JPH0324429B2 - - Google Patents

Info

Publication number
JPH0324429B2
JPH0324429B2 JP58029599A JP2959983A JPH0324429B2 JP H0324429 B2 JPH0324429 B2 JP H0324429B2 JP 58029599 A JP58029599 A JP 58029599A JP 2959983 A JP2959983 A JP 2959983A JP H0324429 B2 JPH0324429 B2 JP H0324429B2
Authority
JP
Japan
Prior art keywords
weight
phase
silicon nitride
mixture
ceramic powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58029599A
Other languages
Japanese (ja)
Other versions
JPS58185484A (en
Inventor
Guranuiru Batoraa Edoin
Tsueda Andoryu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ZF International UK Ltd
Original Assignee
Lucas Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lucas Industries Ltd filed Critical Lucas Industries Ltd
Publication of JPS58185484A publication Critical patent/JPS58185484A/en
Publication of JPH0324429B2 publication Critical patent/JPH0324429B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明はセラミツク物質の補造法に関する。本
発明は特に、高匷床及び高硬床を有し、焌結操䜜
により工具チツプ、ガスタヌビン郚材及びシヌル
を䜜るために有甚である眮換窒化ケむ玠ず広く蚀
われる物質に関する。 眮換窒化ケむ玠の兞型的な䟋は、窒化ケむ玠
Si12N16のβ盞栌子構造を持ち、これがケむ玠
原子の䞀郚をアルミニりム原子で眮換し、窒玠原
子の䞀郚を酞玠原子で眮換しお展開される。しか
し、β盞窒化ケむ玠栌子は、原子䟡バランスを維
持しながらその原子䜍眮においおアルミニりム及
び酞玠以倖の眮換元玠を有しうるこずが刀る。眮
換窒化ケむ玠の別の䟋はα盞窒化ケむ玠栌子を持
ち、これがケむ玠原子の䞀郚をアルミニりム原子
で眮き代え、原子䟡バランスを達成するために栌
子間隙に倉性甚カチオンたずえばむツトリりム、
カルシりム及びリチりムを導入するこずにより展
開される。この原子䟡バランスは通垞、これら倉
性甚カチオンの酞化物の䜿甚により達成され、結
局、酞玠が栌子の窒玠の䜍眮の䞀郚に導入される
であろう。本明现曞においお眮換窒化ケむ玠ずい
う蚀葉は、このように解されるべきである。 S.HampshireH.K.ParkD.P.Thompson及
びK.H.Jack著の「α′−Sialon Ceramics」
Naturevol 274No.5674880〜882ペヌゞ、
1978幎月31日では、第図の線写真が、
α′がAl2O3ず反応しおβ′を䞎えるこずを瀺し、そ
しおこれを䞋蚘の匏で䟋瀺しおいる しかし先の英囜特蚱No.1578434で指摘されおい
るように、β′−シアロンの匷床は倀が1.5のオ
ヌダヌより倧きくなるず枛少しはじめ、䞊述の
Nature誌の蚘事のようにα′−シアロンをむツト
リりムを含む第二盞を持぀高い倀のβ′−シアロ
ンに転化するず、このような生成物ぱンゞニア
リングセラミツクずしお十分に機胜しない。α盞
眮換窒化ケむ玠を高割合に含む粉末を10重量未
満のアルミナNature誌では33重量であ぀
た。及び又は少くずも䞀皮類のケむ玠の窒化
物䞋蚘で定矩される。ず反応させるこずによ
り、1.5以䞋の倀を持぀β′盞眮換窒化ケむ玠が、
制埡された量の他の結晶盞及び制埡された量のガ
ラス盞ず共に䜜られうるこず、そしおこれにより
補品の匷床ぱンゞニアリングセラミツクずしお
蚱容でき、高枩玄1200℃での特性の維持が良
いこずを本発明者は芋い出した。 たた本発明者は、出発混合物䞭のアルミナ含量
を10重量より少くしおゆくず、制埡された量の
ガラスを䌎぀お、1.5未満の倀を持぀β眮換窒
化ケむ玠盞の枛少においお焌結生成物䞭のα眮換
窒化ケむ玠盞がだんだん増加し、これにより宀枩
及び高枩における匷床が良いこずのみならず硬床
もたた、同じ最少ガラス量でα盞眮換窒化ケむ玠
が無い生成物の硬床より改善されるこずを芋い出
した。しかし、アルミナ含量を挞進的に少くしお
ゆくず、β盞眮換窒化ケむ玠が極めお䜎い倀
0.75を持぀補品を圢成するこずが困難にな
぀おゆくこずを芋い出した。α盞眮換窒化ケむ玠
を高割合に含む粉末ぞのアルミナ添加をケむ玠の
窒化物の添加により補う又は郚分的又は完党に眮
き代えるこずによ぀お、β盞眮換窒化ケむ玠の
倀を0.75未満に䞋げるこずができるこずが芋い出
された。埓぀お、10重量を越えない量で窒化ケ
む玠又はアルミナを添加するこずにより或は窒
化ケむ玠ずアルミナの双方を添加しお、䜆しアル
ミナの量は、α盞眮換窒化ケむ玠を高割合に含む
粉末に察しお10重量を越えないこず、制埡さ
れた量の他の結晶及びガラス盞を䌎う、1.5たで
の倀のβ盞眮換窒化ケむ玠より成るセラミツク
生成物を䜜るこずができ、結晶盞はα盞眮換窒化
ケむ玠を包含しうるこずが理解されるであろう。
α盞眮換窒化ケむ玠ぞの添加物を䞊述では窒化ケ
む玠及び又はアルミナず述べたが、必芁な元玠
぀たりケむ玠、窒玠、アルミニりム及び酞玠を䞎
える他の添加物たずえばオキシ窒化ケむ玠、及
び又はケむ玠が郚分的にアルミニりム原子を眮
換しか぀酞玠原子が郚分的に窒玠原子を眮換しお
原子䟡バランスは維持されおいる窒化アルミニり
ムの結晶栌子構造を持぀オキシ窒化ケむ玠アルミ
ニりムであるいわゆるポリタむプが適圓な添加物
でありうる。本明现曞においおケむ玠の窒化物ず
いう蚀葉は、このように解されるべきである。 本発明の第䞀の察象は、高密床のセラミツク物
質を䜜る方法においお、匏 MxSiAl1216 ここで、はより倧きくなく、は倉性甚カ
チオンたずえばむツトリりム、カルシりム、リチ
りム、マグネシりム、セリりムである。に埓う
α盞眮換窒化ケむ玠を高割合に含むセラミツク粉
末を、少くずも䞀皮類のケむ玠の窒化物及び又
はアルミナず混合する段階、䜆しアルミナは混合
物の10重量を越えおはならない及びこの混合
物を1700ないし1900℃の枩床で非酞化性雰囲気䞋
で焌結しお(1)䞀般匏 Si6-zAlzN8-zOz ここでは零より倧きくか぀1.5より倧きくな
い。を持぀β盞眮換窒化ケむ玠及び䞊述の倉性
甚カチオン元玠を含む少量の別の盞より䞻ずしお
成る高密床セラミツク物質、又は(2)䞊述のβ盞眮
換窒化ケむ玠、制埡された量たずえば0.05重量
ないし90重量の匏 MxSiAl1216 に埓うα盞眮換窒化ケむ玠及び䞊述の倉性甚カチ
オン元玠を含む少量たずえば0.05重量ない
し20重量の別の盞より䞻ずしお成る高密床セ
ラミツク物質を䜜る段階より成る方法である。 必芁な焌結時間は、焌結枩床に䟝存し、1900℃
の焌結枩床の堎合に少くずも10分間であり、前述
の範囲の䜎い方の枩床ではより長い時間を芁す。 眮換窒化ケむ玠の優れた特性の故に、最終的生
成物及び䞭間生成物の双方は加工するこずが極め
お困難であり、倚くの研究が材料の加工を最少に
する最終的生成物の補造法の開発に泚がれおき
た。経枈的な補造経路を考案する努力においお、
倚くの研究が操䜜パラメヌタの簡単化の方法たず
えば高圧の䜿甚の回避、時間、枩床の枛少及びた
た他のコストのかかる段階の回避に向けられおき
た。 䞊述の高密床セラミツク物質(2)を䜜るために
は、焌結される混合物䞭でAl2O3の量を7.5重量
より倚くないようにするのが奜たしい。 眮換窒化ケむ玠物質を䜜るにおいお、䞭間材料
を䜜り、粉末に现かくし、次にこの䞭間材料粉末
を別の粉末化した成分ず反応させお最終的補品を
埗るのが有利である。そのような方法は英囜特蚱
No.1573199に蚘茉されおおり、そこではアルミニ
りム、ケむ玠及びアルミナの混合物が窒化雰囲気
䞋で加熱され、発熱を実質䞊抑制するように制埡
された加熱スケゞナヌルに付される。これに続い
おこの物質を砕きそしお挜き、保護環境䞋で焌結
しお䞭間生成物を䜜る。これは、最終生成物の望
む化孊匏ずは違う化孊匏に埓うオキシ窒化ケむ玠
アルミニりムを含むセラミツク物質である。この
物質はポリタむプである。焌結に続いお䞭間的セ
ラミツク物質を砕き、挜いお粉末ずする。この粉
末を、䞍玔物ずしおケむ玠を含む窒化ケむ玠粉末
及び䞀時的なバむンダヌず混合する。䞀又は耇数
のガラス圢成性酞化物、たずえばマグネシりム、
マンガン、鉄、硌玠、リチりム、むツトリりムの
酞化物及び他の垌土類酞化物を混合物に加えおも
よい。この混合物をコヌルドプレスしおプリフオ
ヌムを圢成し、これを次にキダリア液ずしおのケ
トン䞭の窒化硌玠及びケむ玠から成る保護混合物
でスプレヌコヌトする。このプリフオヌムを次
に、1200ないし2000℃の枩床で加熱するこずによ
り開攟焌結しお最終的セラミツク物質を䜜る。こ
れは、β窒化ケむ玠に基づく結晶構造を持ち、し
かし増倧した単䜍栌子倧きさを持ち、䞀般匏 Si6-zAlzN8-zOz ここでは零より倧きく、か぀より倧きくな
い。に埓う単䞀盞オキシ窒化ケむ玠アルミニり
ムを少くずも90重量含む。このタむプの方法は
倚数の利点を持぀。第䞀に、出発材料ずしお窒化
アルミニりムを甚いるこずを回避できる。窒化ア
ルミニりムは極めお吞湿性であり、埓぀お貯蔵、
取扱いが困難であり、たた無氎の条件䞋で利甚す
るこずが必芁である。第二に、セラミツク物質の
最終的な圢を䜜るために開攟焌結法が甚いられ
る。しかしこの方法は、䞭間的セラミツク材料の
補造の間及び最終的物質の補造に甚いる前の䞭間
材料に察しお、コストのかかるゞペヌクラツシダ
ヌの䜿甚を必芁ずする。 α盞眮換窒化ケむ玠を甚いる埓来のやり方は、
高密床の硬い補品を䜜るこずを意図しおおり、そ
のような生成物を现砕しお埗られた粉末を本発明
の第䞀の察象に埓う方法における出発物質の䞀぀
ずしお甚いるこずは可胜であるが、補造方法ずし
おそうするこずは魅力がない。埓来技術のα盞眮
換窒化ケむ玠を䜜り、そしお高密床化を助けるプ
ロセスの党段階を回避するこずは可胜であり、そ
しおそのようなやり方は现砕化を容易にし、本発
明の第䞀の察象に埓う方法をより容易に行うこず
を可胜にするが、それはなおゞペヌクラツシダヌ
のようなコストのかかる现砕段階を必芁ずする。
たた、现砕プロセスは補造コストの増加は別ずし
おも反応物䞭に䞍玔物を持ち蟌み、これは最終補
品の再珟性に悪圱響を䞎えるこずに留意されねば
ならない。 本発明の第二の察象の目的は、前述のα盞窒化
ケむ玠を高割合に含むセラミツク粉末を䜜る方法
であ぀お、ゞペヌクラツシダヌのようなコストの
かかる现砕段階を芁しない方法を提䟛するこずで
ある。 本発明の第二の察象は、セラミツク物質を䜜る
方法においお、ケむ玠、アルミニりム、アルミ
ナ、及び倉性甚カチオン元玠たずえばむツトリ
りム、カルシりム、リチりム、マグネシりム、セ
リりムの酞化物又は窒化物より成る粉末混合物
を窒化雰囲気䞋でアルミニりムの融点より䞋の枩
床で、第䞀段階の窒化が実質䞊完了するたで加熱
するこずにより第䞀段階の窒化を行うこず第䞀
段階で窒化した混合物を窒化雰囲気を維持しなが
らケむ玠の融点より䞋の枩床で、第二段階の窒化
が実質䞊完了するたで加熱し、これによ぀お砕け
やすい物質を䜜る第二段階の窒化を行うこずこ
のようにしお埗た砕けやすい物質を现砕するこ
ず及び続いお、现かくした砕けやすい物質を
1650℃及び1900℃の間の枩床で非酞化雰囲気を維
持しながら焌結しお、匏 MxSiAl1216 ここではより倧きくなく、は倉性甚カチ
オン元玠である。に埓うα盞眮換窒化ケむ玠を
50重量より倚く含む砕けやすいセラミツク物
質、又は䞊述のα盞眮換窒化ケむ玠ず匏 Si6-zAlzN8-zOz ここでは零より倧きく、か぀1.5より倧きく
ない。に埓うβ盞眮換窒化ケむ玠ずの混合物を
50重量より倚く含む砕けやすいセラミツクを埗
るこずの各段階より成るセラミツク物質の補造方
法である。 β盞眮換窒化ケむ玠に察するα盞眮換窒化ケむ
玠の盞察的割合は、焌結段階の枩床に䟝存し、
1500℃〜1900℃の範囲で枩床が高ければ高い皋、
所䞎の凊理時間においおα盞物質の割合が倧きく
なるであろう。 䞊述の方法で甚いられる粉末混合物は、窒化ケ
む玠及び又は窒化アルミニりムを含んでいるこ
ずができる。 奜たしくは、眮換窒化ケむ玠のα及びβ盞の混
合物を含む砕けやすいセラミツク物質は、50重量
より倚いα盞物質を含む。このこずは奜たしく
は、最埌の焌結段階を玄1700℃及び1900℃の間の
枩床で実斜するこずにより行われる。 䜿甚される粉末混合物の成分の割合は、もちろ
ん、芁求される砕けやすいセラミツク生成物のタ
むプに䟝る。最も奜たしくは、粉末混合物の成分
の割合は、埗られる砕けやすいセラミツク物質が
実質的に完党にα盞物質から成るか又は実質䞊完
党にα盞ずβ盞の物質の混合物から成るように遞
択される。 倉性甚元玠ずしおカルシりムが甚いられる堎
合、α盞セラミツク物質は、匏 Ca0.5Si10.5Al1.5O0.5N15.5 又は匏 Ca0.8Si9.2Al2.8O1.2N14.8 を持ちうる。 倉性甚カチオン元玠がリチりムである堎合、α
盞セラミツク物質は兞型的には、匏 LiSi10Al2ON15 を持぀。 倉性甚カチオン元玠がむツトリりムである堎
合、α盞セラミツク物質は、匏 Y0.4Si10Al2O0.8N15.2 又は匏 Y0.6Si9.2Al2.8O1.1N14.9 を持ちうる。 すなわち、成分の割合は奜たしくは、適圓な匏
に埓぀お実質䞊バランスするようにされる。 本発明の第二の察象に埓う方法により圢成され
た砕けやすいセラミツク物質は、前述のβ盞物質
及び前述の倉性甚カチオン元玠を含む少割合の他
の盞から本質的に成る高密床のセラミツク物質
又は前述のβ盞物質、制埡された量たずえば
0.05重量ないし90重量のα盞物質及び前述
の倉性甚カチオン元玠を含む少割合の他の盞から
本質的に成る高密床のセラミツク物質の圢成のた
めの䞭間䜓ずしお適しおいる。 必芁な焌結時間は、焌結枩床に䟝存し、1900℃
で少くずも10分間であり、䞊述の範囲内で䜎い枩
床が採甚されたなら、より長い時間を芁する。 奜郜合には、セラミツク粉末は、セラミツク粉
末を含む混合物の〜96.5重量である。 奜郜合には、セラミツク粉末は、該セラミツク
粉末を含む混合物の30重量未満の量で存圚し、
そしお酞化むツトリりム、酞化カルシりム、酞化
リチりム、酞化セリりム、垌土類元玠酞化物及び
ランタニド系列元玠の酞化物、酞化マグネシり
ム、酞化マンガン及び酞化鉄から遞ばれた少くず
も䞀皮類のガラス圢成性金属酞化物が、䞊述のセ
ラミツク粉末を含む混合物䞭に含たれる。 最も奜郜合には、䞊述の少くずも䞀皮類のガラ
ス圢成性金属酞化物は、䞊述のセラミツク粉末を
含む混合物の10重量未満の量で含たれる。 奜たしくは、窒化ケむ玠は、䞊述のセラミツク
粉末を含む混合物の75重量たでの量、より奜た
しくは〜75重量の量を瀺す。 奜郜合には、冷华埌の補品を、ガラス盞を倱透
させるために、奜たしくは1400℃を越えない枩床
で再加熱する。 本発明の第䞀の察象に埓う実斜䟋においお、
ミクロンの平均粒子埄を持ち䞍玔物ずしお重
量のケむ玠を含む窒化ケむ玠粉末玄90のα
盞を含む。Lucas Syalon瀟からSi3N4K2ず
衚瀺しお䟛絊される物を79.3重量、10ミクロ
ンの平均粒子埄を持ち䞍玔物ずしお重量のア
ルミナを含む窒化アルミニりム粉末Stark瀟
西ドむツ囜から䟛絊される物を13重量、そし
お玄ミクロンの粒子埄を持぀酞化むツトリりム
Rare Earth Products瀟から䟛絊されたを7.7
重量含んで成る混合物を、アルミナボヌルを甚
いお24時間ボヌルミルにかけた。これにより、窒
化アルミニりム粉末に含たれたアルミナに加え
お、重量のアルミナの増加が起぀た。混合し
た粉末を次に緩い圢態で炉䞭に入れ、窒化雰囲気
の存圚䞋で炉の枩床をゆ぀くりず1820℃に䞊げ、
そしお時間保持した。冷华した生成物は、むツ
トリりムが倉性甚カチオンであるα盞眮換窒化ケ
む玠の高割合98ず少量のオヌダヌず
掚定される。の匏 Si6-zAlzN8-zOz は0.3のオヌダヌの倀である。のβ盞眮換窒
化ケむ玠より成るこずが刀぀た。 焌結した生成物は、硬い焌結ケヌキであり、こ
れを次のプロセスに付されうる䞭間䜓粉末にする
ためにはゞペヌクラツシダヌを甚いるこずが必芁
であ぀た。ゞペヌクラツシダヌで砕いた䞭間䜓粉
末90重量郚を次に、先に甚いた窒化ケむ玠10重量
郚ず混合し、そしお再びアルミナボヌルを甚いお
アルミナの増加が8.45重量郚になるたでボヌルミ
ルにかけた。埗られた粉末を次に等方的に
20000psi140MN・m-2でプレスし、そしお窒
化雰囲気を含む炉䞭で焌結した。炉の枩床は1750
℃に䞊げられ、時間保持された。 生成物においお怜出された結晶盞は、96のオ
ヌダヌを占めるβ盞眮換窒化ケむ玠、12Hず云わ
れるポリタむプ結晶盞の玄、そしおコン跡の
盞Y2SiAlO5Nより成る。β盞䞻構成芁玠
の倀は1.5のオヌダヌであり、䞉点曲げの砎壊
のモゞナラスは90000psi620NM・m-2のオヌ
ダヌであ぀た。この実隓は、α盞眮換窒化ケむ玠
が䞻構成芁玠である䞭間䜓粉末から、1.5以䞋の
倀を持぀β盞眮換窒化ケむ玠を含む物質を䜜る
本発明の第䞀の察象の方法を確認した。しかし以
䞋の総おの実隓は、本発明の第二の察象に埓い䜜
られた䞭間䜓粉末、すなわちコストのかかる现砕
を芁しない砕けやすい粉末を甚いお行われた。 本発明の第二の察象に察する察照䟋である第二
の実隓においおは、20ミクロンより小さい粒埄を
持぀ケむ玠粉末ス゚ヌデンのKema Nordより
䟛絊された物29.5重量、アルミニりム粉末
Johnson and Bloy瀟より“120dust”ずいう商
暙で䟛絊された物10.6重量、ミクロンの平
均粒子埄を持぀窒化ケむ玠玄90重量のα盞を
含み、䞍玔物ずしお重量のケむ玠を含む
Si3N4K2ずいう衚瀺でLucas Syalon瀟より䟛
絊された物49重量、ミクロンの平均粒子埄
を持぀アルミナの粉末米囜のThe Aluminium
瀟からALCOA XA15ずしお䟛絊されたもの
1.4重量、及び玄ミクロンの粒子埄を持぀酞
化むツトリりム粉末Rare Earth Products瀟か
ら䟛絊されたもの9.5重量より成る混合物を、
Nautamixミキサヌで均䞀に混合した。重量
は、元玠の原子比が匏 Y0.4Si10Al2O0.8N15.2 に埓うように調敎された。 酞化むツトリりムは、倉性甚カチオンを䞎える
ために存圚した。混合物を窒化炉に入れ、窒玠及
び氎玠の窒化雰囲気䞋で、枩床を分間圓り玄10
〜15℃の速床で640℃に䞊昇させた。この枩床で
反熱反応が始たり、混合物を640℃で20時間窒化
した。発熱反応は、混合物の枩床及び炉壁の枩床
を監芖し、発熱反応が640℃ずいう芁求枩床を越
えるほど激しく起きないように抑制する必芁があ
る時にアルゎンで窒化雰囲気を垌釈するこずによ
぀お制埡された。すなわち、混合物の枩床がアル
ミニりムの融点玄660℃より高くならないよ
うに保蚌された。䞊述の混合物及び壁の枩床怜出
によ぀お発熱がもはや感知されなくな぀た時に、
窒化プロセスの第段階が完了したこずを瀺すず
解された。 次に第段階においお甚いたのず同じ窒化雰囲
気を維持しながら、炉䞭の枩床を1200℃に䞊げ
た。混合物をこの枩床で10時間保ち、その埌、
1250℃に䞊げ、時間保ち、曎に1300℃に䞊げ、
時間保ち、次に1350℃に䞊げ、時間保ち、最
埌に1400℃に䞊げこの枩床で10時間保぀た。この
段階の反応の進行を、第段階の窒化におけるず
同様に混合物及び炉壁の枩床を監芖するこずによ
぀お監芖し、必芁な時にはアルゎンで雰囲気を垌
釈しお枩床が高くなりすぎないよう制埡した。こ
の第二段階の窒化においお、反熱が無くなるこず
は窒化が完了したこずを瀺すず解された。埗られ
た物質は、砕けやすく、冷华埌に簡単なスチヌル
ボヌルミル凊理によ぀お容易に砕かれる窒化され
た混合物であ぀た。この段階でゞペヌクラツカヌ
のようなコストのかかる现砕手段を甚いる必芁は
ない。このようにしお埗た粉末化した物質をグラ
フアむトのポツトに入れ、非酞化雰囲気で分間
圓り10〜15℃の加熱速床で1600℃たで炉䞭で加熱
した。この䟋では非酞化雰囲気は、気圧の窒玠
である。この物質を、この枩床で時間保ち、そ
の間にそれは反応した。反応埌に物質を炉から取
出し、宀枩に攟冷した。埗られたセラミツク物質
は、砕けやすく、次の䜿甚のために粉末ずするの
に小さな力のみを芁した。しかし、この物質の
線スペクトル分析は、それが匏 Y0.4Si10Al2O0.8N15.2 のα盞眮換窒化ケむ玠30重量、及び匏 Si4.6Al1.4N6.6O1.4 のβ盞眮換窒化ケむ玠50重量、曎に15重量の
未反応α窒化ケむ玠及び重量の酞化むツトリ
りムより成るこずを瀺した。この生成物はα′盞眮
換窒化ケむ玠を高割合に含むものではなく、埓぀
お本発明の範囲に入らなく、それは䞋蚘の実斜䟋
のための察照実隓ずしお考えられる。 䞊述の実隓(2)をいく぀かのサンプルに぀いお繰
返した実斜䟋〜。䜆し、最埌の焌結段階
においお、各サンプルの枩床を順次高く蚭定し、
実斜䟋におけるず同じく時間、芏定した枩床
に保぀た。これらの実隓の結果を衚に瀺す。
The present invention relates to a method for manufacturing ceramic materials. The present invention particularly relates to materials commonly referred to as substituted silicon nitrides, which have high strength and hardness and are useful for making tool tips, gas turbine components, and seals by sintering operations. A typical example of substituted silicon nitride is silicon nitride (Si 12 N 16 ), which has a β-phase lattice structure in which some of the silicon atoms are replaced by aluminum atoms and some of the nitrogen atoms are replaced by oxygen atoms. It will be expanded. However, it is understood that the beta-phase silicon nitride lattice can have substituent elements other than aluminum and oxygen at its atomic positions while maintaining valence balance. Another example of substituted silicon nitride has an alpha-phase silicon nitride lattice, which replaces some of the silicon atoms with aluminum atoms and contains modifying cations such as yttrium, yttrium, etc. in the lattice interstices to achieve valence balance.
It is developed by introducing calcium and lithium. This valence balance is usually achieved through the use of oxides of these modifying cations, eventually leading to the introduction of oxygen to some of the nitrogen positions in the lattice. In this specification, the term substituted silicon nitride should be understood in this way. “α′-Sialon Ceramics” by S.Hampshire, HKPark, DPThompson and KHJack
(Nature, vol 274, No. 5674, pages 880-882,
(August 31, 1978), the X-ray photograph in Figure 5 was
It is shown that α′ reacts with Al 2 O 3 to give β′, and this is illustrated by the following formula: However, as pointed out in the earlier British Patent No. 1578434, the strength of β'-sialon begins to decrease when the z-value becomes larger than the order of 1.5, and the above-mentioned
When α'-sialon is converted to high z-value β'-sialon with a second phase containing yttrium, as in the Nature article, such products do not function well as engineering ceramics. Powder containing a high proportion of α-phase substituted silicon nitride with less than 10% by weight of alumina (33% by weight in Nature) and/or at least one silicon nitride (as defined below). By reacting with
It can be made with controlled amounts of other crystalline phases and controlled amounts of glassy phases, so that the strength of the product is acceptable for engineering ceramics and its properties are well maintained at high temperatures (approximately 1200°C). The present inventor found out. The inventors have also found that decreasing the alumina content in the starting mixture below 10% by weight results in sintering in the reduction of β-substituted silicon nitride phases with z-values less than 1.5, with a controlled amount of glass. The α-substituted silicon nitride phase in the product gradually increases, which not only improves the strength at room and high temperatures, but also improves the hardness compared to the hardness of the product without α-phase substituted silicon nitride with the same minimum glass content. I discovered that. However, it has been found that as the alumina content is progressively reduced, it becomes increasingly difficult for the beta-phase substituted silicon nitride to form products with extremely low z values (<0.75). z of β-phase substituted silicon nitride by supplementing or partially or completely replacing the addition of alumina to powders containing a high proportion of α-phase substituted silicon nitride by the addition of silicon nitride.
It has been found that the value can be lowered to less than 0.75. Therefore, by adding silicon nitride or alumina in an amount not exceeding 10% by weight (or by adding both silicon nitride and alumina, provided that the amount of alumina contains a high proportion of α-phase substituted silicon nitride) Ceramic products can be made consisting of β-phase substituted silicon nitride of z-values up to 1.5, with controlled amounts of other crystalline and glassy phases (not exceeding 10% by weight of the powder); It will be appreciated that the phase can include alpha phase substituted silicon nitride.
Although silicon nitride and/or alumina are mentioned above as additives to α-phase substituted silicon nitride, other additives that provide the necessary elements, such as silicon, nitrogen, aluminum, and oxygen, such as silicon oxynitride and/or silicon, can also be used. The so-called polytype, which is silicon aluminum oxynitride having a crystal lattice structure of aluminum nitride, in which valence balance is maintained by partially replacing aluminum atoms and oxygen atoms partially replacing nitrogen atoms, is a suitable addition. It can be a thing. In this specification, the term silicon nitride should be understood in this way. A first object of the invention is a method for making dense ceramic materials of the formula Mx(Si,Al) 12 (O,N) 16 , where x is not greater than 2 and M is a modifying cation, e.g. yttrium, calcium, lithium, magnesium, and cerium) with at least one type of silicon nitride and/or alumina, provided that the alumina is in the mixture. and this mixture is sintered in a non-oxidizing atmosphere at a temperature of 1700 to 1900°C to obtain (1) the general formula Si 6-z Al z N 8-z O z (where (2) a dense ceramic material consisting primarily of a β-phase substituted silicon nitride with a small amount of another phase containing a modifying cationic element as described above, or (2) a β-phase as described above. Substituted silicon nitride, a controlled amount (e.g. 0.05% to 90% by weight) of α-phase substituted silicon nitride according to the formula Mx(Si,Al) 12 (O,N) 16 and a small amount containing the modifying cationic element M as described above. (e.g., 0.05% to 20% by weight) of another phase. The required sintering time depends on the sintering temperature, 1900℃
for a sintering temperature of at least 10 minutes, and longer times at lower temperatures in the aforementioned range. Because of the excellent properties of substituted silicon nitride, both the final and intermediate products are extremely difficult to process, and much research has focused on developing methods for producing the final product that minimize processing of the material. has been poured into. In an effort to devise an economical manufacturing route,
