JPH02225304A - Production of silicon nitride, silicon nitride powder and use of the same powder - Google Patents

Production of silicon nitride, silicon nitride powder and use of the same powder

Info

Publication number
JPH02225304A
JPH02225304A JP1043079A JP4307989A JPH02225304A JP H02225304 A JPH02225304 A JP H02225304A JP 1043079 A JP1043079 A JP 1043079A JP 4307989 A JP4307989 A JP 4307989A JP H02225304 A JPH02225304 A JP H02225304A
Authority
JP
Japan
Prior art keywords
powder
silicon nitride
silicon
nitride powder
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1043079A
Other languages
Japanese (ja)
Other versions
JPH07102966B2 (en
Inventor
Yoshiyuki Nakamura
中村 美幸
Masahiko Nakajima
征彦 中島
Koichi Uchino
内野 紘一
Hideki Hirotsuru
秀樹 広津留
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP1043079A priority Critical patent/JPH07102966B2/en
Publication of JPH02225304A publication Critical patent/JPH02225304A/en
Publication of JPH07102966B2 publication Critical patent/JPH07102966B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain silicon nitride powder producible sintered material having a large strength at high temperature useful for gas turbine, etc., by nitriding metallic silicon powder in nitrogen-containing atmosphere and in the presence of alkali (earth) metallic powder in gaseous state. CONSTITUTION:Metallic silicon is nitrided to obtain powder having following properties; oxygen content: <=0.6wt.%., gamma-phase content: >=80%, average granular diameter: 0.3-0.8mum, strength of the sintered material (used of MgO-Al2O3-Y2O3 three components-system sintering auxiliary) at 1200 deg.C: >=700MPa. Said powder is used as silicon nitride powder for producing high-temperature structural material. Said silicon nitride powder is produced by continuously, intermittently or temporarily supplying halogenated alkali metal or halogenated alkaline earth metal (especially fluoride of Ca, Mg or Li is preferable) to metallic silicon powder in an atmosphere containing nitrogen and/or ammonia at 1150-1450 deg.C.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 不発明は高温強度の大きな焼結体t−a造することがで
きる電化ケイ素の製造方法及び粉末とその用途に関する
。窒化ケイ素は高温構造材料としてガスタービン部材、
ノズル、軸受寺に利用てれている。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing electrified silicon that can produce a sintered body TA with high high-temperature strength, a powder, and its uses. Silicon nitride is used as a high-temperature structural material in gas turbine components,
It is used for nozzles and bearing temples.

〔従来の技術〕[Conventional technology]

従来、窒化ケイ素粉末の製法としては、+11金属クイ
累@接輩化法、(2)シリカ還元雪化法、(3]ハロゲ
ン化ケイ素法が卸られている。これらの方法でつくられ
る粉末は、製造履歴が異なるためか、全域不純物証や酸
素シあるいは粒径、比表面積が同程度であっても、粉末
の焼M性や焼結後の焼結体の特性例えば曲けgi度に大
きな違いがある。
Conventionally, methods for producing silicon nitride powder include the +11 metal compound @substituent method, (2) the silica reduction snow conversion method, and (3) the silicon halide method.The powders produced by these methods are , perhaps due to different manufacturing histories, even if the overall impurity evidence, oxygen content, particle size, and specific surface area are similar, the sinterability of the powder and the properties of the sintered body after sintering, such as the bending stiffness, may be significantly different. There is a difference.

一般的には、(1)の方法で製造された粉末は易焼結性
であるが篩温曲げ強度が低い、+21の方法の粉末は雌
焼鯖性であるがSi温曲げIN度が扁い、(3)の方法
の粉末は中間的な性能を示すといわれている。
In general, the powder produced by method (1) is easy to sinter but has low sieve hot bending strength, and the powder produced by method +21 is sinterable but has a flat Si hot bending strength. However, it is said that the powder produced by method (3) exhibits intermediate performance.

酸素量についてに、(11の方法の粉末に粉砕工程を仕
るため通常全酸素賃が2重首嘔を超える場合が多く少な
くてもt5重置型はある。(11の方法で不純物除去の
ために酸処理寺の工程を通すと全酸素tは低減するがそ
れでも1.01量係未膚にすることは難しい。−万、(
2)の方法の粉末でも、原料としてシリカ粉末を用いる
ためにシリカの残貿があり、全酸素tは2束輩囁を超え
るのが普通である。
Regarding the amount of oxygen, (because the pulverization process is applied to the powder in method 11, the total oxygen content often exceeds 200%). Therefore, if the total oxygen t is reduced through an acid treatment process, it is still difficult to reduce the amount to 1.01%. - 10,000, (
Even in the powder produced by method 2), since silica powder is used as a raw material, there is a residual amount of silica, and the total oxygen t usually exceeds 2 bundles.

以上の粉末が現状入手可11毛なものである。当然のこ
とながら、粉末の焼11!S性及び呪結体特性には粉俸
葭累菫の影響があるのはもちろんであるが、その他に比
表面積、IF3品性、粒子形状、粒度(m粉)等様々の
粉体特性がからみあっており、前記各製法の粉末%性が
粉体特注にどのように関係しているかはほとんどわかっ
ていiいのが現状である。
The above powders are currently available in 11 quantities. Naturally, powder baking 11! It goes without saying that the S properties and the properties of the cursed body are influenced by the amount of powder, but there are also various other powder properties such as specific surface area, IF3 quality, particle shape, and particle size (m powder). Currently, there is little understanding of how the powder percentage of each of the above-mentioned manufacturing methods is related to powder customization.

特公昭61−43311号公報には、雪化ケイ素粉末の
醗累童と高温曲げ強度との関係が記載されている。
Japanese Patent Publication No. 61-43311 describes the relationship between the aging of silicon snow powder and high temperature bending strength.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、上記発明#−i窒化ケイ素扮床の88菫を少な
くし高温強度に潰れfc焼結体を提案しているが、l(
P焼結方法を採用しているためか、散索以外の#1t%
性例えは塊であるインゴットを粉砕する方法では不可避
な微粉賃、金属不純物、比表面積等の記載が明確化され
ていないこと、低酸素粉末の製造方法において、特殊処
理を施していることからくるコスト高、焼結方法が前述
したように汎用性の薄い)IPを採用していること、史
には何故高温!!j度が発現したかに係る暁結助剤橿の
限定理由及びg8結体の組織については深く言及してい
ない。
However, although the invention #-i proposes an fc sintered body that reduces the number of 88 violets in the silicon nitride bed and collapses with high temperature strength, l(
Possibly because the P sintering method is used, #1t% other than walking
The analogy arises from the fact that the description of fine particles, metal impurities, specific surface area, etc. that are unavoidable in the method of crushing the ingot, which is a lump, is not clearly specified, and the special treatment is applied in the manufacturing method of the low-oxygen powder. The cost is high, the sintering method uses IP (as mentioned above, which is not very versatile), and there is a history of high temperatures! ! There is no detailed explanation of the reason for the limitation of the Akatsuki Consolidation Aid, which is related to whether or not J degree has been expressed, and the organization of the G8 body.

本発明の目的は、前記課題を解決した窒化ケイ素の製造
方法、粉末とその用途を提供することにある。
An object of the present invention is to provide a method for manufacturing silicon nitride, a powder, and uses thereof that solve the above-mentioned problems.

〔課題を解決するための手段〕[Means to solve the problem]

不発明を概説すれば、本発明のgglの発明は雪化ケイ
素粉末に関する発明であって、金属ケイ素粉末をi科と
して得られる雪化ケイ素粉末であって、r1!、索含有
盪が[16重にチ以下、α相含有率が80嘔以上、平均
粒子径が(L5〜αBμmであり、且つ該粉末をMg0
−A40s−Y*Osの5成分系の焼結助剤を用いて焼
結体の1200℃の高温強度が700 MPa以上であ
ることを%徴とする。
To summarize the non-invention, the invention of ggl of the present invention is an invention related to snowy silicon powder, which is a snowy silicon powder obtained as metal silicon powder as i family, and r1! , the fiber content is less than 16 times, the α phase content is more than 80 mm, the average particle size is (L5 ~ αB μm, and the powder is made of Mg0
The high temperature strength of the sintered body at 1200° C. using a five-component sintering aid of -A40s-Y*Os is 700 MPa or more.

また、本発明の第2の発明は電化ケイ素の製造方法に関
する発明であって、室六及び/又はアンモニアを含む雰
囲気中で金属ケイ索粉末を窒化して窒化ケイ素を製造す
る方法において、アルカリ金属ハロゲン化物及びアルカ
リ土類金属ハロゲン化物よりなる群から選択したハロゲ
ン化物の少なくとも1種を、気体の状態で遅続的、間欠
的又は−時的に供給することt−W徴とする。
Further, the second invention of the present invention is an invention related to a method for producing electrified silicon, and in the method for producing silicon nitride by nitriding metal silicone powder in an atmosphere containing nitrogen and/or ammonia, an alkali metal At least one type of halide selected from the group consisting of halides and alkaline earth metal halides is supplied in a gaseous state in a delayed, intermittent or -temporal manner as the tW feature.

