JPH0222443A - High-strength sintered high-speed steel and its manufacture - Google Patents
High-strength sintered high-speed steel and its manufactureInfo
- Publication number
- JPH0222443A JPH0222443A JP63170975A JP17097588A JPH0222443A JP H0222443 A JPH0222443 A JP H0222443A JP 63170975 A JP63170975 A JP 63170975A JP 17097588 A JP17097588 A JP 17097588A JP H0222443 A JPH0222443 A JP H0222443A
- Authority
- JP
- Japan
- Prior art keywords
- carbide
- speed steel
- size
- powder
- strength
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910000997 High-speed steel Inorganic materials 0.000 title claims abstract description 46
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 16
- 239000000843 powder Substances 0.000 claims abstract description 20
- 150000001247 metal acetylides Chemical class 0.000 claims abstract description 19
- 238000005245 sintering Methods 0.000 claims abstract description 17
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 11
- 239000000203 mixture Substances 0.000 claims abstract description 9
- 238000002156 mixing Methods 0.000 claims abstract description 7
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 5
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 5
- 239000001257 hydrogen Substances 0.000 claims abstract description 5
- 239000011812 mixed powder Substances 0.000 claims abstract description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 4
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 4
- 238000010791 quenching Methods 0.000 claims description 4
- 230000000171 quenching effect Effects 0.000 claims description 4
- 238000000034 method Methods 0.000 abstract description 7
- 238000005204 segregation Methods 0.000 abstract description 4
- 238000010438 heat treatment Methods 0.000 abstract description 3
- 229910052742 iron Inorganic materials 0.000 abstract description 3
- 230000001105 regulatory effect Effects 0.000 abstract 3
- 230000002250 progressing effect Effects 0.000 abstract 1
- 229910045601 alloy Inorganic materials 0.000 description 6
- 239000000956 alloy Substances 0.000 description 6
- 230000007547 defect Effects 0.000 description 4
- 239000002245 particle Substances 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 238000005242 forging Methods 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 229910001208 Crucible steel Inorganic materials 0.000 description 1
- 241001436793 Meru Species 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 238000000498 ball milling Methods 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 239000011362 coarse particle Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 238000004663 powder metallurgy Methods 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000005496 tempering Methods 0.000 description 1
Landscapes
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
- Powder Metallurgy (AREA)
Abstract
Description
【発明の詳細な説明】
〈産業上の利用分野〉
この発明は、還元粉末と金属粉末および炭化物粉末を原
料とした、炭化物を富化した高強度焼結高速度鋼及びそ
の製造方法に関する。DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a carbide-enriched high-strength sintered high-speed steel using reduced powder, metal powder, and carbide powder as raw materials, and a method for producing the same.
〈従来の技術〉
高速度鋼を粉末冶金法によってつ(ると、溶製材に比べ
て、炭化物粒子が微細かつ均一となって靭性、鍛造性、
被研削性に優れるなど、多くの利点のあることが古くか
ら知られている。そして従来における焼結高速度鋼はア
トマイズ粉末を原料としているものがほとんどであり、
焼結後鍛造・圧延などを行っている。そのため、強度に
方向性があり、炭化物の増加にも限界があり、JIS組
成に対して数−t%しか増加できない、従って、最近で
は、焼結後HIP処理するだけで良い還元粉末および炭
化物と金属粉末を原料とした焼結高速度鋼が注目されて
きている。<Conventional technology> When high-speed steel is produced using powder metallurgy, the carbide particles become finer and more uniform than in cast steel, resulting in improved toughness, forgeability, and
It has long been known that it has many advantages, such as excellent grindability. Most conventional sintered high-speed steels are made from atomized powder,
After sintering, forging and rolling are performed. Therefore, there is a directionality in strength, and there is a limit to the increase in carbide, which can only be increased by a few t% relative to the JIS composition. Sintered high-speed steel made from metal powder is attracting attention.
還元粉末は所定組成の酸化物を強粉砕・混合の後、約1
000℃と比較的低温度下で還元・加炭して得られるの
で、炭化物が微細であるばかりでなく、成形性や焼結性
などが優れる。また、本発明者らによって強度支配因子
が明らかにされ、より高強度の焼結高速度鋼を安定して
作れるようになった(特願昭62−281149号参照
)。さらに、焼結後、HIP処理するだけで良く、鍛造
・圧延などの塑性加工が不要なため、炭化物や窒化物お
よび硼化物などを富化した焼結高速度鋼をつくることが
容易である。よってこの方面の需要が近年増加しつつあ
る。Reduced powder is produced by strongly crushing and mixing oxides with a predetermined composition.