Much research has been devoted to ways of simplifying operating parameters, such as avoiding the use of high pressures, reducing time, temperature and also avoiding other costly steps. To make the above-mentioned dense ceramic material (2), the amount of Al 2 O 3 in the mixture to be sintered is 7.5% by weight.
Preferably no more. In making substituted silicon nitride materials, it is advantageous to form an intermediate material, grind it into a powder, and then react the intermediate powder with another powdered component to obtain the final product. Such a method is patented in the UK
No. 1573199, in which a mixture of aluminum, silicon and alumina is heated under a nitriding atmosphere and subjected to a controlled heating schedule to substantially suppress exotherm. Following this, the material is crushed and ground and sintered in a protected environment to create an intermediate product. This is a ceramic material containing silicon aluminum oxynitride that follows a different chemical formula than the desired chemical formula of the final product. This material is polytypic. Following sintering, the intermediate ceramic material is crushed and ground into a powder. This powder is mixed with silicon nitride powder containing silicon as an impurity and a temporary binder. one or more glass-forming oxides, such as magnesium;
Oxides of manganese, iron, boron, lithium, yttrium and other rare earth oxides may be added to the mixture. This mixture is cold pressed to form a preform, which is then spray coated with a protective mixture of boron nitride and silicon in ketone as a carrier fluid. This preform is then open sintered to form the final ceramic material by heating at temperatures of 1200 to 2000°C. It has a crystal structure based on β-silicon nitride, but with increased unit cell size and has the general formula Si 6-z Al z N 8-z O z (where z is greater than zero and greater than 5). Contains at least 90% by weight of single-phase silicon aluminum oxynitride according to the following standards. This type of method has numerous advantages. Firstly, the use of aluminum nitride as a starting material can be avoided. Aluminum nitride is extremely hygroscopic and therefore cannot be stored,
It is difficult to handle and requires use under anhydrous conditions. Second, an open sintering process is used to create the final shape of the ceramic material. However, this method requires the use of costly geocrushers during the production of the intermediate ceramic material and on the intermediate material before it is used in the production of the final material. The conventional method using α-phase substituted silicon nitride is
It is possible to use the powder obtained by comminution of such a product as one of the starting materials in the process according to the first subject of the invention, intended to produce a dense and hard product. Yes, but doing so as a manufacturing method is unattractive. It is possible to make prior art α-phase substituted silicon nitrides and avoid all steps in the process that aid in densification, and such an approach facilitates comminution and is the first subject of the present invention. Although the method according to the present invention allows to carry out the method more easily, it still requires a costly comminution step such as a geocrusher.
It must also be noted that the comminution process, apart from increasing manufacturing costs, introduces impurities into the reactants, which adversely affects the reproducibility of the final product. A second object of the present invention is to provide a method for producing ceramic powder containing a high proportion of alpha-phase silicon nitride as described above, which does not require a costly grinding step such as a geocrusher. It is to be. A second object of the invention is a method for producing ceramic materials in which powder mixtures of silicon, aluminum, alumina and oxides or nitrides of modifying cationic elements (for example yttrium, calcium, lithium, magnesium, cerium) are used. carrying out the first stage nitriding by heating the first stage nitriding mixture at a temperature below the melting point of aluminum under a nitriding atmosphere until the first stage nitriding is substantially complete; heating at a temperature below the melting point of silicon until the second stage nitridation is substantially complete, thereby producing a friable material; comminution of the material; and subsequently the comminution of the comminuted friable material
Sintering while maintaining a non-oxidizing atmosphere at temperatures between 1650°C and 1900°C gives the formula Mx(Si,Al) 12 (O,N) 16 where x is not greater than 2 and M is for modification. It is a cationic element.) α-phase substituted silicon nitride according to
Friable ceramic materials containing more than 50% by weight, or α-phase substituted silicon nitride as described above and according to the formula Si 6-z Al z N 8-z O z , where z is greater than zero and not greater than 1.5. mixture with β-phase substituted silicon nitride
A process for producing ceramic materials comprising steps of obtaining a brittle ceramic containing more than 50% by weight. The relative proportion of α-phase substituted silicon nitride to β-phase substituted silicon nitride depends on the temperature of the sintering step;
The higher the temperature within the range of 1500℃ to 1900℃,
For a given treatment time the proportion of alpha phase material will be large. The powder mixture used in the method described above may contain silicon nitride and/or aluminum nitride. Preferably, the brittle ceramic material comprising a mixture of alpha and beta phases of substituted silicon nitride contains greater than 50% by weight alpha phase material. This is preferably done by carrying out the final sintering step at a temperature between about 1700°C and 1900°C. The proportions of the components of the powder mixture used will, of course, depend on the type of friable ceramic product required. Most preferably, the proportions of the components of the powder mixture are selected such that the resulting friable ceramic material consists essentially entirely of alpha phase material or substantially entirely a mixture of alpha and beta phase material. Ru. If calcium is used as the modifying element, the α-phase ceramic material may have the formula Ca 0.5 Si 10.5 Al 1.5 O 0.5 N 15.5 or the formula Ca 0.8 Si 9.2 Al 2.8 O 1.2 N 14.8 . When the cationic element for modification is lithium, α
Phase ceramic materials typically have the formula LiSi 10 Al 2 ON 15 . When the modifying cationic element is yttrium, the α-phase ceramic material can have the formula Y 0.4 Si 10 Al 2 O 0.8 N 15.2 or the formula Y 0.6 Si 9.2 Al 2.8 O 1.1 N 14.9 . That is, the proportions of the components are preferably substantially balanced according to a suitable formula. The friable ceramic material formed by the method according to the second subject of the invention is a dense ceramic material consisting essentially of the aforementioned β-phase material and a small proportion of other phases comprising the aforementioned modifying cationic elements;
or the aforementioned β-phase materials, in controlled amounts (e.g.
It is suitable as an intermediate for the formation of dense ceramic materials consisting essentially of α-phase materials (0.05% to 90% by weight) and small proportions of other phases containing the aforementioned modifying cationic elements. The required sintering time depends on the sintering temperature, 1900℃
for at least 10 minutes; longer times are required if lower temperatures within the ranges mentioned above are employed. Conveniently, the ceramic powder is 5 to 96.5% by weight of the mixture containing the ceramic powder. Conveniently, the ceramic powder is present in an amount of less than 30% by weight of the mixture containing the ceramic powder;
and at least one glass-forming metal oxide selected from yttrium oxide, calcium oxide, lithium oxide, cerium oxide, rare earth element oxides and lanthanide series element oxides, magnesium oxide, manganese oxide, and iron oxide, It is contained in a mixture containing the ceramic powder described above. Most conveniently, the at least one glass-forming metal oxide as described above is included in an amount of less than 10% by weight of the mixture comprising the ceramic powder as described above. Preferably, silicon nitride represents an amount of up to 75% by weight of the mixture containing the ceramic powder described above, more preferably from 5 to 75%. Conveniently, the product after cooling is reheated, preferably at a temperature not exceeding 1400° C., in order to devitrify the glass phase. In Example 1 according to the first subject of the invention,
Silicon nitride powder with an average particle size of 2 microns and containing 5% by weight silicon as an impurity (approximately 90% α
Contains phases. ) (supplied by Lucas Syalon under the designation Si 3 N 4 (K 2 )), aluminum nitride powder (Stark Company:
7.7% by weight of yttrium oxide (supplied by Rare Earth Products) with a particle size of approximately 1 micron.
% by weight was ball milled for 24 hours using alumina balls. This resulted in an increase of 2% by weight of alumina in addition to the alumina contained in the aluminum nitride powder. The mixed powder was then placed in a furnace in loose form and the temperature of the furnace was slowly increased to 1820°C in the presence of a nitriding atmosphere.
And it was held for 5 hours. The cooled product has a high proportion (98%) and a small amount (estimated to be on the order of 2%) of α-phase substituted silicon nitride, where yttrium is the modifying cation. Si 6-z Al z N 8-z It was found to consist of β-phase substituted silicon nitride of O z (z is of the order of 0.3). The sintered product was a hard sintered cake, and it was necessary to use a diyoke crusher to convert it into an intermediate powder that could be subjected to subsequent processing. 90 parts by weight of the intermediate powder crushed on a geocrusher was then mixed with 10 parts by weight of the silicon nitride used earlier and ball milled again using an alumina ball until the alumina increase was 8.45 parts by weight. . The resulting powder is then isotropically
It was pressed at 20,000 psi (140 MN·m -2 ) and sintered in a furnace containing a nitriding atmosphere. Furnace temperature is 1750
℃ and held for 5 hours. The crystalline phases detected in the product consist of β-phase substituted silicon nitride occupying on the order of 96%, about 3% of the polytype crystalline phase called 12H, and the B phase (Y 2 SiAlO 5 N) of the cons. . The z-value of the main component of the β phase was on the order of 1.5, and the modulus of failure in three-point bending was on the order of 90,000 psi (620 NM m -2 ). This experiment confirmed the method of the first object of the present invention for producing a material containing β-phase substituted silicon nitride with a z value of 1.5 or less from an intermediate powder in which α-phase substituted silicon nitride is the main constituent. However, all the following experiments were carried out using an intermediate powder made according to the second subject of the invention, a friable powder that does not require costly comminution. In the second experiment, which is a control example for the second object of the present invention, 29.5% by weight of silicon powder (supplied by Kema Nord, Sweden) with a particle size smaller than 20 microns, aluminum powder (supplied by Kema Nord, Sweden), aluminum powder (Johnson and Bloy 10.6% by weight of silicon nitride with an average particle size of 2 microns (contains approximately 90% by weight of alpha phase and 5% by weight of silicon as impurities).
Si 3 N 4 (K 2
(supplied as ALCOA XA15 by the company)
1.4% by weight, and 9.5% by weight of yttrium oxide powder (supplied by Rare Earth Products) with a particle size of approximately 1 micron.
Mixed uniformly with a Nautamix mixer. weight%
were adjusted so that the atomic ratios of the elements followed the formula Y 0.4 Si 10 Al 2 O 0.8 N 15.2 . Yttrium oxide was present to provide the modifying cation. The mixture was placed in a nitriding furnace and the temperature was increased to about 10°C per minute under a nitriding atmosphere of nitrogen and hydrogen.
Raised to 640°C at a rate of ~15°C. At this temperature, an antithermal reaction began and the mixture was nitrided at 640°C for 20 hours. The exothermic reaction is controlled by monitoring the temperature of the mixture and the temperature of the furnace walls and diluting the nitriding atmosphere with argon when necessary to prevent the exothermic reaction from occurring too violently to exceed the required temperature of 640°C. It was done. That is, it was ensured that the temperature of the mixture did not rise above the melting point of aluminum (approximately 660°C). When the heat generation is no longer detected by the temperature detection of the mixture and walls as described above,
This was taken to indicate that the first stage of the nitriding process was completed. The temperature in the furnace was then increased to 1200°C while maintaining the same nitriding atmosphere used in the first stage. Keep the mixture at this temperature for 10 hours, then
Raised to 1250℃, kept for 5 hours, then raised to 1300℃,
It was kept for 5 hours, then raised to 1350°C, kept for 5 hours, and finally raised to 1400°C and kept at this temperature for 10 hours. The progress of the reaction at this stage is monitored as in the first stage nitridation by monitoring the temperature of the mixture and furnace walls, and when necessary diluting the atmosphere with argon to prevent the temperature from becoming too high. controlled. In this second stage of nitriding, the disappearance of reaction heat was understood to indicate that the nitriding was complete. The resulting material was a friable, nitrided mixture that was easily crushed by simple steel ball milling after cooling. There is no need to use costly comminution means such as a geocracker at this stage. The powdered material thus obtained was placed in a graphite pot and heated in a furnace to 1600 DEG C. at a heating rate of 10-15 DEG C. per minute in a non-oxidizing atmosphere. In this example, the non-oxidizing atmosphere is nitrogen at 1 atmosphere. This material was kept at this temperature for 5 hours during which time it reacted. After the reaction, the material was removed from the furnace and allowed to cool to room temperature. The resulting ceramic material was friable and required only a small amount of force to powder it for subsequent use. However, the X of this substance
Line spectral analysis shows that it contains 30% by weight of α-phase substituted silicon nitride of formula Y 0.4 Si 10 Al 2 O 0.8 N 15.2 , and 50% by weight of β-phase substituted silicon nitride of formula Si 4.6 Al 1.4 N 6.6 O 1.4 , and further 15 It was shown to consist of % by weight of unreacted alpha silicon nitride and 5% by weight of yttrium oxide. This product does not contain a high proportion of α'-phase substituted silicon nitride and therefore does not fall within the scope of the present invention, and it is considered as a control experiment for the examples below. Experiment (2) above was repeated for several samples (Examples 3-6). However, in the final sintering step, the temperature of each sample was set higher in sequence,
As in Example 2, it was kept at the specified temperature for 5 hours. The results of these experiments are shown in Table 1.