更に1本発明の第3の発明は窒化ケイ素粉末組成物に関
する発明であって、第1の発明の窒化ケイ素粉末と、酸
化マグネシウム及び/又はその前駆物質、及び希土類元
素酸化?!lを含む9結助剤とからなることを%徴とす
る。
Furthermore, a third invention of the present invention is an invention relating to a silicon nitride powder composition, which comprises the silicon nitride powder of the first invention, magnesium oxide and/or its precursor, and rare earth element oxidation. ! The percentage indicates that the material consists of 9 binding agents containing l.

そして、本発明の第4の発明は窒化ケイ素質焼結体に関
する発明であって、第3の発明の窒化ケイ素粉末組成物
を、不活性ガス雰囲気中で焼結してなることを特徴とす
る。
A fourth invention of the present invention relates to a silicon nitride sintered body, characterized in that the silicon nitride powder composition of the third invention is sintered in an inert gas atmosphere. .

不発明者らは前記の点について撞々検討した結果、金属
ケイ素粉末を特殊な芥囲気ガス下で窒化することにより
、窒化ケづ索粉末の酸素量、比表Ifl積、平均粒子径
、微粉量及び金属不純物を制御した粉末を製造すると共
に、は量化ケイ素粉末となじみの良い焼結助剤f:見出
し、更に、その焼結体の高温強度発現に大きく寄与する
組砂も児田し、不発f!Aを完成した。
The inventors have thoroughly studied the above points, and found that by nitriding metal silicon powder under a special ambient gas, the oxygen content, specific Ifl product, average particle size, and fine powder of nitrided silicon powder can be improved. In addition to producing a powder with controlled amount and metal impurities, we also produce a sintering aid that is compatible with quantified silicon powder, and also use sand, which greatly contributes to the development of high-temperature strength of the sintered body. Misfire f! Completed A.

不究明における雪化クイ累粉宋の酸素はa610以下、
好フしくけ06Kk%から(12重M悌である#酸素を
α61蓋嘔以下に限定したのはそれよりも多いと焼結の
際に生じるα→1転移が低温から起こりやすくなり、更
に#″ttJ8結助剤が形成する粒界相の倉が多くなる
ので窒化ケイ素への溶解性が大きくなり、その結果、β
核の数が多くなり、充分に成長したアスペクト比の高い
β柱状晶を得ることが困難となるからである。
Oxygen in the Xuehua Kui Xue powder Song Dynasty in the unknown is less than A610,
The reason why oxygen is limited to less than α61 is that the α → 1 transition that occurs during sintering is likely to occur from low temperatures, and furthermore ``ttJ8 binder forms a large number of grain boundary phase chambers, so its solubility in silicon nitride increases, and as a result, β
This is because the number of nuclei increases, making it difficult to obtain sufficiently grown β columnar crystals with a high aspect ratio.

平均粒子径は特に常圧#乙帖を採用する場合、非常に1
i要であり一般的には小きいことが好ましいと百われで
いる。本発明の平均粒子径はα3〜α8μmの範囲であ
る。α8μmを越えると、焼に助剤例えば酸化イツトリ
ウム、酸化マグネジ9ム、酸化アルミニウム等と窒化ケ
イ木粉末中に含まれる酸素との反応により生じる覆合酸
化物への窒化ケイ素の溶解度の低下が起こり充分にち密
化しなくなるからである。α5μm禾滴であるとt18
結助剤が形成する粒界相への溶解度が大きくなり、その
結果、β核の数が多くなり、充分に′G)′M化しなく
なり、高温で十分耐えるような焼結体が常圧焼結では得
られ賭くなるからである。
The average particle size is very small, especially when using normal pressure
It is generally considered that a smaller size is preferable. The average particle diameter of the present invention is in the range of α3 to α8 μm. If α exceeds 8 μm, the solubility of silicon nitride in the composite oxide produced by the reaction between firing aids such as yttrium oxide, magnesium oxide, aluminum oxide, etc. and oxygen contained in silicon nitride powder will decrease. This is because it will not become sufficiently dense. If it is α5 μm droplet, t18
The solubility of the binder in the grain boundary phase increases, and as a result, the number of β-nuclei increases, and the sintered body that can withstand high temperatures without being sufficiently converted into 'G)'M is produced by pressureless sintering. This is because the result is a gamble.

なお1本発明で用いている平均粒子径とに相場製作所製
のCAPA−700で測定した体積チの50チ径のこと
である。
Note that the average particle diameter used in the present invention refers to the diameter of 50 cm in volume measured with CAPA-700 manufactured by Aiba Seisakusho.

一般に%窒化ケイ素粉末中の酸:Aが少なくなると、一
般的な焼結助剤Yヱ0!、At、O,系でに、S。
Generally, when the amount of acid:A in silicon nitride powder decreases, the general sintering aid Yッ0! , At, O, in the system, S.

H,/%ンプシャ及びに、!(、ジャックCS、 H,
Haspahira 。
H, /% pumpsha and ni,! (, Jack CS, H,
Haspahira.

K、H,Jack 、プロシーデイ/ゲス オプ プリ
ティッシュ セラミック ンサイエテイ(Proc。
K, H, Jack, Proc.

Br1t、 Ceram、 Soc ) 第51巻、第
57〜49頁(1981)]らが述べているように、辰
相童が十分に得られないため、焼結しづらくなる傾向に
ある。すなわち、相境界反応律速となり、−般には拡散
を速める効果のめる焼結助剤例えばMgO’k #加し
滉結する。その場合焼結性は改讐されるが、前述したよ
うなアスペクト比の高いβ柱状晶に問題が残る。つまり
、特IIji昭63−277560号明、m+*に述べ
ているような微粉量に7スベクト比の高いβ柱状晶が大
きく影響することである。すなわち、微粉雪が多くなる
と、液相中に生じるβ核の数が多くなるためかアスペク
ト比の高りβ柱状品が生じ雌くなり、結果として、高温
強度が発現しなくなる。
Brlt, Ceram, Soc) Vol. 51, pp. 57-49 (1981)], et al., there is a tendency for sintering to become difficult because sufficient shinsaido cannot be obtained. That is, the phase boundary reaction becomes rate-determining, and a sintering aid such as MgO'k #, which has the effect of accelerating diffusion, is generally added to the sintering agent. In that case, the sinterability is improved, but the problem with the high aspect ratio β columnar crystals as described above remains. In other words, the β columnar crystals having a high 7-spectral ratio have a large influence on the amount of fine powder, as described in Japanese Patent No. 63-277560, m+*. That is, when the amount of fine powder snow increases, the number of β nuclei generated in the liquid phase increases, and the aspect ratio becomes high, resulting in β columnar products, which become female, and as a result, high temperature strength is not developed.

すなわち、微粉量としては脣顛昭t53−277360
号8A細書に記載しているようにα2μm以下の微粉量
を規定しfc場合、7谷1i繋以下が好ましい。まfc
%供官すれば相境界反応律速を助けるような焼結助剤を
加えて焼成し、十分焼結重度がアップし、且つアスペク
ト比の旨いβ柱状晶が晶出していること、つまり、焼結
体特性としてh #Im 9i度(σuoo℃)が70
0 MPa以上発現することである。このような焼結助
剤としては%Ml(O系、MgO−A4Os系、ygo
−希土類元素は化物系、 MgO−人1.0.−希土類
元X故化物系、MgO−A11On=希土類元累酸化物
系が挙げられる。
In other words, the amount of fine powder is 脣顛昭t53-277360
As described in the specification No. 8A, when the amount of fine powder of α2 μm or less is defined as fc, it is preferably 7 valleys 1i or less. Mafc
By adding a sintering aid that helps the rate-determining phase boundary reaction and firing, the degree of sintering is sufficiently increased, and β-columnar crystals with a good aspect ratio are crystallized. As a physical characteristic, h #Im 9i degrees (σuoo℃) is 70
0 MPa or more. Such sintering aids include %Ml (O-based, MgO-A4Os-based, ygo
-Rare earth elements are compounds, MgO-Human 1.0. -Rare earth element

なお、IW述した焼結体中のアスペクト比の高いβ柱状
晶と高温強度の関係については後で詳細に述べるが、今
回、見出したことはアスペクト比の高いβ柱状晶が高温
強度発現に大きな役割をしている仁とである。
The relationship between the high aspect ratio β columnar crystals in the sintered body and high temperature strength as mentioned in IW will be discussed in detail later, but what we have discovered this time is that the high aspect ratio β columnar crystals have a large effect on the development of high temperature strength. This is Jin who is playing a role.

また、α分率は上述してきたように窒化ケイ素の焼結機
構はα−窒化ケイ素が一度液相に溶解し、その後)MT
I8和となりβ−窒化ケイ素として析出することが基本
となっているので、窒化ケイ累粉宋申のa相含有率は高
いことが望ましい、すなわちα相含有率は少なくとも8
0%以上存在することが必要である。80チ未満である
と前述したアスペクト比の高いβ柱状晶が晶出し難くな
り蘂温強度発現に結びつかなくなるからである。
In addition, as mentioned above, the sintering mechanism of silicon nitride is that α-silicon nitride is once dissolved in the liquid phase, and then) MT
Basically, it becomes a sum of I8 and precipitates as β-silicon nitride, so it is desirable that the a-phase content of the silicon nitride powder is high, that is, the α-phase content is at least 8
It is necessary that it be present in an amount of 0% or more. This is because if it is less than 80 cm, the aforementioned β columnar crystals with a high aspect ratio will be difficult to crystallize and will not lead to development of leg temperature strength.