Since it is obtained by reduction and carburization at a relatively low temperature of 000°C, it not only has fine carbides but also has excellent moldability and sinterability. Furthermore, the strength controlling factors have been clarified by the present inventors, and it has become possible to stably produce sintered high-speed steel with higher strength (see Japanese Patent Application No. 62-281149). Further, after sintering, only HIP treatment is required and no plastic working such as forging or rolling is required, so it is easy to produce sintered high-speed steel enriched with carbides, nitrides, borides, etc. Therefore, demand in this area has been increasing in recent years.
〈発明が解決しようとする課題〉
しかしなから、通常のアトマイズ粉末を原料とした焼結
高速度鋼においては、前述のとおり、その製法上合金の
塑性には自から限界があり、従ってその実用特性、特に
耐摩耗性にも限界がある。<Problem to be solved by the invention> However, as mentioned above, in the case of sintered high-speed steel made from ordinary atomized powder, there is a limit to the plasticity of the alloy due to its manufacturing method, and therefore its practical use is limited. There are also limits to its properties, especially its wear resistance.
一方、還元粉末を用る本発明者らの方法によれば、任意
の炭化物などを任意の量含ませた合金を製造することが
できるが、この炭化物を富化した焼結高速度鋼について
は、また強度支配因子が明らかにされておらず、その強
度面での信転性が必ずしも充分であるとは言えなかった
。On the other hand, according to the method of the present inventors using reduced powder, it is possible to produce an alloy containing any arbitrary amount of carbides, etc., but regarding sintered high-speed steel enriched with carbides, In addition, the factors governing strength have not been clarified, and reliability in terms of strength cannot necessarily be said to be sufficient.
そこで、本発明者達は、この炭化物などを富化した焼結
高速度鋼をより優れたものとするために引き続き、炭化
物を富化した焼結高速度鋼について鋭意研究を行ってき
た0例えば、焼結高速度鋼の抗折力試験(JISB41
04)を行い、破断した試験片について破壊の起源(原
因)について調査した結果、炭化物を富化した焼結高速
度鋼の強度は高速度鋼中に存在する炭化物の偏析した領
域の寸法によって支配されるという知見を得た。Therefore, in order to make this carbide-enriched sintered high-speed steel even better, the present inventors have continued to conduct intensive research on carbide-enriched sintered high-speed steel. , Transverse rupture strength test of sintered high speed steel (JISB41
04) and investigated the origin (cause) of fracture for fractured test pieces. As a result, it was found that the strength of carbide-enriched sintered high-speed steel is controlled by the size of the region in which carbides are segregated in the high-speed steel. I found out that it is possible.
つまり、破断した焼結高速度鋼の抗折破面を詳しく調べ
たところ、いずれの破面にも一個の破壊の起源が存在す
ることが確かめられ、そしてその部分についてさらに電
子顕微鏡によって拡大観察をしたところ、炭化物の偏析
した領域が破壊の起源として作用したことが確認できた
。In other words, by closely examining the fracture surfaces of fractured sintered high-speed steel, it was confirmed that a single origin of fracture existed on each fracture surface, and that part was further enlarged and observed using an electron microscope. As a result, it was confirmed that the area where carbides were segregated acted as the origin of fracture.
この偏析部分は焼結時、結合相である鉄が粒成長するた
めに、鉄の近くに存在する炭化物が、周囲に押しやられ
た結果として生ずる。This segregated portion is generated as a result of grain growth of iron, which is a binder phase, during sintering, and carbides existing near iron are pushed to the surroundings.
そしてこの炭化物の偏析部分は、他の破壊の起源となり
うる欠陥、すなわち、発明者らが焼結5KH57で明ら
かにした1μm以下のミクロボアが偏析した領域(平均
約10〜15μm)よりも大きい場合がほとんどであり
、このため炭化物を富化した焼結高速度鋼の強度につい
ては炭化物の偏析が多大な影響を与えるということがわ
かった。This carbide segregation area may be larger than other defects that can be the origin of fracture, namely the area where micropores of 1 μm or less are segregated (about 10 to 15 μm on average), which the inventors found in sintered 5KH57. Therefore, it was found that carbide segregation has a great influence on the strength of carbide-enriched sintered high-speed steel.