【衚】 衚の実斜䟋〜から、䜜られたセラミツク
物質におけるβ盞物質に察するα盞物質の比は最
埌の焌結段階の枩床によ぀お制埡されるこずがで
き、䞀定の焌結時間で枩床が高ければ高い皋、α
盞物質が倚くなるこずが刀る。䞊述した条件すな
わち䞊述の実隓における窒玠気圧䞋で、α盞眮
換窒化ケむ玠の最倧量が圢成された最高枩床は、
1820℃のオヌダヌであ぀た。そしお、α盞眮換窒
化ケむ玠が高割合にすなわち50越で存圚する最
䜎枩床は、1650℃のオヌダヌであるず決定され
た。 実斜䟋に埓う予備焌結したサンプルを甚い
お、枩床に察する時間の効果及び衚の実隓で甚
いた最高枩床より高い枩床の効果を研究するため
に、曎に䞀連の実隓を行぀た。この結果を衚に
瀺す。
[Table] From Examples 2 to 5 in Table 1, it can be seen that the ratio of α-phase material to β-phase material in the ceramic materials made can be controlled by the temperature of the last sintering step, and for a constant sintering The higher the temperature in time, the more α
It can be seen that the amount of phase substances increases. Under the above conditions, that is, under 1 atmosphere of nitrogen in the above experiment, the maximum temperature at which the maximum amount of α-phase substituted silicon nitride was formed was:
The temperature was on the order of 1820℃. The lowest temperature at which a high proportion of α-phase substituted silicon nitride is present, ie greater than 50%, was determined to be on the order of 1650°C. A further series of experiments were carried out using the pre-sintered samples according to Example 2 to study the effect of time on temperature and of temperatures higher than the maximum temperature used in the experiments in Table 1. The results are shown in Table 2.