雪化ケイ索粉末中の金属不純物金側りとりわけFe、人
を及びCaのtitの合計fi 500ppm以下であ
ることが好ましい。500 ppmを越えると高温下で
、長Mにわ次り使用した場合、すなわち、高温でのクリ
ープ傾度が低下するからである。したがって、金属不純
物はできるだけ少ない万が好ましい。
It is preferable that the total fi of metal impurities in the snow-containing silica powder, especially tit of Fe, metal, and Ca, be 500 ppm or less. This is because if it exceeds 500 ppm, the creep tendency at high temperatures will decrease when long M is used repeatedly at high temperatures. Therefore, it is preferable that the amount of metal impurities be as small as possible.

また、比表面積については、各棟成形方法例えばプレス
成形、射出成形、スリップキャスト等を用いて形を作る
場合、ハンドリング、粘性等の理由から一般的に#′i
6〜14 m”/ tであることが好ましい。6−/f
未満であると、粒度が粗くなり、結果として焼結性が悪
くなり好ましくない。14 m”/ tを越えると粉末
自身カサ高となり、ハンドリングが悪くなったり、射出
成形性にとって重要な袂累となっている粘性が高くなり
、好ましくない。
Regarding the specific surface area, when making a shape using each molding method such as press molding, injection molding, slip casting, etc., generally #'i is used for reasons such as handling and viscosity.
Preferably 6 to 14 m”/t. 6-/f
If it is less than this, the particle size becomes coarse, resulting in poor sinterability, which is not preferable. If it exceeds 14 m''/t, the powder itself becomes bulky, making it difficult to handle and increasing the viscosity, which is important for injection moldability, which is not preferable.

更に付は加えるならば6 rn” / 1未満であると
粒子が大きくなり、焼結賃度が上がらず、高温強度の向
上につながらない、またs  14 m”/ fを越え
るためには過粉砕を要し、その結果微粉皿が多くなり%
前述したようにβ核の数が多くなり、アスペクト比の高
いβ柱状晶が生じ鈍くなるからである。
Furthermore, if it is less than 6 rn"/1, the particles will become large, the sintering rate will not increase, and the high temperature strength will not be improved, and in order to exceed s 14 m"/f, over-pulverization is required. As a result, the number of fine powder trays increases and %
This is because, as described above, the number of β nuclei increases, resulting in the formation of β columnar crystals with a high aspect ratio, resulting in dullness.

次に、上記説明した窒化ケイ素の製造方法番−ついて述
べる。
Next, the method for manufacturing silicon nitride explained above will be described.

本発明の窒化ケイxi−tgz及び又はアンモニアを富
む雰囲気ガスを導入しながら、金属ケイ素粉末t−窒化
して、窒化ケイ素を製造する方法において、アルカリ金
属及びアルカリ類金槍の各ハロゲン化物から選ばれた1
檀又は2種以上を気体の状態で連続的、間欠的又は−時
的に供給することにより製造される。
In the method of producing silicon nitride by t-nitriding metallic silicon powder while introducing an atmospheric gas rich in silicon nitride xi-tgz and/or ammonia according to the present invention, 1
It is produced by continuously, intermittently, or occasionally supplying danganese or two or more kinds thereof in a gaseous state.

以下、更に詳しく不発明について説明する。Hereinafter, non-invention will be explained in more detail.

不発明で使用する金属ケイ素粉末の粒度は88μm下刃
:好ましい。このように、比較的程度の大きな金属ケイ
素を用いることができる理由に、後述のように、金属ケ
イ素と窒素源との反応のすべてが固・気反応ではなく、
表面の若干の固・気反応後は気・気反応で窒化が進むこ
とに大きく関与している。すなわち、本発明では、念と
え88 j1m程度の金属ケイ素であっても表面の一部
が、固・気反応により窒化が起きれは、金属ケイ素とα
−窒化ケイ素のピ度差により金属ケイ素の破壊現象が生
じ5&細な金属ケイ素となるからである。しかし、88
μml−越えると、同様な現象が生じるが、表面の固・
気反応の生じる温度が高くなり、通常の窒化条件ではa
雌の$1が残りやすくなり好ましくはない。下限値につ
いては骨に制@はない。つまり、平均粒子径の小さな金
属ケイ素粉末を用いれば用いる程、後述する810 (
G)が生成しやすくなり気・気反応が促進妊れるので目
的とする粒状化α−窒化ケイ素インゴットを製造しやす
くなる。また、金属ケイ素粉末中の酸素は上述した蒙化
ケイ素紛宋のところで詳細に述べたように低酸素化を目
的としているので、なるべく金属ケイ素粉末中のrf!
素は少ないことが望ましい。本発明においてはα2%以
下であれば良い。
The particle size of the metal silicon powder used in the invention is preferably 88 μm. The reason why it is possible to use relatively large silicon metal is that, as will be explained later, not all reactions between silicon metal and the nitrogen source are solid-gas reactions.
After a slight solid-gas reaction on the surface, the gas-air reaction is largely responsible for the progress of nitridation. In other words, in the present invention, even if a part of the surface of metallic silicon is about 88 m thick, if nitridation occurs due to solid-gas reaction, the metallic silicon and α
- This is because the difference in precision of silicon nitride causes a phenomenon of destruction of the metal silicon, resulting in 5 & fine metal silicon. However, 88
μml-, a similar phenomenon occurs, but the surface hardness
The temperature at which the gas reaction occurs increases, and under normal nitriding conditions, a
Female $1 tends to remain, which is not preferable. There is no limit to the lower limit of bones. In other words, the smaller the average particle size of the metal silicon powder used, the more 810 (
G) is easily generated and the gas-gas reaction is promoted, making it easier to produce the desired granulated α-silicon nitride ingot. Furthermore, since the purpose of oxygen in the metal silicon powder is to reduce oxygen as described in detail in the above-mentioned Menghua silicon powder, the RF in the metal silicon powder is as low as possible.
It is desirable that the number of elements is small. In the present invention, α2% or less is sufficient.

以上のように、本発明は特願昭63−198987号明
細書における金属ケイ素粉末から窒化ケイ素が生成する
反応士慣の応用にある。すなわち、金属ケイ素粉末と窒
素との反応は固・気反応よりむしろ、O!を介したN、
−NH3又はN1−H,系の気・気反応に律速されてい
ることを矧ると共に、5in(りの関与したSi、N4
生成の反応式t一種々検討した。この1例を下記に示す
が、このような気・気反応による固体生成における形態
については加藤〔加藤昭夫:粉体工字会P、第18巻、
第1号、第36〜45頁(1980) )が述べている
ように過飽和度、すなわち10g kpに大きく影響す
る。つまり、下記111式の1300℃での10g k
pはt6程度であるのに対し、(21式は46程度とな
る。
As described above, the present invention is an application of the reaction technique disclosed in Japanese Patent Application No. 198987/1987 for producing silicon nitride from metallic silicon powder. In other words, the reaction between metallic silicon powder and nitrogen is not a solid-gas reaction, but rather an O! N via
-NH3 or N1-H, the rate is determined by the gas-gas reaction of the system, and the
The reaction formula t for production was examined one by one. An example of this is shown below, but regarding the form of solid generation by such a gas-gas reaction, see Kato [Akio Kato: Powder Engineering Association P, Vol. 18,
No. 1, pp. 36-45 (1980)), the degree of supersaturation, that is, 10 g kp, is greatly influenced. In other words, 10g k at 1300℃ of the following formula 111
While p is about t6, (21 formula is about 46).

したがって、この両式下より生成はれる窒化ケイ素の形
態は0)式がウィスカー (2)式が粒状を呈するので
鉱ないかと推定される。
Therefore, it is presumed that the form of silicon nitride produced under both equations is a whisker in equation (0) and a granular form in equation (2).

3SiO(G)φ4NHs(す= 5isN4(8) 
+M(h(G) + 6Hz(G) +11581((
)) + 4NH3(G) = 5is)J4(S) 
+ 6H2(G)    121また、Sl(りが失じ
るまでの反応式をCaF2(G)を例にとり、推定した
反応、並びにそのミクロ的結晶場における循環反応を式
(3)〜(6)に示す。
3SiO(G)φ4NHs(S = 5isN4(8)
+M(h(G) + 6Hz(G) +11581((
)) + 4NH3(G) = 5is)J4(S)
+ 6H2(G) 121 Also, taking CaF2(G) as an example, the reaction equation until the loss of Sl(Li) and the circulation reaction in the microscopic crystal field are expressed by equations (3) to (6). Shown below.

5rs) +名o、(o) →5xo(o)     
           +31SiO(G)+CaF、
(G)+H,(G)−4Si(G)+Ca0(S)+2
HF(G)(415Si(G)+4NH3(G)→5i
sN4(S)+ 68!(G)         +5
1(Ca 0(S) ” 2 HF (G) →CaF
1 (o) ”H2((J) 4% 0H(G) ) 
   161これからも明らかなように気体として同伴
されたハロゲン化物の気体にミクロ的結晶層において俤
壇しているaT症性も考えられる。事実。
5rs) + name o, (o) →5xo (o)
+31SiO(G)+CaF,
(G)+H, (G)-4Si(G)+Ca0(S)+2
HF(G)(415Si(G)+4NH3(G)→5i
sN4(S)+68! (G) +5
1(Ca 0(S) ” 2 HF (G) →CaF
1 (o) ”H2 ((J) 4% 0H(G) )
161 As is clear from this, it is also possible that the aT syndrome is present in the microcrystalline layer in the halide gas entrained as a gas. fact.