つまり、ボアやボアの偏析した部分の寸法や分散を適当
に制御したとしても、炭化物の偏析した領域の寸法が大
きく且つまたその個数が多いと、そこが破壊の起源とな
る。In other words, even if the dimensions and dispersion of the bore and the segregated portion of the bore are appropriately controlled, if the size and number of the region where carbide is segregated is large and the number thereof is large, this becomes the origin of fracture.
この発明はこのような知見に基づいてなされたものであ
り、上記炭化物の偏析した領域の寸法又は平均寸法など
を制御して高強度の炭化物富化焼結高速度鋼を得ようと
するものである。This invention was made based on such knowledge, and aims to obtain a high-strength carbide-enriched sintered high-speed steel by controlling the size or average size of the region where carbides are segregated. be.
く課題を解決するための手段〉
この発明に係る高強度焼結高速度鋼は、上記の目的を達
成するために、炭化物の偏析した領域の寸法が50μm
以下で、且つその領域の平均寸法が30μm以下である
。Means for Solving the Problems> In order to achieve the above object, the high-strength sintered high-speed steel according to the present invention has a region in which carbides are segregated with a size of 50 μm.
and the average dimension of the region is 30 μm or less.
また、別の前記高強度焼結高速度鋼は、炭化物の寸法が
10μm以下である。Further, in another of the above-mentioned high-strength sintered high-speed steels, the size of carbides is 10 μm or less.
また、別の前記高強度焼結高速度鋼は、炭化物の少なく
とも一種以上をJIS高速度鋼に対して5.0〜40−
t%多く含ませである。Further, the other high-strength sintered high-speed steel contains at least one type of carbide of 5.0 to 40 -
It should contain more than t%.
更に、前記高強度焼結高速度鋼の製造方法は、酸化物の
混合粉末を水素気流中で還元するに際して、還元後の鉄
粉末の大きさを最大10μm、平均3μm以下とする。Further, in the method for producing high-strength sintered high-speed steel, when the oxide mixed powder is reduced in a hydrogen stream, the size of the iron powder after reduction is set to a maximum of 10 μm, and an average size of 3 μm or less.
また、別の前記高強度焼結高速度鋼の製造方法は、還元
粉末と炭化物を混合するに際して、組成に含まれる炭素
量が、
C=0.19 +0.017 XW当fi+o、22×
Vfiにて与えられる量である。In addition, in another method for manufacturing the high-strength sintered high-speed steel, when the reduced powder and the carbide are mixed, the amount of carbon contained in the composition is C=0.19 +0.017 XW per fi+o, 22×
This is the amount given by Vfi.
また、別の前記高強度焼結高速度鋼の製造方法は、還元
粉末と炭化物を混合するに際して、炭化物の大きさを最
大10μm、平均3μm以下とする。In addition, in another method for manufacturing the high-strength sintered high-speed steel, when the reduced powder and the carbide are mixed, the size of the carbide is set to be 10 μm at maximum and 3 μm or less on average.
また、別の前記高強度焼結高速度鋼の製造方法は、焼結
温度が、真密度に対して95%まで焼結を進める温度で
ある。Further, in another method for manufacturing the high-strength sintered high-speed steel, the sintering temperature is a temperature at which sintering progresses to 95% of the true density.
また、別の前記高強度焼結高速度鋼の製造方法は、焼入
れ温度が、1170〜1230″Cである。Further, in another method for manufacturing the high-strength sintered high-speed steel, the quenching temperature is 1170 to 1230''C.
〈作 用〉
各炭化物の偏析した領域の寸法は最大50μm以下でな
ければならない。50μmより大きいと破壊の起源とし
て作用する・確率が高くなり結果として、著しく低強度
で破壊し易い状態となり、溶製高速度鋼と同等な300
kgf/nu++”以上の抗折力を得ることができな
い。<Function> The size of each carbide segregated region must be 50 μm or less at maximum. If the diameter is larger than 50 μm, it will act as the origin of fracture, and the probability will be high, resulting in a state where the strength is extremely low and easy to fracture.