【衚】 䞊の衚から、たずえば実斜䟋11及びか
ら、所定枩床で時間を長くするず、αβ盞比が
倧きくなるこずが刀る。しかし実斜䟋及びか
ら、気圧の窒玠の条件で1870℃で時間に枩床
を䞊げるずαβ盞比が枛少し始めるこず、䞀
方、実斜䟋10から1900℃で時間では解離が起぀
お、砕けやすい生成物䞭に他の盞が珟われ始める
こずが刀る。埓぀お結論ずしお、α盞が倚い生成
物は最倧1900℃のオヌダヌの枩床で䜜られるこず
ができ、1820℃のオヌダヌの枩床は合理的な焌結
時間時間のオヌダヌで生成物の正確な制埡
を可胜にするようである。たた、そのような枩床
の絶察倀は、炉内の他の条件たずえば圧力によ぀
おも圱響されるであろうこずが理解され、䜿甚さ
れるべき補造蚭備の条件を定量化するためにいく
぀かの予備実隓を行うこずが有甚であろう。 䞊述の䟋では出発物質ずしお、ケむ玠、アルミ
ニりム、窒化ケむ玠、アルミナ及び酞化むツトリ
りムが甚いられたが、有甚な砕けやすいセラミツ
ク物質がむツトリりムの窒化物を甚いお及び又
は他の倉性甚カチオンたずえばカルシりム、リチ
りム、マグネシりム又はセリりムの酞化物及び
又は窒化物を甚いお埗られるこずが理解されるで
あろう。曎に、出発物質の䞀぀ずしお窒化ケむ玠
の䜿甚は必須ではないこずが理解されよう。しか
し、窒化操䜜は反熱的である故に、窒化ケむ玠を
含むこずが有利である。䜕故ならば、このこずは
発熱反応を制埡するのを助けるのみならず、熱的
暎走を起すこずなしに高い窒化枩床を甚いるこず
を可胜にする、即ち総䜓ずしお高効率の窒化段階
を可胜にするからである。同じ理由から、アルミ
ニりムに加えお又はその代りに窒化アルミニりム
を出発物質の䞀぀ずしお含めるこずができる。し
かし、窒化ケむ玠及び又は窒化アルミニりムの
量を、各々ケむ玠及び又はアルミニりムを枛ら
しながら挞次増加させるず、本発明の有効が枛少
しおゆく。埓぀お奜たしくは、窒化ケむ玠及び
又は窒化アルミニりムを、ケむ玠に察する窒化ケ
む玠の重量比又はアルミニりムに察する窒化アル
ミニりムの重量比がより倧きくならないよ
うな量で含めるこずが考えられる。 本発明の察象に埓う䞀連の実斜䟋においお、実
斜䟋に埓い䜜られた、72重量のα′盞及び28重
量のβ′盞β盞眮換窒化ケむ玠を有する、高
割合でα盞眮換窒化ケむ玠を持぀砕けやすい䞭間
䜓粉末サンプル800を、皮々のAl2O3ボヌル
即ち4″2″4″を含む球圢ミル
を甚いお挜き、24時間かけお3.47重量のAl2O3
増加を䞎え、あるいは円筒圢ミルで24時間挜いお
5.41重量のAl2O3増加を䞎えた。別の800のサ
ンプルを、4″盎埄のボヌルを甚いお円筒圢ミ
ルで各々、24時間で6.88重量のAl2O3増加、48
時間で9.19重量のAl2O3増加を䞎えるべく挜い
た。総おの凊理は、む゜プロピルアルコヌル
−−をキダリア液ずしお甚いた。各スラリ
ヌを空気炉で120℃で也燥し、粉末を篩い、次に
20000psi140MN・m-2で等方的にプレスしお
窒玠雰囲気䞋での焌結のためにビレツトずした。
衚に凊理条件、埗られた生成物及び特性を瀺
す。
[Table] From the above table, for example, from Examples 11, 8, and 6, it can be seen that the α/β phase ratio increases as the time at a given temperature increases. However, from Examples 8 and 9, the α/β phase ratio begins to decrease when the temperature is raised to 1870°C for 2 hours under the condition of 1 atm nitrogen, while from Example 10, dissociation does not occur after 2 hours at 1900°C. It can be seen that other phases begin to appear in the friable product. In conclusion, therefore, α-phase-rich products can be made at temperatures up to on the order of 1900°C, and temperatures on the order of 1820°C can produce accurate products with reasonable sintering times (on the order of 5 hours). It seems that it allows for a lot of control. It is also understood that the absolute value of such temperature will also be influenced by other conditions within the furnace, e.g. pressure, and in order to quantify the conditions of the manufacturing equipment to be used some It may be useful to perform preliminary experiments. Although silicon, aluminum, silicon nitride, alumina, and yttrium oxide were used as starting materials in the examples described above, useful brittle ceramic materials may be prepared using yttrium nitride and/or other modifying cations such as calcium, Lithium, magnesium or cerium oxides and/or
Or it will be understood that it can be obtained using nitrides. Furthermore, it will be appreciated that the use of silicon nitride as one of the starting materials is not essential. However, since the nitriding operation is antithermal, it is advantageous to include silicon nitride. This is because this not only helps to control the exothermic reaction, but also allows high nitriding temperatures to be used without thermal runaway, thus allowing an overall highly efficient nitriding step. It is from. For the same reason, aluminum nitride can be included as one of the starting materials in addition to or instead of aluminum. However, as the amount of silicon nitride and/or aluminum nitride is progressively increased while decreasing silicon and/or aluminum, respectively, the effectiveness of the present invention decreases. Therefore, preferably silicon nitride and/or
Alternatively, it is contemplated to include aluminum nitride in an amount such that the weight ratio of silicon nitride to silicon or aluminum nitride to aluminum is not greater than 3:1. In a series of examples according to the subject of the invention, a high proportion of α-phase substituted with 72% by weight of α′ phase and 28% by weight of β′ phase (β-phase substituted silicon nitride) was prepared according to Example 4. 800 g of a friable intermediate powder sample with silicon nitride was ground using a spherical mill containing various Al 2 O 3 balls (i.e. 1/4″, 1/2″, 3/4″) over a period of 24 h. 3.47 wt % Al2O3
Increase or grind for 24 hours in a cylindrical mill
It gave an Al2O3 increase of 5.41% by weight. Another 800 g sample was each processed in a cylindrical mill using 1/4" diameter balls, increasing Al 2 O 3 by 6.88% by weight in 24 hours, 48
Grinded to give an Al 2 O 3 increase of 9.19% by weight in time. All treatments were performed using isopropyl alcohol (i
-p-a) was used as the carrier liquid. Dry each slurry in an air oven at 120℃, sieve the powder, and then
It was isotropically pressed at 20,000 psi (140 MN·m -2 ) to form a billet for sintering under a nitrogen atmosphere.
Table 3 shows the processing conditions, the products obtained and their properties.