当墓以下のハロゲン化物の気体でも十分に粒状化の効果
が認められた。
A sufficient granulation effect was observed even with halide gas below this grave.

そこで、SiO(G)  より史に酸素との観相性の強
い気体化合物の9索を行った。十の結果、窒素及び/又
はアンモニアを富む雰囲気ガスを導入しながら、金属ケ
イ素粉末を窒化するKFIAL、アルカリ金属及びアル
カリ土類金属の各ハロゲン化物の気体を意図的に供給す
れば生成する窒化ケイ尤の形態がウィスカー状ではなく
粒状にiることを見出した。アルカリ金属及びアルカリ
土類金属のハロゲン化物の濃度についてに、例えは前述
した推定反応式からもわかるように、5i(S) 1 
molに対し、アルカリ土類金属のハロゲン化物の気体
であれば1 mob 、j友、アルカリ金属のハロゲン
化物であれば2m01以上あれば十分である。また、窒
化は一度に行われないので、*際はそれ以下で良い。供
給方法についてFi例えば別な炉の中にアルカリ金属及
びアルカリ土類金属のハロゲン化物全装入し、加熱昇華
し、金属ケイ累粉末が装入されている炉の中へ、a度t
−規定しながら2累同伴で供給する。
Therefore, we conducted a search for nine gaseous compounds that have a stronger compatibility with oxygen than SiO(G). As a result, KFIAL, which nitrides metallic silicon powder while introducing an atmospheric gas rich in nitrogen and/or ammonia, produces silicon nitride by intentionally supplying gases of halides of alkali metals and alkaline earth metals. It has been found that the actual shape is not whisker-like but granular. Regarding the concentration of halides of alkali metals and alkaline earth metals, for example, as can be seen from the estimated reaction equation described above, 5i(S) 1
For each mole, it is sufficient that the gas is 1 mob of alkaline earth metal halides, and 2 m01 or more of alkali metal halides. Also, since nitriding is not performed all at once, the value marked with * may be less than that. Regarding the supply method, for example, all the halides of alkali metals and alkaline earth metals are charged into a separate furnace, heated and sublimated, and then heated at a degree t into the furnace in which the metal silica powder is charged.
- Supply with two accompaniments while stipulating.

また、金属ケイ累粉末が装入されている炉の中に前記ハ
ロゲン化物を金属ケイ素粉末の近傍に規定itmt、金
属ケイ素粉末の窒化・前記ハロゲン化物の昇華を行う形
で供給することもできる。供給方法についてはこれらに
限られ次ものではない。また、導入形式についても仁れ
に限られ次ものでになく、別々導入、同一混合導入のい
ずれでもかまわなめ。
Alternatively, the halide may be supplied in the vicinity of the metal silicon powder into a furnace in which the metal silicon powder is charged, in such a manner that the metal silicon powder is nitrided and the halide is sublimated. The supply method is not limited to the following. In addition, the introduction format is not limited to the following, but can be introduced separately or in the same mixture.

更に、供給時期としては、2化が行われている一度、ス
ナワち、1,150℃から1.450℃の軽口の@度に
おいて、連続的1間欠的又は−時的に1gi@する。こ
の−時供給についてに例えば前述した昇華を行う炉と窒
化を行う炉への導入配管の開閉を組合せ操作することに
より達成される。
Furthermore, as for the supply timing, once the bifurcation is being carried out, at a light temperature of 1,150° C. to 1,450° C., it is supplied continuously, intermittently, or occasionally at 1 g. This supply can be accomplished by, for example, opening and closing the introduction piping to the sublimation furnace and the nitriding furnace as described above.

この−時的な供給の裏付けについてはミクロ的結晶層に
おいて、例えば下記に示すように導入された気体の前記
ハロゲン化物が系内に儂環場れているからと理解してい
る。実際、温度で言えば1,550℃まで@記ハロゲン
化物を導入し、その後前記気体の供給を止めても生成す
る窒化ケイ素の形態は1,450℃まで導入し統は念も
のと変らなかった。
It is understood that this temporal supply is supported by the fact that in the microcrystalline layer, the halide of the gas introduced, for example, is distributed within the system as shown below. In fact, in terms of temperature, even if the halide was introduced up to 1,550°C and the gas supply was then stopped, the form of silicon nitride produced was still the same as expected, even though it was introduced up to 1,450°C. .

前述したアルカリ金属及びアルカリ金属のハロゲン化物
は例えばLl、Na、 K%ME、 Ca、 Sr。
Examples of the alkali metals and alkali metal halides mentioned above include Ll, Na, K%ME, Ca, and Sr.

Ba  元素のフッ化物、塩化物、臭化物である。Ba is a fluoride, chloride, and bromide of the element.

特にCa%Mg%L1のフッ化物が好ましい。その理由
としては、酸化物生成の標準生成エネルギーと湿度の関
係においてSiよp酸素との8.in性がジいからであ
り、その結果として前述し九粒状化が一層促進されるか
らである。
Particularly preferred is a fluoride of Ca%Mg%L1. The reason for this is that in the relationship between the standard energy of formation of oxides and humidity, the difference between Si and p oxygen is 8. This is because the in nature is strong, and as a result, the above-mentioned nine-grain formation is further promoted.

また、前ルビハロゲン化物は単蝕で用いても良いし、2
櫨以上のものを併用しても差支えない。
In addition, the pre-rubihalide may be used in a single eclipse, or in two eclipses.
There is no problem even if you use something more than oak.

更に付は加えるならば窒化炉にも@足でれるものではな
い6例えばバッチ炉、連続プッシャー炉、連続回転炉、
遅絖スクリュー炉、流動層いずれにも応用可能である。
Furthermore, it cannot be added to nitriding furnaces.6 For example, batch furnaces, continuous pusher furnaces, continuous rotary furnaces,
It can be applied to both slow-starting screw furnaces and fluidized bed furnaces.

以上説明した粒状化窒化ケイ素及び特a昭65−198
987号FIA細書に記載したところのウィスカー状の
窒化ケイ素の具体例を第1図及び第2図に示す、また第
3図にはSlの直接窒化法で得られる典型的な固・気反
応の例、つまり細形を呈する形態を示す。なお各図は倍
* !5500倍の走査型電子顕微fi(8HM)写真
である。
Granulated silicon nitride and special a 1986-198 explained above
Figures 1 and 2 show specific examples of whisker-shaped silicon nitride as described in FIA specification No. 987, and Figure 3 shows a typical solid-gas reaction obtained by the direct nitriding method of Sl. An example is shown, that is, a form exhibiting a narrow shape. Each figure is double *! This is a 5500x scanning electron microscopy fi (8HM) photograph.

これからも明らかなように、第1図は用いたS1粉末よ
り数段に小さく、かつ丸味を帯びた粒状を呈しているこ
とがわかると共に、気・気反応が生じたことも憂付けら
れる。
As is clear from this, it can be seen that the particles in FIG. 1 are several orders of magnitude smaller and rounder than the S1 powder used, and it is also worrying that a gas-gas reaction has occurred.

第2図も気・気反応が生じたことFi明らかであるが、
SiO(G)の1141和度不足のためか、針状晶の多
い形態となっている。第3図は、まず81粉末同士の情
姑が起こり、その後、窒素が拡散し、窒化が進んだ形跡
が如火にわかる。
It is clear from Figure 2 that a qi-qi reaction has occurred,
Perhaps due to the insufficient 1141 degree of SiO(G), it has a morphology with many needle crystals. In Figure 3, it can be clearly seen that the 81 powders first interacted with each other, then nitrogen diffused, and nitridation progressed.

このような粒状化した窒化ケイ素に粉砕てれる際に微粉
が生じ難くなると共に、その結果。
As a result, it becomes difficult to produce fine powder when pulverized into such granulated silicon nitride.

低酸素化にもつながり、本発明の目的である低版累且つ
微粉の少ない窒化クイ索初床を容易に製造することがで
きる。
This also leads to lower oxygen levels, and it is possible to easily produce a nitrided fiber cable initial bed with a low thickness and a small amount of fine powder, which is the objective of the present invention.

ここで、不発明によって祷られ次粒状化窒化ケイ零につ
いて更に詳しく説明すると%第2図に示すような径の細
いウィスカー又は針状晶を物理的に抗折しながら粉砕す
るのではなく%第1図のような粒状晶をほぐす形で粉砕
が進むので、インゴットの粉砕に伴うg粉の発生が少な
く、その結果電化ケイ素の酸化が抑制され、低原素粉末
となる。すなわち、ハロゲン化ケイ素法で得られるよう
な微粉のない等軸の粉体に近い窒化ケイ′X粉末となる
。定量的には通常の粗砕機と中砕機を用いて粗砕・中砕
物に粉砕したとき、その粗・中砕物特に粒子径(L2w
下の比表IfI檀が2〜5−/fとなるような窒化ケイ
素でありかつ酸累せ有量がα4%以下となるような窒化
ケイ素である。
Here, to explain in more detail about the next granular silicon nitride, which was hoped for by the non-inventor, instead of crushing the thin whiskers or acicular crystals while physically bending them, as shown in Figure 2, Since the pulverization proceeds in a manner that loosens the granular crystals as shown in Figure 1, there is less generation of g powder accompanying the pulverization of the ingot, and as a result, oxidation of the electrified silicon is suppressed, resulting in a low-element powder. In other words, the silicon nitride 'X powder is close to an equiaxed powder free of fine particles as obtained by the silicon halide method. Quantitatively, when crushed into coarse/medium crushed materials using a normal coarse crusher and medium crusher, the particle size (L2w) of the coarse/medium crushed materials is
Silicon nitride is such that the ratio IfI ratio shown below is 2 to 5-/f, and the amount of oxidation accumulation is α4% or less.

