を得た。そして、得られたa−3iC:)
l:II膜の膜厚を測定した。
Then, 5illa gas from the first tank (1), 82H gas from the second tank (2), 11 gas from the third tank (3)
CzHz and Cmtln mixed in the proportions shown in Table 1 were discharged from the fourth tank (4) at the flow rates shown in Table 1, and the gas pressure was reduced to 0.5 Torr.
, set the high frequency power to 100W and the substrate temperature to 3.
When a film was formed for 1 hour based on the glow discharge decomposition method described above at a temperature of 00°C, a P-type a-5i film with excellent film quality was obtained.
A C:H;B film was obtained. And the obtained a-3iC:)
The thickness of the l:II film was measured.

〔以下余白〕[Margin below]

〔発明の効果〕 以上詳述した通り、本発明のアモルファスシリコンカー
バイド膜の製造方法によれば、炭素含有ガスとしてC2
H2ガスとCmHnガス(但しm≧1、n≧4)を混合
して用いることによりC,11、ガスの高圧下での分解
爆発性を緩和することができ、それによりガスの取り扱
いを容易となすことができると共にボンベ1本当たりの
C211□ガス純量を多(することができてボンベの交
換頻度を少なくして製造効率を向上させることができる
。また、02HzガスとSt含有ガスを用いてa−3i
C膜を高速成膜する際の成膜速度を制御することが可能
となり、特に生成されるa−5iC膜のCiを自在に変
化させることができることから所望の特性のa−SiC
膜を得ることができる。なおこの製造方法は高速成膜お
よび種々の特性のa−SiC膜を必要とする電子写真感
光体をはじめとしてあらゆる発光素子、受光素子に対し
適用されるものである。
[Effects of the Invention] As detailed above, according to the method for producing an amorphous silicon carbide film of the present invention, C2 is used as the carbon-containing gas.
By using a mixture of H2 gas and CmHn gas (m≧1, n≧4), the decomposition and explosiveness of C,11 gas under high pressure can be alleviated, thereby making the gas easier to handle. In addition, it is possible to increase the pure amount of C211□ gas per cylinder, reducing the frequency of cylinder replacement and improving manufacturing efficiency. a-3i
It becomes possible to control the film formation speed when forming a C film at high speed, and in particular, it is possible to freely change the Ci of the produced a-5iC film, so that it is possible to form a-SiC with desired characteristics.
membrane can be obtained. This manufacturing method is applicable to all kinds of light-emitting elements and light-receiving elements, including electrophotographic photoreceptors, which require high-speed film formation and a-SiC films with various characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に用いられる容量結合型グロ
ー放電分解装置を説明するための図である。 1.2,3.4  ・・・タンク 15・・・・・・反応管 17・・・・・・基板
FIG. 1 is a diagram for explaining a capacitively coupled glow discharge decomposition device used in one embodiment of the present invention. 1.2, 3.4 Tank 15 Reaction tube 17 Substrate

Claims (1)

【特許請求の範囲】[Claims] 原料ガスとして少なくともSi含有ガスとC含有ガスを
用い、これを分解して基板上にアモルファスシリコンカ
ーバイドを析出させるアモルファスシリコンカーバイド
膜の製法において、前記C含有ガスとしてC_2H_2
ガスおよびC_mH_n(但しm≧1、n≧4)ガスを
用いることを特徴とするアモルファスシリコンカーバイ
ド膜の製法。
In a method for producing an amorphous silicon carbide film in which at least a Si-containing gas and a C-containing gas are used as raw material gases and are decomposed to deposit amorphous silicon carbide on a substrate, C_2H_2 is used as the C-containing gas.
A method for producing an amorphous silicon carbide film characterized by using a gas and a C_mH_n (m≧1, n≧4) gas.
JP61283386A 1986-11-27 1986-11-27 Manufacture of amorphous silicon carbide film Pending JPS63136514A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61283386A JPS63136514A (en) 1986-11-27 1986-11-27 Manufacture of amorphous silicon carbide film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61283386A JPS63136514A (en) 1986-11-27 1986-11-27 Manufacture of amorphous silicon carbide film

Publications (1)

Publication Number Publication Date
JPS63136514A true JPS63136514A (en) 1988-06-08

Family

ID=17664844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61283386A Pending JPS63136514A (en) 1986-11-27 1986-11-27 Manufacture of amorphous silicon carbide film

Country Status (1)

Country Link
JP (1) JPS63136514A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5445992A (en) * 1993-05-10 1995-08-29 Canon Kabushiki Kaisha Process for forming a silicon carbide film
JP2014175328A (en) * 2013-03-06 2014-09-22 Yamaguchi Univ n-TYPE SEMICONDUCTOR COMPOSED OF NITROGEN-CONTAINING AMORPHOUS SILICON CARBIDE AND MANUFACTURING METHOD OF THE SAME

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5445992A (en) * 1993-05-10 1995-08-29 Canon Kabushiki Kaisha Process for forming a silicon carbide film
JP2014175328A (en) * 2013-03-06 2014-09-22 Yamaguchi Univ n-TYPE SEMICONDUCTOR COMPOSED OF NITROGEN-CONTAINING AMORPHOUS SILICON CARBIDE AND MANUFACTURING METHOD OF THE SAME

Similar Documents

Publication Publication Date Title
JPH05335257A (en) Formation of p-type silicon carbide
JPS63136514A (en) Manufacture of amorphous silicon carbide film
JPS63137172A (en) Production of amorphous silicon carbide film
JPS61247020A (en) Deposition film forming method
JP2659400B2 (en) Formation method of carbon-containing silicon thin film
JPS63137171A (en) Production of amorphous silicon carbide film
JPH0517312B2 (en)
JPS63137173A (en) Production of amorphous silicon carbide film
JPS61189627A (en) Formation of deposited film
JPS61190923A (en) Formation of deposited film
JPS62136663A (en) Electrophotographic sensitive body and method and apparatus for producing said body
JPS61184816A (en) Formation of deposited film
JPS61196519A (en) Deposition film forming method
JPS62231264A (en) Electrophotographic sensitive body
JPS6188522A (en) Formation of deposited film
JPS61191018A (en) Formation of deposited film
JPS61196518A (en) Deposition film forming method
JPS61237418A (en) Formation of deposited film
JPS61193426A (en) Formation of deposited film
JPS6189625A (en) Formation of deposited film
JPS61193429A (en) Formation of deposited film
JPS6189626A (en) Formation of deposited film
JPS61283111A (en) Forming method for accumulated film
JPS61199625A (en) Formation of deposited film
JPS6190425A (en) Formation of deposited film