【衚】 実斜䟋12〜15から、良奜な密床、匷床及び硬床
特性を持぀有甚な゚ンゞニアリングセラミツクが
䜜られたこずが刀る。掚定により7.5重量より
倚いAl2O3増加の堎合に、α′盞が怜出されない
が、この条件における䞻たる盞は85重量のオヌ
ダヌのβ′盞である。アルミナ含量が玄7.5重量
より少なくなるず、α′盞の量がだんだん増加す
る。ここの実斜䟋で䞭間䜓の盞が28重量のオヌ
ダヌのβ′盞を含む堎合、混合物ぞ窒化アルミニり
ムを加えるこずなしに、この量より少いβ′盞を含
む高密床最終補品を䜜るこずは出来ない。 最終補品においお28重量より少いβ′盞を含む
生成物が芁求されるなら、䞭間䜓の盞は適圓量の
β′盞を有するか又は適圓量の窒化アルミニりムが
加えられなければならない。 アルミナ含量を10重量のオヌダヌより少く、
か぀7.5重量のオヌダヌより倚くするこずによ
り、0.751.5である倀を持぀β′盞が倚く、
制埡された量の他の結晶盞を持぀生成物を埗るこ
ずを保蚌するこずができる。 本発明の察象に埓う実斜䟋16においお、埗られ
る物質の範囲を拡匵するため、特にアルミナ増加
のみで埗られるよりも䜎い倀にβ′盞の倀を制埡
できるようにするために、アルミナ粉末の他に窒
化ケむ玠粉末を甚いた。 実斜䟋に埓う䞭間䜓粉末75重量郚を、米囜の
Kennametal瀟から䟛絊された窒化ケむ玠粉25重
量郚ず混合し、アルミナボヌルを甚いおむ゜プロ
ピルアルコヌル䞭で72時間ボヌルミル粉砕した。
この時点で出発混合物は8.89重量郚のアルミナ増
加を有するこずが刀぀た。このように䜜られた现
かい粉末を次に也燥し、実斜䟋12〜15ず同様に等
方プレスし、窒玠雰囲気䞋で1600℃で時間、続
いお1750℃で時間焌結した。埗られた生成物
は、䞻構成芁玠ずしおβ′盞物質を、重量のオ
ヌダヌの12Hず共に含み、3.23cc-1の密床、宀
枩で䞉点曲げの砎壊モゞナラス89800psi
620MNm-2、92のロツクり゚ル硬床を瀺す。
β′盞物質の倀は0.8であるず刀぀た。 曎に、実斜䟋13ず同様にSi3N4及びAl2O3を甚
い、実斜䟋の砕けやすい䞭間䜓を䜿甚しおサン
プルを䜜぀た。凊理及び埗られた物質を衚に瀺
す。
[Table] It can be seen from Examples 12-15 that useful engineering ceramics with good density, strength and hardness properties were made. It is estimated that for Al 2 O 3 increases of more than 7.5% by weight, no α' phase is detected, but the predominant phase in this condition is the β' phase on the order of 85% by weight. Alumina content is about 7.5% by weight
As the amount becomes smaller, the amount of α' phase gradually increases. If, in the examples herein, the intermediate phase contains on the order of 28% by weight β' phase, making a dense final product containing less than this amount of β' phase without adding aluminum nitride to the mixture I can't. If a product containing less than 28% by weight β' phase is required in the final product, the intermediate phase must have an appropriate amount of β' phase or an appropriate amount of aluminum nitride must be added. The alumina content is less than the order of 10% by weight,
And by increasing the amount to more than 7.5% by weight, there are many β' phases with a z value of 0.75 < z < 1.5,
It can be ensured that a product with a controlled amount of other crystalline phases is obtained. In Example 16 according to the subject of the invention, in order to extend the range of materials obtained, and in particular to be able to control the z-value of the β' phase to a lower value than can be obtained with alumina increase alone, alumina powder is added. In addition, silicon nitride powder was used. 75 parts by weight of the intermediate powder according to Example 5 was added to
It was mixed with 25 parts by weight of silicon nitride powder supplied by Kennametal and ball milled in isopropyl alcohol using alumina balls for 72 hours.
At this point the starting mixture was found to have an alumina gain of 8.89 parts by weight. The fine powder thus produced was then dried, isostatically pressed as in Examples 12-15 and sintered under nitrogen atmosphere at 1600°C for 2 hours followed by 1750°C for 5 hours. The resulting product contains β' phase material as the main constituent, along with 12H on the order of 3% by weight, has a density of 3.23 gcc -1 and a three-point bending modulus of failure of 89800 psi at room temperature.
(620 MNm -2 ), exhibiting Rockwell A hardness of 92.
The z value of the β′ phase material was found to be 0.8. Additionally, samples were made using Si 3 N 4 and Al 2 O 3 as in Example 13, and using the brittle intermediate of Example 5. The treatments and materials obtained are shown in Table 4.