なお、窒化ケイ素の粉砕性を評価するための上記粉砕機
としては、例えば化学工学便覧 18和55年10月2
5日、九′4株式会社の第1279〜1283頁に記載
した吃のが使用される。
In addition, as the above-mentioned crusher for evaluating the crushability of silicon nitride, for example, the chemical engineering handbook October 2, 18W55
On the 5th, the food described on pages 1279 to 1283 of Ku'4 Co., Ltd. is used.

すなわち、ショークラッシャー ジャイレトリークラッ
シャー等の粗砕機、ロールクラッシャー ローラーミル
、エツジランナー等の中砕撒である。
That is, coarse crushers such as show crushers and gyratory crushers, medium crushers such as roll crushers, roller mills, and edge runners.

以上のようにして得られた小さな粒状晶を有する本発明
のα−窒化ケイ素は、常法により、例えば、粗砕・中砕
後、ボールミル、振動ミル、ジェットミル、アトライタ
ーミル、パールミル等で湿式・乾式粉砕し、α−窒化ケ
イ挑粉末とする。粉不度についてに前述した少なくとも
平均粒子径を十分に留意し、粉砕機を営め、適切な条件
で処理する。
The α-silicon nitride of the present invention having small granular crystals obtained as described above is produced by a conventional method such as a ball mill, a vibration mill, a jet mill, an attritor mill, a pearl mill, etc. after being roughly crushed or medium crushed. Wet and dry grinding to obtain α-silicon nitride powder. With regard to fineness, the above-mentioned average particle size should be carefully considered, and the grinder should be operated and processed under appropriate conditions.

次に、前記説明し次窒化ケイ素粉末を用いた高温11N
6強度の窒化ケイ素質焼結体を得るに適した窒化ケイ素
粉末組成物について説明する。
Next, as described above, high temperature 11N using silicon nitride powder
A silicon nitride powder composition suitable for obtaining a silicon nitride sintered body having a strength of 6 will be described.

不発明の基本的技術、し惣は金属クイ索ITL接猿化法
で得られた雪化ケイ索粉末であって、しかも、低8素で
ある窒化ケイ素原料を常圧焼結法を用いて、十分に焼結
警度を高めると共に、その焼結体を構成するβ−柱状轟
の7スペクト比を大にせしめるに当っての、前記涼HΔ
化りイス粉宋と焼結助剤の組合せの規制にある。
Shiso is a basic uninvented technology, which is a snow-sealed silicon powder obtained by the ITL aggregation method of metal wires, and moreover, it is made by using a low-8-element silicon nitride raw material using an atmospheric pressure sintering method. , in order to sufficiently increase the degree of sintering and to increase the spectral ratio of β-columnar particles constituting the sintered body.
There are regulations on the combination of powder and sintering aids.

窒化ケイ累粉末は稽々の不純物を言んでおり、と9わけ
酸素が大半を占める。更に、説明するならば、この酸素
は浩澗される酸化物系焼結助剤と反応し粒界相を?S成
するので、その量は言うまでもなく、少ないことが好ま
しい。つまり、高温高強度には低#I*は非常に重要で
ある。もちろん全域不純物は、前述したように高温クリ
ープに影−Vを及tよすので、少ない万が好ましい。
Silicon nitride powder contains impurities, and most of it is oxygen. Furthermore, to explain, this oxygen reacts with the oxidized sintering aid and forms a grain boundary phase. Needless to say, it is preferable that the amount is small. In other words, low #I* is very important for high temperature and high strength. Of course, as mentioned above, impurities in the entire range have a negative effect on high-temperature creep, so it is preferable that they be as small as possible.

また、不発明で特遍すべきことは、低酸素が窒化ケイ素
のα→β転移における核発生に対し重要な役割をなして
いることである。つまり低酸素数に焼結助剤が構成する
液相への浴S度が低下し、不均質核生成が生じ、その結
果、異常とも、しえるようなアスペクト比の高いβ柱状
晶が生成することがわかると共に、この効果の万が前述
した粒界相の量低減化よりも高温高強度発現に対し有効
であることを見出した。
Also, what is unique and inventive is that low oxygen plays an important role in nucleation in the α→β transition of silicon nitride. In other words, the bath S degree to the liquid phase composed of the sintering aid with a low oxygen number decreases, and heterogeneous nucleation occurs, resulting in the formation of abnormally high β-columnar crystals with a high aspect ratio. It was also found that this effect is more effective in developing high-temperature high strength than the aforementioned reduction in the amount of grain boundary phase.

更に1本発明者らは原料窒化ケイ素中の微粉末、例えば
特願昭65−277560号明細書に記載されて−るよ
うなα2 Jim下程度の微粉末が少なければ少ない程
、恐らくこの微粉末に多くの原素がtまれていると考え
られるが、前述したα→β転移の不均質核発生に大きく
寄与していることも見出した。
Furthermore, the present inventors believe that the less fine powder there is in the raw material silicon nitride, for example, the fine powder below α2 Jim as described in Japanese Patent Application No. 65-277560, the more likely this fine powder will be. Although it is thought that many elements are involved in this process, we have also found that they greatly contribute to the heterogeneous nucleation of the α→β transition described above.

しかし、一般に原料窒化ケイ禦粉床申の酸素が減少する
と通常の常圧災結、例えばY、O,、AlgOB %S
moz、COO,等の1撞又は2d以上の組合せた焼結
助剤を7〜10%添加しても、十分な焼結体″!1!反
が得られないのは周却の迎りである。
However, in general, when the oxygen content of the raw material silicon nitride powder decreases, normal pressure problems occur, such as Y, O, AlgOB %S.
Even if you add 7 to 10% of a combination of sintering aids such as moz, COO, etc. of 1 or 2 d or more, it is inevitable that a sufficient sintered body cannot be obtained. be.

以上説明したように、2f:発明の窒化ケイ素粉末ri
高温高強度出現には最適な特性を備えている。しかし、
低酸素が故に常圧での焼結が非常に禮しい。
As explained above, 2f: silicon nitride powder ri of the invention
It has the optimum characteristics for high temperature and high strength. but,
Sintering at normal pressure is very convenient due to the low oxygen content.

そこで、この峠焼M磯楕が前述のハンプシャらが述べて
いる相境界反応律速と考え、その律速を打破すると言わ
れている化合物を41々検討した結果、酸化マグネシウ
ム及び/又はその前駆物質をゐ7+111すれば、十分
に焼結密度が、常圧でも向上すること全見出した。前駆
物質としては硝酸マグネジ9ム、炭酸マグネシウム、水
酸化マグネシウム等であり、その6刀atとしては窒化
ケイlX粉末組成物として% 5重t%未満で十分であ
ることもわかった。
Therefore, we believe that this Togeyaki M Isoyori is the rate-determining phase boundary reaction described by Hampshire et al., and as a result of examining 41 compounds that are said to break the rate-determining rate, we found that magnesium oxide and/or its precursors It has been found that the sintered density can be sufficiently improved even at normal pressure by applying 27+111. Precursors include magnesium nitrate, magnesium carbonate, magnesium hydroxide, etc., and it was also found that less than 5% by weight of the silicon nitride IX powder composition is sufficient as the precursor.

更に、前述し次ように粒界相の性状は高温高強度発現に
はM安であり、債はもちろんのこと分解温度がより萬い
ことが好ましいのは轟然であり、そのためには希土類酸
化物と他の焼結助剤、例えば、Al2O,及び/又は窒
化ケイ素で構成される高融点な界相全晶出せしめること
も重要なポイントである。希土類酸化物としてはY、 
La。
Furthermore, as mentioned above, the properties of the grain boundary phase are low in order to develop high-temperature and high strength, and it is obvious that it is preferable that the decomposition temperature is higher than that, and for this purpose, rare earth oxides It is also important to bring out all the crystals of a high-melting-point interfacial phase composed of other sintering aids such as Al2O and/or silicon nitride. Rare earth oxides include Y,
La.

C8、Pr%Nb、 8m%Eu等の酸化物が挙げられ
る。
Examples include oxides such as C8, Pr%Nb, and 8m%Eu.

以上のように、本発明の窒化ケイ素初宋と酸化1グネシ
ウム又はその前駆物質と希土FJ[化物を富む焼結助剤
からなる窒化ケイ素紛宋組成物に、高温高強度発現には
不可欠である。なお、前記窒化ケイX粉末組成物中の焼
結助剤に10重tht%以内が好ましく、史に、焼結助
剤中のMg系化合物はMgO俟算として、4重量%以内
が適切である。
As described above, the silicon nitride composition of the present invention, which is composed of silicon nitride, 1-gnesium oxide or its precursor, and a sintering aid rich in rare earth FJ, is indispensable for high-temperature high strength development. be. It should be noted that the sintering aid in the silicon nitride .

tyc、更に言うならば、本発明の雪化ケイ素粉末は低
酸素であるから、前記説明した焼結助剤以外に独立的に
液相を作る系、又は若干低い温度領域で液相が生じる系
の焼結助剤を用いてもかまわない。
tyc, more specifically, since the silicon snow powder of the present invention is low in oxygen, it can be used in systems that form a liquid phase independently other than the sintering aid described above, or systems that form a liquid phase in a slightly lower temperature range. You may also use a sintering aid.