It is not possible to obtain a transverse rupture strength of more than "kgf/nu++".
また、各炭化物の偏析した領域の平均寸法が、30μm
以下でなければならない、30μmより大きいと、前記
寸法と同じくより低強度で破壊する確率が高(なる状態
となって、必要な抗折々を得られない。Moreover, the average size of the region where each carbide is segregated is 30 μm.
If it is larger than 30 μm, the strength will be lower and the probability of breaking will be high (similar to the above dimensions), and the required resistance will not be obtained.
また、炭化物の寸法を10μm以下にすると、炭化物の
偏析した領域の寸法が50μm以下に、またその平均寸
法が30μm以下になる確率が高くなる。Further, when the size of the carbide is set to 10 μm or less, there is a high probability that the size of the region where the carbide is segregated will be 50 μm or less, and the average size thereof will be 30 μm or less.
各炭化物の偏析した領域の寸法および平均寸法を上記の
如くするための制御手段としては、以下に示す5通りの
手段が主に講じられる。The following five methods are mainly used to control the dimensions and average dimensions of the regions in which each carbide is segregated as described above.
■ を め る l酸化物
の混合粉末を約1000℃の水素気流中で還元するに際
して、還元終了後の鉄粉末の大きさを最大10μm1平
均3μm以下とする。なお、鉄粉末の大きさが小さいほ
ど炭化物の偏析した部分の寸法は小さくなる。■ When reducing the mixed powder of l oxide in a hydrogen stream at about 1000°C, the size of the iron powder after reduction is 10 μm at maximum and 3 μm or less on average. Note that the smaller the size of the iron powder, the smaller the size of the portion where the carbide is segregated.
■ ・ め る 2
還元粉末と各炭化物を混合するに際して、組成に含まれ
る炭素量を、多すぎないようにする。適当なCは、溶解
高速度鋼で用いられている、所謂「佐藤の経験式」とい
われる、
C=0.19+0.017 X (W当i) +0.2
2X (Vll)が与えるCである。なお、これより少
ないと焼結性が不安定となって(ミクロボアが増加して
)抗折力が低下したり、充分な硬さが得られなくなる。■ ・Meru 2
When mixing the reduced powder and each carbide, the amount of carbon contained in the composition should not be too large. An appropriate C is the so-called "Sato's empirical formula" used in high-speed melting steel, C = 0.19 + 0.017 X (W per i) + 0.2
2X (Vll) is C given. If the amount is less than this, the sinterability becomes unstable (the number of micropores increases), the transverse rupture strength decreases, and sufficient hardness cannot be obtained.
多すぎると炭化物の寸法が大きくなり結果として炭化物
の偏析した領域の寸法も大きくなる。If it is too large, the size of the carbide becomes large, and as a result, the size of the region where the carbide is segregated also becomes large.
■ 2を・め8 る 、 3
還元粉末と各炭化物を混合するに際して、各炭化物の大
きさを予め最大10μm、平均3μm以下とする。すな
わち、10μmより大きいと、混合後にも粗粒分が残る
確率が大となって、結果として焼結後の炭化物が大きく
なり、炭化物の偏析した部分の寸法も大となる。(2) 3. When mixing the reduced powder and each carbide, the size of each carbide is set in advance to a maximum size of 10 μm and an average size of 3 μm or less. That is, if it is larger than 10 μm, there is a high probability that coarse particles will remain even after mixing, and as a result, the carbide after sintering will become large, and the size of the portion where the carbide is segregated will also become large.
■ 茨桔A!プエ李 る−
焼結温度は、液相を生じるに充分な温度で、且つ最も低
い温度とする。すなわち、低すぎれば連続するボアを残
存させ、HIP処理を行っても緻密な合金を得られない
か、または破壊の起源となるボアを多数生じることとな
る。また、温度が高すぎると、炭化物および旧T相の粒
成長を生じてしまい結果として破壊の起源となる炭化物
の偏析した領域の寸法も大きくしてしまう。本発明者ら
は適性なる焼結温度の目安として、真密度に対して95
%まで焼結を進める温度が良い事を見い出した。なお、
保持時間は必要且つ最低時間とする。■ Ibaraki A! The sintering temperature is the lowest temperature that is sufficient to generate a liquid phase. That is, if it is too low, continuous bores will remain and a dense alloy will not be obtained even if the HIP treatment is performed, or a large number of bores will be generated which will cause fracture. Furthermore, if the temperature is too high, grain growth of carbides and prior T phase occurs, resulting in an increase in the size of the region where carbides are segregated, which is the origin of fracture. The present inventors have determined that the true density is 95% as a guideline for the appropriate sintering temperature.