【衚】 実斜䟋16〜19は、倀をアルミナ単独で埗られ
るよりも小さく䞋げるこずを蚱しながら、高割合
のβ′盞の生成物を䜜るこずを䞀貫しお可胜ずしお
いる。 実斜䟋19においおはY2O3が出発物に加えられ
たこずに気付くであろう。これは、䞭間䜓盞の量
が少く28.6重量郚、埓぀おα′盞からのむツト
リりムが高密床化を助けるためのガラス圢成にお
いお䞍足である故である。埓぀おこの䞍足を補う
ためにY2O3が加えられた。 しかし、他のガラス圢成性金属酞化物又は窒化
物、たずえばマグネシりム、マンガン、鉄、リチ
りム、カルシりム、セリりム及びランタニド系列
及び他の垌土類元玠の酞化物又は窒化物を加える
こずも出来るこずが理解されよう。 これら添加物は、芁求される状態に倉化しうる
化合物の圢であるこずができ、しかしα′盞のカチ
オンを圢成する金属の酞化物を甚いるこずが奜た
しい。 実斜䟋18ず19の比范によれば、最埌のβ′盞の
倀の増加は、アルミナ及び䞭間䜓盞の量の増加及
び窒化ケむ玠の量の枛少により達成されうる。実
斜䟋18及び19においお、むツトリりムの合蚈量は
実質的に同䞀である。最終生成物䞭にα′盞を䜜る
ために、実斜䟋16及び17を、アルミナ含量を各々
6.13及び8.1重量に枛少しお繰返す。埗られた
生成物はα′盞を含み、実斜䟋16の出発物質を甚
い、䜆し䜎いAl2O3含量を甚いた堎合に15重量
のα′盞を含み、実斜䟋17の出発物質を甚い、䜆し
䜎いAl2O3含量を甚いた堎合に重量のα′盞を
含むこずが刀぀た。実斜䟋16すなわち䞭間䜓粉
末を高割合に甚い、α′盞含量が高い。を、アル
ミナの量を重量に䞋げお繰返した。埗られた
生成物は、80重量のα′盞を含んでいた。 本発明の実斜䟋20においお、実斜䟋に埓い䜜
られた砕けやすいセラミツク物質92.6の
α′盞、7.4のβ′盞の95重量郚を、実斜䟋の窒
化ケむ玠重量郚ず混合し、混合物をコロむドミ
ルで埮粒子に挜いた。コロむドミル粉砕においお
は、アルミナボヌルミル粉砕においお起぀たよう
な粉砕媒䜓からの成分増加は起きないこずが理解
されよう。粉末を、むンチ51mm盎埄のグラ
フアむドダむこれは窒化硌玠を豊富にコヌテむ
ングされおいる。に入れ、4600psi31.7MPa
の圧力䞋で時間1750℃で加熱プレスしお、䞀般
匏 YxSiAl1216 の䞻ずしお90のα′盞眮換窒化ケむ玠及び
のβ′盞倀0.2、むツトリりムを含むガラ
ス及びこん跡の遊離ケむ玠より成る高密床生
成物を圢成した。この実斜䟋においおは熱プレス
により高密床が達成されたが、いく分のアルミナ
がたずえばアルミナボヌルミル粉砕によ぀お混合
物に含たれるこずを保蚌するこずにより、圧力を
甚いずに同じ密床を達成するこずができる。しか
しそのようなアルミナの混入によ぀お、最終生成
物における䞀般匏 YxSiAl1216 のα盞眮換窒化ケむ玠の重量割合が枛少される。 カチオン倉性甚元玠ずしおむツトリりムを甚い
る実斜䟋を瀺したが、他のカチオン倉性甚元玠た
ずえばカルシりム、リチりム、マグネシりム及び
セリりムを甚いお本発明の方法及び生成物が等し
く達成される。 䞊述の実斜䟋ではアルミナ及び又は窒化ケむ
玠が、α′盞を含む䞭間䜓に加えられたが、ケむ
玠、窒玠、アルミニりム及び酞玠は、䞊述の化合
物の代りに又はそれらず共に別の化合物を甚いる
こずにより導入できるこずが理解されよう。たず
えば、初めに述べたオキシ窒化ケむ玠又はポリタ
むプを甚いるこずができた。 本発明の実斜䟋21においお、実斜䟋に埓う䞭
間䜓粉末87重量のα′盞、13重量のβ′盞を含
む。12重量郚を、76重量郚の窒化ケむ玠、重
量郚の英囜特蚱No.1573199の物質21R、及び重
量郚のY2O3実斜䟋19で説明したように䞭間䜓の
量が少いので加える。ず混合し、党䜓をアルミ
ナ媒䜓を甚いおボヌルミルで砕き、2.91重量郚の
増加をもたらす。1750℃で時間の焌結及び続く
1400℃で時間の焌ナマシにより、宀枩で
99700psi690MNm-2、1200℃で52200psi
360MNm-2のモゞナラス、92のロツクり゚ル
硬床を持぀生成物が埗られた。これは高割合の
β′盞ず玄重量のα′盞を裏付ける。β′盞の倀
は1.2であ぀た。倀の制埡は、窒化ケむ玠を枛
少させおその分だけポリタむプ及び又はアルミ
ナの量を増すこずによ぀お倀を増倧でき、倀
の枛少のためには逆にする。たたもし最終生成物
におけるα′盞含量の増加が望たれるなら、このこ
ずは窒化ケむ玠量を枛少しながら䞭間䜓の量を増
すこずにより、たたアルミナ含量を枛少するこず
により又は加えるY2O3の量を枛少しながら䞭
間䜓含量を増加するこずによ぀お達成されうる。
最終生成物のα′盞を枛少させる堎合、䞭間䜓の量
を出発混合物のより少く枛少しないで顆粒間
ガラス局の重量割合を蚱容限界内に留めるこずが
望たしい。 実斜䟋12〜21では出発混合物䞭に、本発明の第
二の方法すなわち、コストのかかる现砕プロセ
スを芁しない、粉末が砕けやすい方法によ぀お
䜜られた、α盞眮換窒化ケむ玠を高割合に含む粉
末を甚いたが、粉末は他の方法たずえば実斜䟋
で述べた方法で䜜られるこずができ、たた本発明
の第䞀の察象に埓い埗た良奜な生成物であるこず
ができる。しかし本発明の第二の察象により䜜ら
れた粉末を甚いるこずが明らかに奜たしい。 実斜䟋は、制埡されたβ盞眮換窒化ケむ玠を含
み、α盞眮換窒化ケむ玠を有する又は有しない良
奜な生成物が、β盞眮換窒化ケむ玠を有する又は
有さない、α盞眮換窒化ケむ玠を含む粉末から䜜
られうるこずを䟋瀺したが、α盞眮換窒化ケむ玠
の倚い90出発粉末を甚いるこずが、これ
が反応物の熱動力孊的挙動を高めるので、奜たし
い。高割合のα盞の䞭間䜓が奜たしいもう䞀぀の
理由は、それが、α盞䞭間䜓の存圚しないポリタ
むプ䞭間䜓を甚いるルヌトにより埗られる補品に
比べお、埗られる補品の組成コントロヌルの巟を
より広くするこずを可胜にするこずである。
Table: Examples 16-19 consistently make it possible to produce products with a high proportion of β' phase while allowing the z value to be lowered to less than that obtained with alumina alone. It will be noted that in Example 19 Y 2 O 3 was added to the starting materials. This is because the amount of intermediate phase is small (28.6 parts by weight) and therefore yttrium from the α' phase is insufficient in glass formation to aid in densification. Y 2 O 3 was therefore added to compensate for this deficiency. However, it will be understood that other glass-forming metal oxides or nitrides may also be added, such as oxides or nitrides of magnesium, manganese, iron, lithium, calcium, cerium and the lanthanide series and other rare earth elements. . These additives can be in the form of compounds which can be transformed into the required state, but preference is given to using oxides of metals which form cations of the α' phase. According to the comparison of Examples 18 and 19, the final β′ phase z
An increase in value can be achieved by increasing the amount of alumina and intermediate phase and decreasing the amount of silicon nitride. In Examples 18 and 19, the total amount of yttrium is substantially the same. Examples 16 and 17 were modified to create an α′ phase in the final product, and the alumina content was adjusted accordingly.
Reduce to 6.13 and 8.1% by weight and repeat. The product obtained contains an α′ phase and is 15% by weight when using the starting material of Example 16 but with a lower Al 2 O 3 content.
It was found to contain 5% by weight of α' phase when using the starting material of Example 17 but with a lower Al 2 O 3 content. Example 16 (ie, high proportion of intermediate powder and high α' phase content) was repeated with the amount of alumina reduced to 2% by weight. The product obtained contained 80% by weight of α' phase. In Example 20 of the present invention, 95 parts by weight of a brittle ceramic material made according to Example 5 (92.6% α' phase, 7.4% β' phase) were combined with 5 parts by weight of silicon nitride from Example 1. Mixed and the mixture was ground to fine particles in a colloid mill. It will be appreciated that in colloid milling, component enrichment from the grinding media does not occur as occurs in alumina ball milling. The powder was placed in a 2 inch (51 mm) diameter graphoid die (which is richly coated with boron nitride) and heated to 4600 psi (31.7 MPa).
After hot pressing at 1750 °C for 1 hour under the pressure of
A dense product was formed consisting of % β' phase (z value = 0.2), 2% glass containing yttrium and no trace of free silicon. Although high density was achieved in this example by heat pressing, it is possible to achieve the same density without using pressure by ensuring that some alumina is included in the mixture, for example by alumina ball milling. I can do it. However, the incorporation of such alumina reduces the weight proportion of α-phase substituted silicon nitride of the general formula Yx(Si,Al) 12 (O,N) 16 in the final product. Although examples are shown using yttrium as the cation-modifying element, the methods and products of the invention are equally accomplished using other cation-modifying elements such as calcium, lithium, magnesium, and cerium. Although in the examples described above alumina and/or silicon nitride were added to the intermediate containing the α' phase, silicon, nitrogen, aluminum and oxygen may be used in place of or in conjunction with the compounds described above. It will be understood that it can be introduced by For example, silicon oxynitride or the polytype mentioned at the beginning could be used. In Example 21 of the present invention, 12 parts by weight of the intermediate powder according to Example 7 (containing 87% by weight of α' phase and 13% by weight of β' phase) were combined with 76 parts by weight of silicon nitride, 7 parts by weight. 21R of UK Patent No. 1573199, and 5 parts by weight of Y 2 O 3 (added due to the small amount of intermediate as described in Example 19) and the whole is mixed with alumina medium. Milled in a ball mill, resulting in an increase of 2.91 parts by weight. Sintering at 1750℃ for 5 hours and followed by
By baking at 1400℃ for 5 hours, it can be heated at room temperature.
99700psi (690MNm -2 ), 52200psi at 1200℃
A product with a modulus of (360 MNm -2 ) and a Rockwell A hardness of 92 was obtained. This confirms a high proportion of β' phase and approximately 5% by weight of α' phase. The z value of the β′ phase was 1.2. Control of the z-value can be achieved by increasing the z-value by decreasing the silicon nitride and increasing the amount of polytype and/or alumina by that amount, and vice versa for decreasing the z-value. Also, if an increase in the α' phase content in the final product is desired, this can be done by increasing the amount of intermediate while decreasing the amount of silicon nitride, and by decreasing the alumina content; or by adding Y 2 O. This can be achieved by increasing the intermediate content while decreasing the amount of 3 .
When reducing the α' phase of the final product, it is desirable not to reduce the amount of intermediates below 5% of the starting mixture and to keep the weight proportion of the intergranular glass layer within acceptable limits. Examples 12 to 21 contain α-phase substituted silicon nitride in the starting mixture made by the second method of the invention (i.e., a method that does not require an expensive comminution process and provides a more friable powder). Although the powder containing a high proportion was used, the powder was prepared using other methods such as Example 1.
can be made by the method described in , and is a good product obtained according to the first subject of the invention. However, it is clearly preferred to use powders made according to the second subject of the invention. Examples include controlled beta-phase substituted silicon nitride, and good products with or without alpha-phase substituted silicon nitride include alpha-phase substituted silicon nitride with or without beta-phase substituted silicon nitride. Although it has been exemplified that it can be made from a powder, it is preferred to use a starting powder that is rich (>90%) in alpha-phase substituted silicon nitride, as this enhances the thermodynamic behavior of the reactants. Another reason why a high proportion of alpha-phase intermediates is preferred is that it provides greater control over the composition of the resulting product compared to products obtained by routes using polytypic intermediates in the absence of alpha-phase intermediates. The goal is to make it possible to make it wider.