例えば、前者は酸化亜鉛、酸化ニッケル等を用いること
であり、後者は例えばY、O,−*z、o、でいえば、
YAG組成程度まで、 AZ、O3に富む組成にした焼
結助剤を用いることである。添加量については念とえ低
醗累であっても、焼結助剤菫が多くなってはガラス相が
増加することになるので、12′f!L!%以内が適切
である。
For example, the former uses zinc oxide, nickel oxide, etc., and the latter uses, for example, Y, O, -*z, o, etc.
The method is to use a sintering aid with a composition rich in AZ and O3, up to the YAG composition. Even if the amount added is low, if the amount of sintering aid violet increases, the glass phase will increase, so 12'f! L! % or less is appropriate.

次に1前記説明した窒化ケイ素粉末組成物の焼成した際
の窒化ケイ素置焼結体について説明する。
Next, a silicon nitride sintered body obtained by firing the silicon nitride powder composition described above will be described.

本発明の:ff似はα→β転移で住底するアスペクト比
の大きいβ柱状晶が数多く見られることである。すなわ
ちβ柱状晶の太きちに関し不均質であるが、その不均質
が計りえば数十μm単位の領域で均質である窒化クイ素
置焼結体の組成でちり、且つ、その組織が簡温強度宛状
に重要な役割をなしていることを見出したことにある。
The :ff-like structure of the present invention is that many β columnar crystals with a large aspect ratio are observed at the bottom due to the α→β transition. In other words, the thickness of the β-columnar crystals is heterogeneous, but if you measure the heterogeneity, it is homogeneous in an area of several tens of micrometers. This is because we discovered that letters of address play an important role.

一般に、高温強度発現は粒界相の強化、例えば高融点粒
界相を合成できるような焼結助剤の選択や、ガラス質の
結晶化等が王に研究されると共に、その研究の大半が焼
結側からのアプローチであった。そこで、粉体側のアプ
ローチ、例えば、酸素の異なった粉体、比表面積の異な
った粉体、結晶化度の異なった粉体等から焼結助剤一定
化下で櫨々実験した結果、単位蓋反当りの鍋温強度と焼
結体組織を構成するアスペクト比の高いβ柱状晶に大き
な相関があることを見出した。つ19、(30μFFI
)X(25μm)焼結体の視野中において、アスペクト
比の大きいと思われる5不のβ柱状晶の平均アスペクト
比が10以上あれば高温強度が単位密度轟り250MP
a以上発現することを見出した。つ1り、理論密°度に
近い値に焼結できれば十分に、  1200℃の強度に
おいて、700MPa以上の発現は十分に考えられると
いう感触を得た。この密度アップ阻害については前述し
てきた窒化ケイ素粉末中の酸素であり、微粉末である。
In general, the development of high-temperature strength is mainly studied by strengthening the grain boundary phase, such as by selecting sintering aids that can synthesize high melting point grain boundary phases, and by crystallizing glassy materials. The approach was from the sintering side. Therefore, as a result of repeated experiments with a constant sintering aid using powders with different oxygen concentrations, powders with different specific surface areas, powders with different degrees of crystallinity, etc., we found that the unit It was found that there is a strong correlation between the pot temperature strength against the lid and the high aspect ratio β columnar crystals that make up the sintered body structure. 19, (30μFFI
)X (25 μm) If the average aspect ratio of the β-columnar crystals, which are thought to have a large aspect ratio, in the field of view of the sintered body is 10 or more, the high temperature strength will reach a unit density of 250 MP.
It was found that more than a. In other words, I felt that it was sufficient to sinter the material to a value close to the theoretical density, and that it was quite possible to achieve a strength of 700 MPa or more at 1200°C. This density increase inhibition is caused by the oxygen in the silicon nitride powder, which has been described above, and is a fine powder.

また、この密度アップ阻害の助長が前述した窒化ケイ素
粉末組成物中の酸化マグネシウムである。
Further, the above-mentioned magnesium oxide in the silicon nitride powder composition helps in inhibiting this increase in density.

以上説明し九本発明の窒化ケイ素質焼結体は十分に斐結
体密度が向上した組織であり且つ、不均質なβ柱状晶で
構成され且つ、その不均質なβ柱状晶の一部がアスペク
ト比の大きいものであり、更にそのミクロ的不均質組峨
がマクロ的には均質になっている焼結体である。
As explained above, the silicon nitride sintered body of the present invention has a structure with a sufficiently improved density, and is composed of heterogeneous β columnar crystals, and some of the heterogeneous β columnar crystals are It is a sintered body that has a large aspect ratio and whose microscopically heterogeneous structure is macroscopically homogeneous.

本発明の2化ケイ六員′P矩体の製造方法についてに本
発明の窒化ケイ素粉末組成物を乾式又F′i湿式にて粉
砕混合し、次いで、所要の形状に成形後、不活性ガス下
、例えばg六、アルゴンガス下、1,600−1,80
0℃の温度で、5時間程度保持することにより、得られ
る。ま友、成形方法のa類、例えばプレス成形、射出成
形、スリップキャスト等、圧力、詰め粉等については特
に限定はない。
Regarding the method for producing the silicon dioxide six-membered 'P' rectangle of the present invention, the silicon nitride powder composition of the present invention is pulverized and mixed in a dry or F'i wet type, and then, after being molded into a desired shape, an inert gas For example, g6, under argon gas, 1,600-1,80
It is obtained by holding at a temperature of 0° C. for about 5 hours. There are no particular limitations on the type A of the molding method, such as press molding, injection molding, slip casting, etc., pressure, filling powder, etc.

以上詳しく説明したよう#′C1不兄BAは雪化ケイ素
粉末の特性、具体的には酸素に、比表面積、平均粒子径
、微粉量及び金属不純物と高温強度との結びつきを検討
し、待に酸素檜と微粉量が高@強度発現の相関を認め、
更に、前記特性となじみの深い焼結助剤を見出すと共に
その焼結体組織において非常にアスペクト比の商いβ柱
状晶が紹められ、それが高温1171i度兄現に亜賛な
役割を来していることを見出した。また、このような粉
末をハロゲン化ケイ素法ではなく、全域ケイ素粉末を特
殊な1¥囲気ガス下で輩化し、次いで、常法により%粉
砕して経済的に得るものである。
As explained in detail above, #'C1 Fueni BA investigated the characteristics of silicon snow powder, specifically the relationship between oxygen, specific surface area, average particle diameter, amount of fine powder, and metal impurities and high-temperature strength. Recognized the correlation between oxygen cypress and fine powder amount and high @strength development,
In addition, a sintering aid with the above-mentioned characteristics was discovered, and β-columnar crystals with a very high aspect ratio were introduced in the structure of the sintered body, which played an important role in the high-temperature 1171i temperature range. I found out that there is. Moreover, such a powder is not obtained by the halogenated silicon method, but is obtained economically by oxidizing the entire silicon powder under a special 1 yen ambient gas, and then pulverizing it by a conventional method.

〔実施例〕〔Example〕

以下、実施例と比較例を挙げて更に具体的に本発明を説
明するが、本発明はこれら実hvJに限定されない。
The present invention will be described in more detail below with reference to Examples and Comparative Examples, but the present invention is not limited to these actual hvJs.

なお、各例に示し7?、測定値は次の方法によつた。In addition, each example shows 7? , the measured values were based on the following method.

(1)t11累(1/L量繋) : LECO社製TC
−136型07N同時分析討による。
(1) t11 cumulative (1/L quantity connection): TC manufactured by LECO
Based on simultaneous analysis of -136 type 07N.

(2)  比表面積(m”/ f ) :湯浅アイオニ
クス社袈のカンタ−ソープJr BET 1点法による。
(2) Specific surface area (m''/f): Based on Yuasa Ionics company's Canterthorpe Jr. BET 1 point method.

(3)  粒子径(JJm ) :相場製作虐社N C
APA−700による。
(3) Particle size (JJm): Aiba Seisakusha NC
According to APA-700.

(41α分率 (%):理学′に磯社製のガイガー7ラ
ツクス RAD−II B型 のX線回折による。
(41α fraction (%): Based on X-ray diffraction using Geiger 7 Lux RAD-II B type manufactured by Isosha.

(5)  金属不純物(ppm) : J l5−G−
1322に準拠した。
(5) Metal impurities (ppm): J15-G-
1322.

(Fe1人4Ca) (6)相対密度(%): (7)3点曲げ強度(MP a ) :島#製f¥所社仮 オー アルキメデス法による。(Fe1 person 4Ca) (6) Relative density (%): (7) 3-point bending strength (MPa) :Shima#made f¥shoshakari O By Archimedes method.

トゲラフ AG−200OA 型による。Toge Ruff AG-200OA Depends on the type.