It has been found that the temperature at which sintering can proceed up to % is good. In addition,
The holding time shall be the necessary and minimum time.
■ 几 ゞ Pν れ
る熱処理、特に焼入れ温度(保持時間は一般に考えられ
る最低時間とする)はなるべく低温が望ましい、すなわ
ち、高温となればなるほど、炭化物が粒成長し、結果と
して破壊の起源として作用する炭化物の偏析した領域の
寸法も大きくなるためである。しかし、あまり低温とす
れば工具としての実用硬さが得られないので、1170
℃以上で1230℃以下が望ましい温度である。■ 几ゞPν れ
It is desirable that the heat treatment, especially the quenching temperature (holding time is generally the lowest possible time), be as low as possible.In other words, the higher the temperature, the more grains of carbides will grow, and as a result, the segregation of carbides, which can act as a source of fracture, will increase. This is because the size of the area also increases. However, if the temperature is too low, practical hardness as a tool cannot be obtained, so 1170
A desirable temperature is between 1230°C and 1230°C.
なお、上記の炭化物を富化した焼結高速度鋼は元の高速
度鋼に対して5.0〜40wt%多い炭化物を含む。炭
化物とは、WC,V C,M 02 C,TiC,Ta
C,ZrC,f(fc、NbCである。Note that the carbide-enriched sintered high-speed steel mentioned above contains 5.0 to 40 wt% more carbides than the original high-speed steel. Carbides include WC, V C, M 02 C, TiC, Ta
C, ZrC, f (fc, NbC.
これら、炭化物の量を5.0〜40wt%としたのは5
、Owt%より少ないと富化することによって得る利点
(耐摩耗性)が少ないためであり、40−L%より多い
と、研削、切削加工が困難となるためである。The amount of carbide was set to 5.0 to 40 wt% by 5.
This is because if the content is less than 40-L%, the benefits obtained by enrichment (wear resistance) will be small, and if it is more than 40-L%, grinding and cutting will become difficult.
く実 施 例〉
第」」(施1[
原料粉末としては5KH57に以下の表1のごとき組成
を有する■を富化した(Vffiを+5.OwL%、+
10.0wt%、 +15.0wt%)合金を2種類づ
つ計6種類用意した。5KH57に各Vlを富化した焼
結高速度鋼同士の違いは、炭化物の大きさが違うだけで
ある。そして上記のごとき破壊の起源の寸法制御を行っ
た場合と行わない場合とに分けて、■富化の焼結高速度
鋼の製造を行った。Example 1 (Example 1) As a raw material powder, 5KH57 was enriched with ■ having the composition shown in Table 1 below (Vffi +5.OwL%, +
10.0wt%, +15.0wt%) alloys, two types each, were prepared for a total of six types. The only difference between the sintered high-speed steels enriched with Vl in 5KH57 is the size of the carbides. Then, (1) enriched sintered high-speed steel was produced with and without dimensional control of the origin of fracture as described above.
以下砂壊の起源の寸法制御(欠陥制御)を行った場合の
製造方法を詳細に説明する。The manufacturing method when the dimensions of the origin of sand fractures (defect control) are controlled will be explained in detail below.
まず、5KH57の原料粉末に富化する■としてvc
(Cfftは16.92 wt%)を6.2〜18.9
wt%と不足するCとを添加して次に72hrの湿式ボ
ールミルを行い、乾燥、成形の後、1180℃と120
0℃で真空焼結(5X 10−”Torr)を行った後
、1150”cでlhr (1500気圧、Ar雰囲気
)のHIP処理を行った。その後これを1170゛Cで
5分保持して油中へ焼入れを行った。First, as ■ to enrich the raw material powder of 5KH57, vc
(Cfft is 16.92 wt%) from 6.2 to 18.9
After adding wt% and the insufficient C, wet ball milling was performed for 72 hours, and after drying and molding, it was heated at 1180°C and 120°C.