Claims (1)

【特蚱請求の範囲】  匏 MxSiAl1216 ここで、はより倧きくなく、は倉性甚カ
チオンである。に埓うα盞眮換窒化ケむ玠を高
割合に含むセラミツク粉末を、少くずも䞀皮類の
ケむ玠の窒化物及び又はアルミナず混合する段
階、䜆しアルミナは混合物の10重量より倚くお
はならない及びこの混合物を1700℃ないし1900
℃の枩床で非酞化雰囲気䞋で焌結しお、 (1)䞀般匏 Si6-zAlzN8-zOz ここで、は零より倧きく、か぀1.5より倧き
くない。を持぀β盞眮換窒化ケむ玠、及び䞊述
の倉性甚カチオンを含む少量の別の盞より䞻ず
しお成る高密床セラミツク物質、又は(2)䞊述のβ
盞眮換窒化ケむ玠、制埡された量の匏 MxSiAl1216 に埓うα盞眮換窒化ケむ玠、及び䞊述の倉性甚カ
チオンを含む少量の別の盞より䞻ずしお成る高
密床セラミツク物質を䜜る段階より成る、高密床
セラミツク物質の補造法。  倉性甚カチオンがむツトリりム、カルシり
ム、リチりム、マグネシりム又はセリりムである
特蚱請求の範囲第項に蚘茉の方法。  高密床セラミツク物質(2)が匏 MxSiAl1216 に埓うα盞眮換窒化ケむ玠を0.05乃至90重量含
む特蚱請求の範囲第項に蚘茉の方法。  セラミツク物質(1)又はセラミツク物質(2)が
0.05乃至20重量の別の盞を含む特蚱請求の範囲
第項に蚘茉の方法。  セラミツク粉末を含む混合物のアルミナ含量
が7.5重量以䞋である特蚱請求の範囲第項に
蚘茉の方法。  セラミツク粉末が、該セラミツク粉末を含む
混合物の乃至96.5重量である特蚱請求の範囲
第項に蚘茉の方法。  セラミツク粉末が、該セラミツク粉末を含む
混合物の30重量より少い量で存圚し、か぀この
セラミツク粉末を含む混合物䞭に、酞化むツトリ
りム、酞化カルシりム、酞化リチりム、酞化セリ
りム、垌土類元玠酞化物及びランタニド系元玠の
酞化物、酞化マグネシりム、酞化マンガン及び酞
化鉄から遞ばれた少くずも䞀皮類のガラス圢成性
金属酞化物が含たれおいる特蚱請求の範囲第項
に蚘茉の方法。  少くずも䞀皮類のガラス圢成性金属酞化物
が、セラミツク粉末を含む混合物の10重量より
少い量で含たれおいる特蚱請求の範囲第項に蚘
茉の方法。  窒化ケむ玠が、セラミツク粉末を含む混合物
の75重量たでの量で存圚する特蚱請求の範囲第
項〜第項のいずれか䞀぀に蚘茉の方法。  窒化ケむ玠が、セラミツク粉末を含む混合
物の〜75重量の量で存圚する特蚱請求の範囲
第項に蚘茉の方法。  生成物を冷华埌にガラス盞を倱透させるた
めに再加熱する特蚱請求の範囲第項〜第項
のいずれか䞀぀に蚘茉の方法。  再加熱枩床が1400℃より高くない特蚱請求
の範囲第項に蚘茉の方法。  ケむ玠、アルミニりム、アルミナ、及び倉
性甚カチオンの酞化物又は窒化物より成る粉末混
合物を窒化雰囲気䞋でアルミニりムの融点より䞋
の枩床で、この第䞀段階の窒化が実質䞊完了する
たで加熱するこずにより第䞀段階の窒化を行うこ
ず第䞀段階で窒化した混合物を窒化雰囲気を維
持しながらケむ玠の融点より䞋の枩床で、この第
二段階の窒化が実質䞊完了するたで加熱し、これ
によ぀お砕けやすい物質を䜜る第二段階の窒化を
行うこずこのようにしお埗た砕けやすい物質を
现砕するこず続いお、现かくした砕けやすい物
質を1650℃及び1900℃の間の枩床で非酞化雰囲気
を維持しながら焌結しお、匏 MxSiAl1216 ここで、はより倧きくなく、は倉性甚カ
チオンである。に埓うα盞眮換窒化ケむ玠を50
重量より倚く含む砕けやすいセラミツク物質、
又は䞊述のα盞眮換窒化ケむ玠ず匏 Si6-zAlzN8-zOz ここで、は零より倧きく、か぀1.5より倧き
くない。に埓うβ盞眮換窒化ケむ玠の混合物を
50重量より倚く含む砕けやすいセラミツク物質
を埗るこず䞊述の砕けやすいセラミツク物質か
ら圢成したセラミツク粉末をケむ玠の窒化物及
び又はアルミナず混合するこず、䜆しアルミナ
は混合物の10重量より倚くおはならない及び
この混合物を1700ないし1900℃の枩床で非酞化雰
囲気䞋で1900℃の堎合には少くずも10分間焌結し
お、(1)䞀般匏 Si6-zAlzN8-zOz ここで、は零より倧きく、か぀1.5より倧き
くない。を持぀β盞眮換窒化ケむ玠、及び䞊述
の倉性甚カチオンを含む少量の別の盞より䞻ず
しお成る高密床セラミツク物質、又は(2)䞊述のβ
盞眮換窒化ケむ玠、制埡された量の䞊述の匏 MxSiAl1216 に埓うα盞眮換窒化ケむ玠、及び䞊述の倉性甚カ
チオンを含む少量の別の盞より䞻ずしお成る高
密床セラミツク物質を䜜るこずの各段階より成
る、セラミツク物質の補造法。  倉性甚カチオンがむツトリりム、カルシり
ム、リチりム、マグネシりム又はセリりムである
特蚱請求の範囲第項に蚘茉の方法。  高密床セラミツク物質(2)が匏 MxSiAl1216 に埓うα盞眮換窒化ケむ玠を0.05乃至90重量含
む特蚱請求の範囲第項に蚘茉の方法。  セラミツク物質(1)又はセラミツク物質(2)が
0.05乃至20重量の別の盞を含む特蚱請求の範囲
第項に蚘茉の方法。  セラミツク粉末を含む混合物のアルミナ含
量が7.5重量以䞋である特蚱請求の範囲第
項に蚘茉の方法。  セラミツク粉末が、該セラミツク粉末を含
む混合物の乃至96.5重量である特蚱請求の範
囲第項に蚘茉の方法。  セラミツク粉末が、該セラミツク粉末を含
む混合物の30重量より少い量で存圚し、か぀こ
のセラミツク粉末を含む混合物䞭に、酞化むツト
リりム、酞化カルシりム、酞化リチりム、酞化セ
リりム、垌土類元玠酞化物及びランタニド系元玠
の酞化物、酞化マグネシりム、酞化マンガン及び
酞化鉄から遞ばれた少くずも䞀皮類のガラス圢成
性金属酞化物が含たれおいる特蚱請求の範囲第
項に蚘茉の方法。  少くずも䞀皮類のガラス圢成性金属酞化物
が、セラミツク粉末を含む混合物の10重量より
少い量で含たれおいる特蚱請求の範囲第項に
蚘茉の方法。  窒化ケむ玠が、セラミツク粉末を含む混合
物の75重量たでの量で存圚する特蚱請求の範囲
第項〜第項のいずれか䞀぀に蚘茉の方
法。  窒化ケむ玠が、セラミツク粉末を含む混合
物の〜75重量の量で存圚する特蚱請求の範囲
第項に蚘茉の方法。  生成物を冷华埌にガラス盞を倱透させるた
めに再加熱する特蚱請求の範囲第項〜第
項のいずれか䞀぀に蚘茉の方法。  再加熱枩床が1400℃より高くない特蚱請求
の範囲第項に蚘茉の方法。
[Claims] 1. A high proportion of α-phase substituted silicon nitride according to the formula Mx (Si, Al) 12 (O, N) 16 (where x is not greater than 2 and M is a modifying cation). mixing ceramic powder containing at least one silicon nitride and/or alumina, provided that the alumina does not exceed 10% by weight of the mixture; and heating the mixture at 1700°C to 1900°C.
sintered in a non -oxidizing atmosphere at a temperature of (2) a high-density ceramic material consisting primarily of β-phase substituted silicon nitride and a small amount of another phase containing the above-mentioned modifying cation M; or (2) the above-mentioned β
High density consisting mainly of phase-substituted silicon nitride, a controlled amount of α-phase substituted silicon nitride according to the formula Mx(Si,Al) 12 (O,N) 16 , and a small amount of another phase containing the above-mentioned modifying cation M. A method for producing a high-density ceramic material, comprising the steps of making a ceramic material. 2. The method according to claim 1, wherein the modifying cation is yttrium, calcium, lithium, magnesium, or cerium. 3. A method according to claim 1, wherein the dense ceramic material (2) contains from 0.05 to 90% by weight of alpha-phase substituted silicon nitride according to the formula Mx(Si,Al) 12 (O,N) 16 . 4 Ceramic substance (1) or ceramic substance (2)
A method according to claim 1, comprising from 0.05 to 20% by weight of another phase. 5. The method according to claim 1, wherein the alumina content of the mixture containing ceramic powder is 7.5% by weight or less. 6. The method of claim 1, wherein the ceramic powder is 5 to 96.5% by weight of the mixture containing the ceramic powder. 7 Ceramic powder is present in an amount less than 30% by weight of the mixture containing the ceramic powder, and the mixture containing the ceramic powder contains yttrium oxide, calcium oxide, lithium oxide, cerium oxide, rare earth element oxide and 2. The method of claim 1, further comprising at least one glass-forming metal oxide selected from oxides of lanthanide elements, magnesium oxide, manganese oxide, and iron oxide. 8. A method according to claim 7, wherein the at least one glass-forming metal oxide is present in an amount of less than 10% by weight of the mixture comprising ceramic powder. 9. A method according to any one of claims 1 to 8, wherein silicon nitride is present in an amount of up to 75% by weight of the mixture comprising ceramic powder. 10. The method of claim 9, wherein the silicon nitride is present in an amount of 5 to 75% by weight of the mixture containing the ceramic powder. 11. The method according to any one of claims 1 to 10, wherein the product is reheated after cooling to devitrify the glass phase. 12. The method of claim 11, wherein the reheating temperature is not higher than 1400°C. 13. Heating a powder mixture of silicon, aluminum, alumina, and an oxide or nitride of a modifying cation under a nitriding atmosphere at a temperature below the melting point of aluminum until this first stage nitridation is substantially complete. carrying out a first stage nitriding by heating the first stage nitrided mixture at a temperature below the melting point of silicon while maintaining a nitriding atmosphere until this second stage nitriding is substantially complete; carrying out a second stage of nitriding, thereby producing a friable material; comminution of the friable material thus obtained; and subsequent pulverization of the finely divided friable material at a temperature between 1650°C and 1900°C. Sintering while maintaining a non-oxidizing atmosphere results in α-phase substitution according to the formula Mx(Si,Al) 12 (O,N) 16 , where x is not greater than 2 and M is a modifying cation. silicon nitride 50
Friable ceramic material containing more than % by weight,
or a mixture of the α-phase substituted silicon nitride described above and the β-phase substituted silicon nitride according to the formula Si 6-z Al z N 8-z O z , where z is greater than zero and not greater than 1.5.
To obtain a friable ceramic material containing more than 50% by weight; mixing a ceramic powder formed from the aforementioned friable ceramic material with silicon nitride and/or alumina, provided that the alumina is more than 10% by weight of the mixture; and this mixture is sintered at a temperature between 1700 and 1900°C under a non-oxidizing atmosphere for at least 10 minutes at 1900°C to obtain (1) the general formula Si 6-z Al z N 8-z O z (where z is greater than zero and not greater than 1.5) and a small amount of another phase containing the above-mentioned modifying cation M; or ( 2) β mentioned above
phase-substituted silicon nitride, consisting primarily of a controlled amount of α-phase substituted silicon nitride according to the above-mentioned formula Mx(Si,Al) 12 (O,N) 16 , and a small amount of another phase containing the above-mentioned modifying cation M A method for manufacturing ceramic materials, comprising the steps of creating a high-density ceramic material. 14. The method according to claim 13, wherein the modifying cation is yttrium, calcium, lithium, magnesium or cerium. 15. A method according to claim 13, wherein the dense ceramic material (2) comprises from 0.05 to 90% by weight of alpha-phase substituted silicon nitride according to the formula Mx (Si, Al) 12 (O, N) 16 . 16 Ceramic substance (1) or ceramic substance (2)
14. A method according to claim 13, comprising from 0.05 to 20% by weight of another phase. 17 Claim 13, wherein the alumina content of the mixture containing ceramic powder is 7.5% by weight or less
The method described in section. 18. The method of claim 13, wherein the ceramic powder is 5 to 96.5% by weight of the mixture containing the ceramic powder. 19 Ceramic powder is present in an amount less than 30% by weight of the mixture containing the ceramic powder, and in the mixture containing the ceramic powder, yttrium oxide, calcium oxide, lithium oxide, cerium oxide, rare earth element oxide and Claim 1 contains at least one glass-forming metal oxide selected from oxides of lanthanide elements, magnesium oxide, manganese oxide, and iron oxide.
The method described in Section 3. 20. The method of claim 19, wherein the at least one glass-forming metal oxide is present in an amount less than 10% by weight of the mixture comprising ceramic powder. 21. A method according to any one of claims 13 to 19, wherein silicon nitride is present in an amount up to 75% by weight of the mixture comprising ceramic powder. 22. The method of claim 21, wherein silicon nitride is present in an amount of 5 to 75% by weight of the mixture containing ceramic powder. 23 Claims 13 to 22, in which the product is reheated after cooling to devitrify the glass phase.
The method described in any one of the paragraphs. 24. The method of claim 23, wherein the reheating temperature is not higher than 1400°C.
JP58029599A 1982-02-26 1983-02-25 Manufacture of ceramic matter and product Granted JPS58185484A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GB8206000 1982-02-26
GB8206000 1982-02-26
GB8224429 1982-08-25