実施例1〜7、比較例1〜4 金[8i N度? ?、 9 E1重誓繋の金緘ケイ木
初宋100重it部にα分率90僑で比表面積20m2
 / yの窒化ケイ木粉末10J1量部混合粉末Z5時
を第1表に示すカサ比重の150X150X20を程度
の窒化供試体に成形し、電気炉に充てんした。
Examples 1 to 7, Comparative Examples 1 to 4 Gold [8i N degree? ? , 9 E1 double oath joint Kinpa Kei Muchusong 100 heavy IT part with α fraction 90 and specific surface area 20 m2
/y of silicon nitride powder 10J 1 part mixed powder Z5 was molded into a nitrided specimen having a bulk specific gravity of 150 x 150 x 20 as shown in Table 1, and filled in an electric furnace.

窒化に際してはgt表に示す通りに実施し九がその際固
体のCaFl 2720 fが充てんされ、且つ1.2
001:に保持されている別の電気炉より、CaF2 
(G)を(I BN26 ) j/Hr (25℃〕に
なるようにアルゴンカスで同伴させながら加熱窒化した
The nitriding was carried out as shown in the gt table.
001: CaF2 from another electric furnace held at
(G) was heated and nitrided while being entrained in an argon gas so that the temperature became (I BN26 ) j/Hr (25° C.).

なお、比較例1〜4についてF′1CaF2(G)の導
入なしで、第1表に示す条件で加熱窒化した。
For Comparative Examples 1 to 4, heating and nitriding were performed under the conditions shown in Table 1 without introducing F'1CaF2 (G).

第 1  表 得られ7を窒化ケイ素をSEM妓察したところ、実施例
1〜9についてはすべて粒状化されていたが、比較例1
〜4dウイスカー 地形状の形!IJ4を呈してい念。
When the silicon nitride obtained in Table 1 was observed by SEM, it was found that all of Examples 1 to 9 were granulated, but Comparative Example 1
~4d whisker The shape of the terrain! Just in case it shows IJ4.

その1例として実施例1、比較例1、比較例30SEM
写真をそれぞれ第1図、@2図、第5図に示す。
As an example, Example 1, Comparative Example 1, Comparative Example 30SEM
The photographs are shown in Fig. 1, Fig. 2, and Fig. 5, respectively.

得られ九窒化クイ:Aは粗砕・中枠(ショークラッシャ
ー及びトップグラインダー)でα2調下に粉砕し、更に
、円容償1tのボールミルにα2−下の粉砕品50t、
4φFeボールCL 5 t。
The obtained nine-nitride Kui: A was crushed to a level below α2 using a coarse crusher/medium frame (show crusher and top grinder), and further, 50 tons of the crushed product under α2 was placed in a ball mill with a capacity of 1 ton.
4φFe ball CL 5t.

水100tを入れ、2QHr湿式粉砕後、塩酸と7ツ醒
で酸処理し%15過・iIL燥・解砕を行い、焼M原料
用窒化ケイ累粉末t−製造した。得られた窒化ケイX粉
末について、酸素、平均粒子径、比表面積、α2 Ji
m以下、Fe+At+C’aの含有賞の測定を行い、第
2表に示した。
100 tons of water was added, and after wet grinding for 2Q hours, acid treatment was performed with hydrochloric acid for 7 hours, followed by 15% filtration, iIL drying, and crushing to produce silicon nitride composite powder for baking M raw material. Regarding the obtained silicon nitride X powder, oxygen, average particle diameter, specific surface area, α2 Ji
The content of Fe+At+C'a below m was measured and shown in Table 2.

次に、この窒化ケイ累粉末に内削で平均粒子径L S 
JJmのYICl、と平均粒子径1.4 JimのAl
tos s平均粒子径t2μmのMgQをそれぞれS*
*S、2X1rs% sM*%m7yoし、fiK、1
. l、 1− )リクロロエタンを加えて4#18間
ボールミルで湿式混合し、乾燥後、100ゆ75+1の
成形圧で6XIOX60m形状に金型成形した後、27
00kJ9/−の成形圧でCIP底形した。これらO成
形体をカーボンルツボにセットしs ’Nガス雰囲気中
%第2表に示す条件で焼成して焼結体を得た。得られた
焼結体は研削後、相同と度と常温、高温の3点曲げ強度
を測定した。それらの結果を第2表に示す。
Next, this silicon nitride powder was internally milled to obtain an average particle size L S
YICl of JJm and Al of Jim with an average particle size of 1.4
S*
*S, 2X1rs% sM*%m7yo, fiK, 1
.. l, 1-) Lichloroethane was added and wet mixed in a 4#18 ball mill, dried, molded into a 6XIOX60m shape with a molding pressure of 100Y75+1, and then 27
A CIP bottom shape was formed at a molding pressure of 00kJ9/-. These O molded bodies were set in a carbon crucible and fired in an s'N gas atmosphere under the conditions shown in Table 2 to obtain sintered bodies. After the obtained sintered body was ground, its three-point bending strength at homology, normal temperature, and high temperature was measured. The results are shown in Table 2.

実施例8〜9 金属不純上としてのFe%At及びCaの影響を知るた
めに、実施例1の窒化ケイ素粉末を焼結する際に、あら
かじめ準備てれたFe−人t−Caの合金粉末を第3表
に示すように開城し、実施例1と同様な条件で焼結体を
製造した。得られた焼結体特性を第3衣に示す。
Examples 8 to 9 In order to know the influence of Fe%At and Ca on metal impurities, when sintering the silicon nitride powder of Example 1, a pre-prepared Fe-T-Ca alloy powder was used. was opened as shown in Table 3, and a sintered body was produced under the same conditions as in Example 1. The characteristics of the obtained sintered body are shown in the third column.

実施例10〜11 この実施例は%窒化ケイ素の粉末度の影41を知るため
に行ったものである。実施例1で得られた窒化ケイ素を
湿式粉砕するに際し、湿式粉砕時間を21(r (!I
I!施例1流側、40 Hr (実hNu 1 )に変
えた以外は実施例1と同様に窒化クイ累粉末を得、焼結
体を製造した。その結果をg4表に示す。
Examples 10 to 11 This example was carried out to understand the influence of the fineness of silicon nitride. When wet-pulverizing the silicon nitride obtained in Example 1, the wet-pulverizing time was 21 (r (!I
I! Example 1 A nitride composite powder was obtained and a sintered body was produced in the same manner as in Example 1 except that the flow rate was changed to 40 Hr (actual hNu 1 ). The results are shown in Table g4.

実施例12〜17、比d?す5 この爽P1例でにハロゲンガスの種部を変えて行った。Examples 12-17, ratio d? 5 In this first example, the halogen gas source was changed.

実施例1と同様な原料、窒化供試体及び充てん菫で、第
5表に示す奮化粂件1−用い加M窒化した。ハロゲンガ
スの導入方法については実施例1と同様に行った。なお
、実施例12についてはハロゲンガスの導入温度を+、
150℃〜1,350Cとした。また、実施例17につ
いてはノ・ロゲンガスの導入方法を別の炉からではなく
、同一炉内の窒化供試体の傍に固体のCa F2を成形
し置き、昇水させながら窒化を行つ之。比較例5につい
てはハロゲンガスの導入に行わなかった。
Using the same raw materials, nitriding specimens, and filled violet as in Example 1, nitriding was carried out using the nitriding material 1 shown in Table 5. The method of introducing halogen gas was the same as in Example 1. Note that in Example 12, the halogen gas introduction temperature was +,
The temperature was 150°C to 1,350°C. In addition, in Example 17, the method of introducing nitrogen gas was not from a separate furnace, but by molding solid CaF2 next to the nitriding specimen in the same furnace and nitriding while raising the water. In Comparative Example 5, no halogen gas was introduced.

得られ次官化ケイ素は実施←j1と同様な方法で湿式粉
砕し、窒化ケイ素粉本を得た。得られ皮粉9!−特性を
第5表に示す。
The obtained subgrade silicon was wet-pulverized in the same manner as in Example ←j1 to obtain silicon nitride powder. Obtained peel powder 9! - Properties are shown in Table 5.

侍られた雪化ケイ索粉床は爽と1++11と(51様な
方法で焼結を行い、焼結体t−製造し、旺価した。
The sintered silica powder bed was sintered using a method similar to 1++11 (51), and a sintered body was produced and sold.

その結果を第5表に示す。The results are shown in Table 5.

不発明のようにアスペクト比の高いβ柱状晶(実施例1
〕並ひに比較セ1jの7スペクト比の低いβ柱状晶(比
ff?!15)の粒子構造の組織図をそれぞれ第4図、
W、5図に示す。
β-columnar crystals with an unusually high aspect ratio (Example 1
] Figures 4 and 4 show the grain structures of the β columnar crystals (ratio ff?!15) with a low spectral ratio of 7 spectral ratios of Comparative Se1j, respectively.
W, shown in Figure 5.

なお、第4図及び第5図に倍率7500倍のSEM写真
である。
Note that FIGS. 4 and 5 are SEM photographs at a magnification of 7500 times.

第4図はアスペクト比10以上のβ柱状晶が多数見られ
る不均質の均質組織からなっているのに対し、第5図は
比較的アスペクト比の低い(#5程度)拘置組成からな
っていることがわかる。
Figure 4 shows a heterogeneous homogeneous structure with many β-columnar crystals with an aspect ratio of 10 or more, while Figure 5 shows a confined composition with a relatively low aspect ratio (approximately #5). I understand that.