After vacuum sintering (5×10-” Torr) at 0° C., HIP treatment was performed at 1150” C and lhr (1500 atm, Ar atmosphere). Thereafter, this was held at 1170°C for 5 minutes and quenched in oil.
さらに560℃・1.5hrの焼戻しを3回繰り返し行
い24X8X4mm3のJIS試験片を得た。Further, tempering was repeated three times at 560°C for 1.5 hours to obtain a JIS test piece of 24 x 8 x 4 mm.
ここで、破壊の起源の寸法制御としては、富化するため
添加に用いたVCについて予備粉砕行って市販品より微
細且つ均粒としたこと、焼結温度をより低くしたことが
ある。Here, the dimensions of the origin of the fracture were controlled by pre-pulverizing the VC used for enrichment to make the particles finer and more uniform than commercially available products, and by lowering the sintering temperature.
そして得られた炭化物を富化した焼結高速度鋼について
調べたところ、炭化物の偏析した領域の寸法は50μm
以下で、その平均寸法は以下の通りであった。When we investigated the resulting carbide-enriched sintered high-speed steel, we found that the size of the carbide-segregated region was 50 μm.
Below, the average dimensions were as follows:
尚、表中、一種有りとは、焼結温度は1180℃とした
場合であって、2種有りとは焼結温度を1180℃とし
、更に添加炭化物を予備粉砕して微細且つ均粒とした炭
化物を使用した場合である。In addition, in the table, "with one type" means that the sintering temperature is 1180 °C, and with two kinds means that the sintering temperature is 1180 °C, and the added carbide is pre-pulverized to make fine and uniform particles. This is the case when carbide is used.
蓮m虹A
SKH組成の還元粉末にWCを添加することによりWを
富化した合金を第1実施例と同様の欠陥制御をする製造
方法で調整し以下の結果を得た。A W-enriched alloy was prepared by adding WC to a reduced powder having a SKH composition using a manufacturing method that controlled defects in the same manner as in the first example, and the following results were obtained.
なお、焼入れ温度は1200℃である。Note that the quenching temperature is 1200°C.
表 2
なお、いずれの合金も所定のミクロボアの制御を行って
いる。5KH57のみでの抵抗力は480〜490kg
f/+y+n+2である。Table 2 Note that in both alloys, predetermined microbore control is performed. Resistance with 5KH57 alone is 480-490kg
f/+y+n+2.
以上の様に、欠陥制御を行った場合の方が、抗折力に勝
っていることがわかった。As described above, it was found that transverse rupture strength was better when defect control was performed.
〈効 果〉
この発明に係る炭化物を富化した高強度の焼結高速度鋼
は、以上説明したごとき内容のものなので、強度(抗折
力)が高く、しかも普通の高速度鋼より硬さが高い、従
って、高速度鋼としての信頼性が高く、工具や部品とし
て用いるのに最適である。<Effects> The carbide-enriched high-strength sintered high-speed steel according to the present invention has the content as explained above, so it has high strength (transverse rupture strength) and is also harder than ordinary high-speed steel. Therefore, it is highly reliable as a high-speed steel and is ideal for use in tools and parts.
Claims (8)
且つその領域の平均寸法が30μm以下であることを特
徴とする高強度焼結高速度鋼。(1) The size of the region where carbides are segregated is 50 μm or less,
A high-strength sintered high-speed steel characterized in that the average dimension of the region is 30 μm or less.
囲1記載の高強度焼結高速度鋼。(2) The high-strength sintered high-speed steel according to claim 1, wherein the carbide size is 10 μm or less.
対して5.0〜40wt%多く含ませたことを特徴とす
る特許請求の範囲1又は2記載の高強度焼結高速度鋼。(3) The high-strength sintered high-speed steel according to claim 1 or 2, which contains at least one type of carbide in an amount of 5.0 to 40 wt% more than the JIS high-speed steel.
て、還元後の鉄粉末の大きさを最大10μm、平均3μ
m以下とする特許請求の範囲1記載の高強度焼結高速度
鋼の製造方法。(4) When reducing the oxide mixed powder in a hydrogen stream, the size of the iron powder after reduction is 10 μm at maximum and 3 μm on average.
2. The method for producing high-strength sintered high-speed steel according to claim 1, wherein the sintered high-speed steel is less than or equal to m.
まれる炭素量が、 C=0.19+0.017×W当量+0.22×V量に
て与えられる量である特許請求の範囲1記載の高強度焼
結高速度鋼の製造方法。(5) When mixing the reduced powder and the carbide, the amount of carbon contained in the composition is an amount given by C = 0.19 + 0.017 x W equivalent + 0.22 x V amount. A method for producing high-strength sintered high-speed steel.
大きさを最大10μm、平均3μm以下とする特許請求
の範囲1記載の高強度焼結高速度鋼の製造方法。(6) The method for producing high-strength sintered high-speed steel according to claim 1, wherein when mixing the reduced powder and carbide, the size of the carbide is 10 μm at maximum and 3 μm or less on average.
める温度である特許請求の範囲1記載の高強度焼結高速
度鋼の製造方法。(7) The method for producing high-strength sintered high-speed steel according to claim 1, wherein the sintering temperature is a temperature at which sintering progresses to 95% of the true density.
請求の範囲1記載の高強度焼結高速度鋼の製造方法。(8) The method for producing high-strength sintered high-speed steel according to claim 1, wherein the quenching temperature is 1170 to 1230°C.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63170975A JP2735570B2 (en) | 1988-07-11 | 1988-07-11 | High-strength sintered high-speed steel and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63170975A JP2735570B2 (en) | 1988-07-11 | 1988-07-11 | High-strength sintered high-speed steel and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0222443A true JPH0222443A (en) | 1990-01-25 |
JP2735570B2 JP2735570B2 (en) | 1998-04-02 |
Family
ID=15914822
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63170975A Expired - Lifetime JP2735570B2 (en) | 1988-07-11 | 1988-07-11 | High-strength sintered high-speed steel and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2735570B2 (en) |
-
1988
- 1988-07-11 JP JP63170975A patent/JP2735570B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2735570B2 (en) | 1998-04-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3369891A (en) | Heat-treatable nickel-containing refractory carbide tool steel | |
EP0559901B1 (en) | Hard alloy and production thereof | |
SE452634B (en) | SET TO MAKE A SINTRATE SPEED QUALITY WITH HIGH VANAD CONTENT | |
WO1992014853A1 (en) | Tool steel with high thermal fatigue resistance | |
JP4185653B2 (en) | Iron-graphite composite powder and sintered body thereof | |
CN110387496B (en) | WC-TiC-Co based gradient hard alloy without TiC phase on surface layer and preparation method thereof | |
JP4703005B2 (en) | Steel, use of the steel, product made of the steel and method for producing the steel | |
JPH06330219A (en) | Cermet sintered body | |
JP2000219931A (en) | Cemented carbide and its production | |
US4705565A (en) | High speed steel sintering powder made from reclaimed grinding sludge and objects sintered therefrom | |
CN102159743A (en) | Carbide body and method for production thereof | |
JPH0222443A (en) | High-strength sintered high-speed steel and its manufacture | |
Zhang | Carbon control in PIM tool steel | |
EP1097769A1 (en) | Method of manufacturing a preform or product from dispersion strengthened silver based alloys | |
WO2020172744A1 (en) | Metallic iron powder | |
JPH01127647A (en) | High strength and high speed sintered steel | |
JPS62287041A (en) | Production of high-alloy steel sintered material | |
JPH10324943A (en) | Ultra-fine cemented carbide, and its manufacture | |
JP2015127455A (en) | Powder high speed tool steel | |
US2093845A (en) | Method of producing hard compositions of matter | |
KR102323170B1 (en) | Manufacturing method of high-speed tool steel for powder metallurgy | |
JP2004292865A (en) | Hard metal superior in fracture resistance and manufacturing method therefor | |
JPH05339659A (en) | Production of sintered hard alloy having sheet-like tungsten carbide and coated sintered hard alloy | |
JP2710937B2 (en) | Cermet alloy | |
KR100299463B1 (en) | A method of manufacturing cold work tool steel with superior toughness and wear resistance |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: R3D03 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080109 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090109 Year of fee payment: 11 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090109 Year of fee payment: 11 |