Publications (2)

Publication Number Publication Date
JPS58185484A JPS58185484A (en) 1983-10-29
JPH0324429B2 true JPH0324429B2 (en) 1991-04-03

Family

ID=10528707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58029599A Granted JPS58185484A (en) 1982-02-26 1983-02-25 Manufacture of ceramic matter and product

Country Status (1)

Country Link
JP (1) JPS58185484A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59182276A (en) * 1983-03-31 1984-10-17 株匏䌚瀟東芝 Silicon nitride sintered body
JPS59199581A (en) * 1983-04-26 1984-11-12 䞉菱マテリアル株匏䌚瀟 Abrasion resistant sialon base ceramics
JPS59199580A (en) * 1983-04-26 1984-11-12 䞉菱マテリアル株匏䌚瀟 Abrasion resistant sialon base ceramics
JPH0774103B2 (en) * 1986-12-27 1995-08-09 日本碍子株匏䌚瀟 High hardness silicon nitride sintered body
JPS63319269A (en) * 1987-06-19 1988-12-27 Ube Ind Ltd Production of sialon based sintered body
JP4942062B2 (en) * 2003-09-22 2012-05-30 昭栄化孊工業株匏䌚瀟 Method for producing oxynitride
JP4967085B2 (en) * 2006-12-18 2012-07-04 立郎 冚田 Card type multi-color ballpoint pen
JPWO2014003150A1 (en) * 2012-06-27 2016-06-02 京セラ株匏䌚瀟 Sialon sintered body and wear-resistant parts using the same

Also Published As

Publication number Publication date
JPS58185484A (en) 1983-10-29

Similar Documents

Publication Publication Date Title
EP0087888B1 (en) Method of forming ceramic materials and ceramic products, and ceramic materials and ceramic products formed thereby
US4127416A (en) Method of producing a ceramic product
US6531423B1 (en) Liquid-phase-sintered SiC shaped bodies with improved fracture toughness and a high electric resistance
JP4106574B2 (en) Cubic boron nitride sintered body and method for producing the same
US4506021A (en) 0&#39;-Phase sialon ceramic product and a method of forming dense ceramic product
JPS5814390B2 (en) Manufacturing method of silicon carbide sintered body
JPH0812440A (en) Material containing boron nitride and its production
US4687655A (en) Process for the manufacture of shaped articles from reaction-bonded silicon nitride by nitridation under elevated nitrogen gas pressure
CN108610056B (en) Silicon nitride ceramic and preparation method thereof
JPS61111970A (en) Silicon nitride sintered body and manufacture
JPH0324429B2 (en)
US5118644A (en) Thermal shock-resistant silicon nitride sintered material
JPS62278167A (en) Polycrystal sintered body comprising high break tenacity andhardness silicon nitride
KR102555662B1 (en) Method for Preparing Silicon Nitride Sintered Body and The Silicon Nitride Sintered Body Prepared by The Same
JP4110338B2 (en) Cubic boron nitride sintered body
EP0150180B1 (en) Method of making densified si 3?n 4?/oxynitride composite with premixed silicon and oxygen carrying agents
JP3472802B2 (en) Manufacturing method of Sialon sintered body
JPH08225311A (en) Silicon nitride/silicon carbide complex powder, complex molding, their production and production of sintered compact of silicon nitride/silicon carbide complex
JP3979680B2 (en) Silicon nitride powder for silicon nitride sintered body, silicon nitride sintered body and method for producing the same
JPH11335175A (en) Cubic boron nitride sintered compact
JP2661743B2 (en) Method for producing silicon nitride ingot and silicon nitride powder
JPH11322310A (en) Cubic boron nitride polycrystalline abrasive grain and its production
Ault Raw materials for refractories: SiC and Si3N4
JPH10182237A (en) Silicon nitride-base composite sintered compact and its production
WO1996001236A1 (en) Sintered reaction-bonded silicon nitride components