実施91118〜26、比較例6及び7この実施例は、
焼結助剤の種類と1を変えたものである。実施例18〜
26に、爽施廿り1において、焼結助剤1に第6表に変
えたこと以外に、同様にして焼M体を製造したものであ
る。
Examples 91118-26, Comparative Examples 6 and 7 This example
The type of sintering aid used is different from 1. Example 18~
In No. 26, a sintered M body was produced in the same manner except that the sintering aid 1 in Table 6 was changed in Refreshing 1.

比較例6及び7は、実施例25と26において、便用し
た窒化ケイ′Jg粉末を、比較例5のものに代えて用い
たものである。それらの結果を1!6表に示す。
In Comparative Examples 6 and 7, the silicon nitride Jg powder used in Examples 25 and 26 was used in place of that in Comparative Example 5. The results are shown in Table 1!6.

実施例27〜35、比較例8及び9 この冥雄例は、焼結条件を変えたものである。Examples 27 to 35, Comparative Examples 8 and 9 In this example, the sintering conditions were changed.

実施例1の窒化ケイ素粉末組成物を用い、第7六に示す
条件で、焼結を行り几こと以外は、実施1+v1と同様
にして焼結体を製造した。比較ψ1j8と9は実施例1
の窒化ケイ素粉末の代りに、比較例5の粉末を用い友も
のである。それらの結果を第7表に示す。
A sintered body was produced in the same manner as in Example 1+v1, except that the silicon nitride powder composition of Example 1 was used and sintered under the conditions shown in No. 76. Comparison ψ1j8 and 9 are Example 1
The powder of Comparative Example 5 was used in place of the silicon nitride powder. The results are shown in Table 7.

〔発明の効果〕〔Effect of the invention〕

本発明により製造された窒化ケイ素粉末は低酸素で、M
gO−人!、0.−Y、O,系の焼結助剤を用いて常圧
g8紹した場合、1200℃0高温曲げ強度が700 
MPa以上の粉末である。
The silicon nitride powder produced according to the present invention is low in oxygen and M
gO-people! , 0. -When using normal pressure g8 using Y, O, type sintering aid, 1200℃0 high temperature bending strength is 700
It is a powder of MPa or more.

これは焼結体の!−柱状、1&の発生とその成長に関係
する粉体骨性を制御し7’c結米によるものである・
This is a sintered body! -Columnar, 1 & is caused by controlling the powdery bone properties related to its growth and 7'c cohesion.

【図面の簡単な説明】[Brief explanation of the drawing]

i@1図、第2図、第3図は実施例1、比較例1.3で
得られ友窒化ケイ累の粒子構造の形態を示す倍率3,5
00倍の8EM写真、第4図、第5図は冥jll11例
1、比較例5で得らnた窒化ケイ素焼結体の粒子構造の
M峨図を示す倍′&7,500倍の8RM:*真である
i@Figure 1, Figure 2, and Figure 3 are magnifications of 3 and 5 showing the morphology of the grain structure of the silicon nitride obtained in Example 1 and Comparative Example 1.3.
00x 8EM photographs, Figures 4 and 5 show the M diagram of the grain structure of the silicon nitride sintered body obtained in Example 1 and Comparative Example 5. *True.

Claims (6)

【特許請求の範囲】[Claims] 1.金属ケイ素粉末を原料として得られる窒化ケイ素粉
末であつて、酸素含有量が0.6重量%以下、α相含有
率が80%以上、平均粒子径が0.3〜0.8μmであ
り、且つ該粉末をMgO−Al_2O_3−Y_2O_
3の3成分系の焼結助剤を用いて焼結した焼結体の12
00℃の高温強度が700MPa以上であることを特徴
とする窒化ケイ素粉末。
1. Silicon nitride powder obtained from metallic silicon powder as a raw material, which has an oxygen content of 0.6% by weight or less, an α phase content of 80% or more, and an average particle size of 0.3 to 0.8 μm, and The powder was converted into MgO-Al_2O_3-Y_2O_
12 of the sintered body sintered using the three-component sintering aid of 3.
A silicon nitride powder having a high temperature strength of 700 MPa or more at 00°C.
2.Fe、Al及びCaの含有量の合計が500ppm
以下である請求項1記載の窒化ケイ素粉末。
2. The total content of Fe, Al and Ca is 500 ppm
The silicon nitride powder according to claim 1, which is as follows.
3.比表面積が6〜14m^2/gである請求項1又は
2記載の窒化ケイ素粉末。
3. The silicon nitride powder according to claim 1 or 2, having a specific surface area of 6 to 14 m^2/g.
4.窒素及び/又はアンモニアを含む雰囲気中で金属ケ
イ素粉末を窒化して窒化ケイ素を製造する方法において
、アルカリ金属ハロゲン化物及びアルカリ土類金属ハロ
ゲン化物よりなる群から選択したハロゲン化物の少なく
とも1種を、気体の状態で連続的、間欠的又は一時的に
供給することを特徴とする窒化ケイ素の製造方法。
4. In a method for producing silicon nitride by nitriding metal silicon powder in an atmosphere containing nitrogen and/or ammonia, at least one halide selected from the group consisting of alkali metal halides and alkaline earth metal halides, A method for producing silicon nitride, characterized by supplying silicon nitride continuously, intermittently or temporarily in a gaseous state.
5.請求項1、2又は3記載の窒化ケイ素粉末と、酸化
マグネシウム及び/又はその前駆物質、及び希土類元素
酸化物を含む焼結助剤とからなることを特徴とする窒化
ケイ素粉末組成物。
5. A silicon nitride powder composition comprising the silicon nitride powder according to claim 1, 2 or 3, and a sintering aid containing magnesium oxide and/or its precursor, and a rare earth element oxide.
6.請求項5記載の窒化ケイ素粉末組成物を、不活性ガ
ス雰囲気中で焼結してなることを特徴とする窒化ケイ素
質焼結体。
6. A silicon nitride sintered body, which is obtained by sintering the silicon nitride powder composition according to claim 5 in an inert gas atmosphere.
JP1043079A 1989-02-27 1989-02-27 Method for manufacturing silicon nitride Expired - Fee Related JPH07102966B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1043079A JPH07102966B2 (en) 1989-02-27 1989-02-27 Method for manufacturing silicon nitride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1043079A JPH07102966B2 (en) 1989-02-27 1989-02-27 Method for manufacturing silicon nitride

Publications (2)

Publication Number Publication Date
JPH02225304A true JPH02225304A (en) 1990-09-07
JPH07102966B2 JPH07102966B2 (en) 1995-11-08

Family

ID=12653837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1043079A Expired - Fee Related JPH07102966B2 (en) 1989-02-27 1989-02-27 Method for manufacturing silicon nitride

Country Status (1)

Country Link
JP (1) JPH07102966B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013167519A3 (en) * 2012-05-10 2014-01-03 Schaeffler Technologies AG & Co. KG Silicon nitride ceramic and method for the production thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5422000A (en) * 1977-07-19 1979-02-19 Denki Kagaku Kogyo Kk Process for producing alpha-type silicon nitride
JPS6437469A (en) * 1987-08-04 1989-02-08 Kazuaki Shimizu Production of ceramic of silicon nitride

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5422000A (en) * 1977-07-19 1979-02-19 Denki Kagaku Kogyo Kk Process for producing alpha-type silicon nitride
JPS6437469A (en) * 1987-08-04 1989-02-08 Kazuaki Shimizu Production of ceramic of silicon nitride

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013167519A3 (en) * 2012-05-10 2014-01-03 Schaeffler Technologies AG & Co. KG Silicon nitride ceramic and method for the production thereof

Also Published As

Publication number Publication date
JPH07102966B2 (en) 1995-11-08

Similar Documents

Publication Publication Date Title
CA1174083A (en) Process for the preparation of alloy powders which can be sintered and which are based on titanium
JP2001080964A (en) POLYCRYSTAL SiC SINTERED COMPACT PRODUCTION OF THE SAME AND PRODUCT OBTAINED BY APPLYING THE SAME
JPH0336783B2 (en)
WO2018110565A1 (en) Method for producing high-purity silicon nitride powder
JPS595547B2 (en) Method for manufacturing cubic boron nitride sintered body
JPH02196010A (en) Production method of aluminum nitride
US5126295A (en) Silicon nitride powder, silicon nitride sintered body and processes for their production
JP2000178013A (en) Silicon nitride powder and its production
JPH03126622A (en) Zirconium dioxide powder, preparation thereof, use thereof and sintered body prepared therefrom
JPH02225304A (en) Production of silicon nitride, silicon nitride powder and use of the same powder
JPH04223808A (en) Silicon nitride sintered body tool
EKSTRÖM et al. α‐β sialon ceramics made from different silicon nitride powders
JPH0812306A (en) Silicon nitride powder
JPH0324429B2 (en)
JP3669406B2 (en) Silicon nitride powder
JPH02255573A (en) Production of high-toughness silicon nitride sintered body
JPH082907A (en) Powdery silicon nitride
JP3997596B2 (en) Silicon nitride powder
EP1044177A1 (en) Dense refractories with improved thermal shock resistance
JPS5938164B2 (en) Manufacturing method of cubic boron nitride
JPH02248309A (en) Silicon nitride powder and its production
JP2612016B2 (en) Method for producing low oxygen aluminum nitride powder
WO2021112145A1 (en) Metal nitride prodcution method
JP3827360B2 (en) Manufacturing method of silicon nitride
JPH0555443B2 (en)

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees