JPH02224249A - Manufacture of silicon substrate - Google Patents

Manufacture of silicon substrate

Info

Publication number
JPH02224249A
JPH02224249A JP31012989A JP31012989A JPH02224249A JP H02224249 A JPH02224249 A JP H02224249A JP 31012989 A JP31012989 A JP 31012989A JP 31012989 A JP31012989 A JP 31012989A JP H02224249 A JPH02224249 A JP H02224249A
Authority
JP
Japan
Prior art keywords
heat treatment
substrate
precipitation
concentration
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31012989A
Other languages
Japanese (ja)
Inventor
Fumitoshi Toyokawa
豊川 文敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP31012989A priority Critical patent/JPH02224249A/en
Publication of JPH02224249A publication Critical patent/JPH02224249A/en
Pending legal-status Critical Current

Links

Landscapes

  • Element Separation (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To suppress crystal defects resulting from precipitation of Oi (interlattice oxygen) in element formation area by performing solution heat treatment by two-stage treatment enbloc consisting of first heat treatment at high temperature and second heat treatment at a temperature lower than the first heat treatment succeeding to this. CONSTITUTION:To an Si substrate which is cut out from Si single crystals, heat treatment is applied for a certain time at 1100 deg.C or more as first heat treatment, successively heat treatment is applied for a certain time within the temperature range of not more than the temperature of the first heat treatment, and not less than 650 deg.C as second heat treatment. As a result, it is known that for the change of Oi concentration distribution toward the inside from the surface of the Si substrate, Oi concentration at the surface of the Si substrate lowers more and low concentration progress of Oi advances more inside on the side after the second heat treatment shown by a solid line in the figure than that after the first heat treatment shown by a broken line. Hereby, Oi precipitation in an element formation area can be prevented, and generation of crystal defects resulting from that can be suppressed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体装置の製造に用いられるSi基板の製
造方法に関し、特に、ゲッタリグ能力の強化されたSi
基板を製造するための前熱処理に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a Si substrate used for manufacturing semiconductor devices, and in particular, to a method for manufacturing a Si substrate with enhanced gettering ability.
The present invention relates to pre-heat treatment for manufacturing a substrate.

〔従来の技術〕[Conventional technology]

今日、大規模集積回路等の半導体装置は、極めて高い清
浄度のもとで製造されているが、極微量の汚染不純物(
例えば、鉄、ニッケル、銅等の重金属)がSi基板に取
り込まれ、これが種々の結晶欠陥を誘起し、あるいは、
深い準位を形成して、製造される半導体装置の電気特性
(薄い酸化膜の絶縁耐圧、p−n接合のリーク等)を劣
化させたり、製品歩留り低下の原因となる事が知られて
いる。
Today, semiconductor devices such as large-scale integrated circuits are manufactured under extremely high cleanliness conditions, but extremely small amounts of contaminant impurities (
For example, heavy metals such as iron, nickel, copper, etc.) are incorporated into the Si substrate, which induces various crystal defects, or
It is known that deep levels are formed, which deteriorates the electrical characteristics of manufactured semiconductor devices (dielectric breakdown voltage of thin oxide films, leakage of p-n junctions, etc.) and causes a decrease in product yield. .

この様な汚染不純物を素子形成領域から除去する技術と
してゲッタリング技術があり、そのひとつとしてイント
リンシック・ゲッタリンク(Intri−nsic G
eettering以下IGと記す)が広く知られてい
る。IGは、LSI製造に広く用いられているチョクラ
ルスキー法(Czochralski Method)
にょるSi単結晶から製造されたSi基板に過飽和状態
で含有される1〜2×10目atoms/cni程度の
格子間酸素(Interstitial Oxygen
以下Oiと記す)が、析出核を中心に析出する事で生じ
る結晶欠陥に汚染不純物を捕獲・固着する技術である。
Gettering technology is a technology for removing such contaminant impurities from the element formation region, and one of them is intrinsic getterlink (intrinsic getterlink).
eettering (hereinafter referred to as IG) is widely known. IG is the Czochralski Method, which is widely used in LSI manufacturing.
Interstitial oxygen (Interstitial Oxygen) of about 1 to 2 × 10 atoms/cni is contained in a supersaturated state in a Si substrate manufactured from a single Si crystal.
Oi (hereinafter referred to as Oi) is a technology that captures and fixes contaminant impurities in crystal defects caused by precipitation centered on precipitation nuclei.

なお、本明細書に記載されているOi濃度はAS T 
M (American 5tandards for
 Testing andMeasurement)旧
規格の赤外換算係数4.8X10”atoms/ cm
−’を用い赤外分光法で求められる値であり、赤外分光
法以外の分析法で測定された値については全て赤外分光
法で求められる値に換算されているものとする。
Note that the Oi concentration described in this specification is AST
M (American 5 standards for
Testing and Measurement) Old standard infrared conversion coefficient 4.8X10”atoms/cm
-' is the value determined by infrared spectroscopy, and all values measured by analysis methods other than infrared spectroscopy have been converted to values determined by infrared spectroscopy.

通常、IGを利用する場合、素子形成領域でOi析出が
生ずるとデバイス特性の劣化、製品歩留りの低下を招く
恐れがある。従って、1100℃程度の一定温度でSi
基板表面のOiを外方拡散させ、かつ、Si単結晶成長
時に結晶内に形成される潜在析出核を縮小あるいは消滅
させる熱処理が施される。
Normally, when IG is used, if Oi precipitation occurs in the element formation region, there is a risk of deterioration of device characteristics and a decrease in product yield. Therefore, at a constant temperature of about 1100°C, Si
Heat treatment is performed to outward diffuse Oi on the substrate surface and to reduce or eliminate latent precipitation nuclei formed within the crystal during the growth of the Si single crystal.

これは一般に溶体化処理と呼ばれるが、全ての潜在析出
核が完全に消滅する事はない。続いて、この状態ではO
i析出核が縮小しているため、後の素子製造工程の熱処
理中のOlの析出速度が著しく低下し、充分なOi析出
が得られずゲッタリング効果が減少するため、550℃
〜950℃の比較的低温の熱処理でOi析出核を再形成
もしくは成長させ、Oi析出を促がす処理が施される。
This is generally called solution treatment, but it does not completely eliminate all latent precipitation nuclei. Next, in this state O
Because the i-precipitation nuclei have shrunk, the precipitation rate of Ol during the heat treatment in the subsequent element manufacturing process is significantly reduced, and sufficient Oi precipitation is not obtained and the gettering effect is reduced.
Treatment is performed to promote Oi precipitation by reforming or growing Oi precipitation nuclei through heat treatment at a relatively low temperature of ~950°C.

これは、一般に核形成処理と呼ばれるが、Si基板表面
のOlは外方拡散されているため、素子形成領域でOi
析出核が形成される確率は極めて低い。さらに、100
0℃〜1150℃程度の熱処理でOiを析出させ、後の
素子製造工程でのOi析出を安定化させる熱処理が行わ
れる場合もある。
This is generally called a nucleation process, but since Ol on the Si substrate surface is diffused outward, Oi in the element formation region
The probability that precipitation nuclei will be formed is extremely low. Furthermore, 100
In some cases, heat treatment is performed to precipitate Oi by heat treatment at about 0° C. to 1150° C. and to stabilize Oi precipitation in the subsequent element manufacturing process.

以上の様な熱処理は、Japanese Journa
l of AppliedPhysics、Voi、2
3.No、](1984)pp、L9〜Ll 1あるい
は、特公平1−19265等で提案されており、素子形
成後のSi基板表面にはデヌーデット・ゾーン(Den
uded Zone以下、DZと記す)と呼ばれる表面
無欠陥層が形成され、Si基板内部には高密度の結晶欠
陥が形成される。
The above heat treatment is performed by Japanese Journa.
l of Applied Physics, Voi, 2
3. No,] (1984) pp, L9-Ll 1 or Japanese Patent Publication No. 1-19265, etc., and a denuded zone (Denuded zone) is formed on the surface of the Si substrate after the device is formed.
A surface defect-free layer called a defect-free zone (hereinafter referred to as DZ) is formed, and a high density of crystal defects is formed inside the Si substrate.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した従来の製造方法によるDZIG基板では、高温
の溶体化処理の後、低温の核形成処理が施される事から
、Si基板表面、即ち、素子形成領域において、溶体化
処理時に縮小はしたが、消滅せずに残存している潜在析
出核が、核形成処理時に大きく成長し、後の工程におい
て、この潜在析出核にOiが析出して、素子形成領域に
もO1析出起因の結晶欠陥が誘起されやすいという欠点
がある。
In the DZIG substrate manufactured by the conventional manufacturing method described above, a low-temperature nucleation treatment is performed after a high-temperature solution treatment. , the latent precipitation nuclei that remain without disappearing grow significantly during the nucleation process, and in the later process, Oi is precipitated on these latent precipitation nuclei, and crystal defects due to O1 precipitation are also generated in the element formation region. It has the disadvantage of being easily induced.

例えば、1180℃ 4時間の溶体化処理を行った場合
、Si基板のO1濃度は外方拡散により極表面では極め
て低濃度になるが、バルク側から常にOlの供給がある
ため、表面からの深さ5μmの位置ではOi濃度は5〜
6 X 10 ”atoms/cn?程度となり、深さ
方向に向ってOi濃度は急激に増加する(第1図参照)
。素子製造工程ではOi析出が進行しやすい1000℃
前後の熱処理が多用されるが、1000℃でのOiのS
iへの固溶限が3〜4 X I O”atoms/cn
?である事から、保さ5μm付近の領域では、析出速度
は遅いもののOi析出による結晶欠陥が発生する。一般
に今日の大規模集積回路では、素子形成領域の保さは表
面から2〜3μm程度と見積られるが、仮に、素子形成
領域より深い保さ5μmの位置にOi析出物が形成され
たとしても、O1析出物からは転位が発生し、素子製造
工程中に容易に素子領域に達し、素子の特性劣化をもた
らす。また、近年、素子分離やメモリ素子の容量部の形
成に用いられるトレンチ構造は、Si基板上に数μm〜
士数戸数μm程度を形成し、素子の構成要素とするもの
で、素子形成領域は保くなる傾向にあり、上述のSi基
板浅部に発生するOi析出起因結晶欠陥の影響を直接的
に受ける。
For example, when solution treatment is performed at 1180°C for 4 hours, the O1 concentration of the Si substrate becomes extremely low at the extreme surface due to outward diffusion, but since O1 is constantly supplied from the bulk side, the O1 concentration from the surface becomes extremely low. At the position of 5 μm, the Oi concentration is 5~
The Oi concentration increases rapidly in the depth direction (see Figure 1).
. In the element manufacturing process, Oi precipitation tends to proceed at 1000°C.
Heat treatment before and after is often used, but Oi S at 1000℃
The solid solubility limit in i is 3 to 4 X I O”atoms/cn
? Therefore, in the region around 5 μm, crystal defects occur due to Oi precipitation, although the precipitation rate is slow. Generally, in today's large-scale integrated circuits, the preservation of the element formation region is estimated to be about 2 to 3 μm from the surface, but even if Oi precipitates were formed at a position 5 μm deeper than the element formation region, Dislocations occur from the O1 precipitates and easily reach the device region during the device manufacturing process, resulting in deterioration of device characteristics. In addition, in recent years, trench structures used for element isolation and the formation of capacitive parts of memory elements have been formed on Si substrates from several μm to
It is formed with a thickness of about a few micrometers and is used as a component of the device, and the device formation area tends to be maintained and is directly affected by the crystal defects caused by Oi precipitation that occur in the shallow part of the Si substrate. .

仮に、溶体化処理の温度を低温化すれば、Oi固溶限は
低下し素子形成領域のOiは低濃度化する傾向を持つが
、Oiの拡散速度が低下し極めて長時間の熱処理が必要
となる上、1100℃以下の温度では溶体化(析出核の
縮小)と同時に、サイズの大きい潜在析出核に対する○
i析出も同時に進行し素子形成領域の結晶欠陥発生の原
因となる。
If the solution treatment temperature were lowered, the Oi solid solubility limit would decrease and the concentration of Oi in the element formation region would tend to decrease, but the diffusion rate of Oi would decrease and an extremely long heat treatment would be required. Moreover, at temperatures below 1100°C, at the same time as solutionization (reduction of precipitated nuclei), large-sized latent precipitated nuclei are
i-precipitation also progresses at the same time, causing crystal defects in the element formation region.

溶体化温度を高温化すれば、Oiの拡散速度は高まるが
、Oi固溶限も高濃度化し、素子形成領域のOi低濃度
化には不利である。
If the solution temperature is increased, the diffusion rate of Oi will increase, but the solid solubility limit of Oi will also increase, which is disadvantageous for reducing the Oi concentration in the element forming region.

〔課題を解決するための手段〕[Means to solve the problem]

本発明のSi基板の製造方法は、C2結晶より切り出さ
れたSi基板に対し、第1の熱処理として1100℃以
上で所望の時間熱処理を施し、続いて第2の熱処理とし
て第1の熱処理より低温でかつ950℃以上の温度範囲
で所望の時間熱処理を施す事を特徴としている。
In the method for manufacturing a Si substrate of the present invention, a first heat treatment is performed on a Si substrate cut out from a C2 crystal at a temperature of 1100°C or higher for a desired time, and then a second heat treatment is performed at a lower temperature than the first heat treatment. It is characterized by performing heat treatment at a temperature range of 950° C. or higher for a desired period of time.

また、熱処理されるSi基板のO1濃度が16.OX 
101Tatoms/−以上であれば、第1の熱処理及
び第2の熱処理のみで充分なりZと残存する縮小した析
出核に対するOi析出で内部の結晶欠陥を形成できるが
、16. OX 10 ”atoms/cff1未満の
場合には、第2の熱処理の後に950℃未満の温度で充
分な濃度でOiが残留しているSi基板内部に析出核を
再形成あるいは成長させる熱処理を追加する事が望まし
い。これは、Oi濃度が16.OX 10 ”atom
s/crd未満のSi基板では潜在析出核の密度及びサ
イズが小さく、第1.第2の熱処理だけでは、後の素子
製造工程で充分なO1析出が得られず、ゲッタリング効
果が低下する場合があるためである。第3の熱処理は、
O1濃度が16.Ox l Olyatoms/ly8
以上の場合にも適用可能であるが、後の素子製造工程で
Oi析出が過度に進行し、Si基板に塑性変形が生じな
いよう第1〜第3の熱処理条件を適宜調整する必要があ
る。
Further, the O1 concentration of the Si substrate to be heat treated is 16. OX
If it is 101 Tatoms/- or more, only the first heat treatment and the second heat treatment are sufficient, and internal crystal defects can be formed by Oi precipitation on Z and the remaining reduced precipitation nuclei, but 16. If OX is less than 10"atoms/cff1, heat treatment is added after the second heat treatment to re-form or grow precipitation nuclei inside the Si substrate where Oi remains at a sufficient concentration at a temperature of less than 950°C. It is desirable that the Oi concentration is 16.OX 10” atom
In a Si substrate with a temperature lower than s/crd, the density and size of latent precipitation nuclei are small, and the first. This is because if only the second heat treatment is performed, sufficient O1 precipitation may not be obtained in the subsequent element manufacturing process, and the gettering effect may deteriorate. The third heat treatment is
O1 concentration is 16. Ox l Olyatoms/ly8
Although it is applicable to the above case, it is necessary to adjust the first to third heat treatment conditions as appropriate so that Oi precipitation does not proceed excessively in the subsequent element manufacturing process and plastic deformation does not occur in the Si substrate.

なお、本発明が適用できるOi濃度の上限は19、5 
X 10 ”atoms/cnt以下であり、これを越
えるOi濃度では、第1の熱処理の時点でOiの異常析
出が生じ、DZ幅が狭くなりSi基板表面にもOi析出
による結晶欠陥が発生する。
Note that the upper limit of Oi concentration to which the present invention can be applied is 19.5
X 10 ''atoms/cnt or less, and if the Oi concentration exceeds this, abnormal precipitation of Oi occurs at the time of the first heat treatment, the DZ width becomes narrow, and crystal defects due to Oi precipitation also occur on the Si substrate surface.

第1図は本発明におけるSi基板の表面から内部に向っ
てのOi濃度分布の変化を概念的に示したものである。
FIG. 1 conceptually shows the change in Oi concentration distribution from the surface of the Si substrate toward the inside in the present invention.

図中、破線は第1の熱処理後のOi濃度分布、実線は第
1の熱処理後に行なわれる第2の熱処理後のOi濃度分
布である。第1の熱処理後より第2の熱処理後の方が、
Si基板表面のO1濃度が低下しており、より内部まで
Oiは低濃度化が進行している。なお、第3の熱処理後
のOi濃度分布は処理温度が低い事から、第2の熱処理
後からほとんど変化していない。図中には第1の熱処理
時間を単に長くした場合、即ち従来技術の場合のO1濃
度分布も示したが、この場合は、低Oi濃度領域は若干
拡張するが、表面のOi濃度の変化は無く、本発明の方
が素子形成領域に相当するSi基板表面の低Oi濃度領
域が拡張されている。
In the figure, the broken line is the Oi concentration distribution after the first heat treatment, and the solid line is the Oi concentration distribution after the second heat treatment performed after the first heat treatment. After the second heat treatment than after the first heat treatment,
The O1 concentration on the surface of the Si substrate is decreasing, and the Oi concentration is decreasing further into the interior. Note that the Oi concentration distribution after the third heat treatment is almost unchanged from after the second heat treatment because the treatment temperature is low. The figure also shows the O1 concentration distribution in the case where the first heat treatment time is simply lengthened, that is, in the case of the conventional technique. In this case, the low Oi concentration region expands slightly, but the change in the Oi concentration on the surface However, in the present invention, the low Oi concentration region on the Si substrate surface corresponding to the element formation region is expanded.

なお、第1の熱処理と第2の熱処理が独立に行われると
、Si基板は間熱処理の間に一度室温に冷却される。第
2の熱処理の際に室温から熱処理温度まで昇温される過
程でOi析出核が最も形成、成長しやすい600℃〜9
00℃の温度領域の熱処理を受ける事になるため、Si
基板表面領域でOi析出による結晶欠陥発生の可能性が
高くなる。従って、第1.第2の熱処理は同一熱処理炉
内で連続して一括に処理される事が望ましい。
Note that when the first heat treatment and the second heat treatment are performed independently, the Si substrate is cooled to room temperature once between the heat treatments. During the second heat treatment, Oi precipitation nuclei are most likely to form and grow between 600°C and 90°C in the process of increasing the temperature from room temperature to the heat treatment temperature.
Since it will undergo heat treatment in the temperature range of 00℃, Si
The possibility of occurrence of crystal defects due to Oi precipitation increases in the substrate surface region. Therefore, the first. It is desirable that the second heat treatment be performed continuously and all at once in the same heat treatment furnace.

〔実施例〕〔Example〕

次に本発明について実施例を挙げて説明する。 Next, the present invention will be explained by giving examples.

第1の実施例では、直径150+nm、Oi濃度18x
 10 ”atoms/adのP型Si基板に第1の熱
処理として1180℃ 4時間、連続した第2の熱処理
として1050℃ 6時間の溶体化処理を行った。従来
技術との比較のため同じSi基板に1180℃ 6時間
 700℃ 10時間の熱処理を施した試料も作製した
。これらのSi基板上に、深さ5μmのウェルを用いた
CMOSメモリデバイスを製造し、その歩留りを比較し
た所、本実施例のSi基板は従来技術によるSi基板よ
りも約IO%の良品率向上を見、本発明の優位性が確か
められた。
In the first example, the diameter is 150+nm and the Oi concentration is 18x.
A P-type Si substrate of 10" atoms/ad was subjected to solution treatment at 1180°C for 4 hours as the first heat treatment and at 1050°C for 6 hours as a continuous second heat treatment.For comparison with the conventional technology, the same Si substrate was We also prepared samples that were heat-treated at 1180°C for 6 hours and at 700°C for 10 hours.CMOS memory devices using wells with a depth of 5 μm were manufactured on these Si substrates, and the yields were compared. The Si substrate of the example showed an improvement in the yield rate of about IO% over the Si substrate of the prior art, confirming the superiority of the present invention.

さらにこれら歩留り評価の完了したSi基板をヘキ開し
、ライトエッチを行ったSi基板断面での結晶欠陥分布
を調査した。第2図に、この時のSi基板表面からの結
晶欠陥密度分布を示した。
Furthermore, the Si substrates for which the yield evaluation had been completed were cleaved, and the crystal defect distribution in the cross section of the Si substrates subjected to light etching was investigated. FIG. 2 shows the crystal defect density distribution from the surface of the Si substrate at this time.

ここで言う欠陥密度は、表面から5μm@の視野“内で
観察された欠陥数から計算された値である。
The defect density referred to here is a value calculated from the number of defects observed within a field of view of 5 μm from the surface.

本実施例では、深さ20 /J mまで完全に無欠陥が
達成されており素子形成領域はDZ内に存在していた。
In this example, completely defect-free conditions were achieved up to a depth of 20/J m, and the element formation region existed within the DZ.

これに対し従来技術によるSi基板では、深さ5μmで
既に低密度ながら欠陥発生が認められた。また欠陥密度
の増加のしかたが本実施例では深さ30μmから急峻に
立ち上がっているのに対し、従来技術のものでは、表面
近傍から緩やかに増加する傾向があり、これは第1図に
示したような熱処理後のOi濃度分布を反映するもので
ある。
On the other hand, in the Si substrate according to the prior art, defects were already observed at a depth of 5 μm, although the density was low. In addition, the defect density increases steeply from a depth of 30 μm in this example, whereas in the conventional technology, it tends to increase gradually from near the surface, as shown in Figure 1. This reflects the Oi concentration distribution after such heat treatment.

次に本発明の第2の実施例について述べる。本実施例で
はO1濃度15.7 X 10 ”atoms/ cn
tのSi基板に対して、第1の熱処理として1200℃
4時間、連続した第2の熱処理として■050℃6時間
、第3の熱処理として700℃ 10時間の熱処理を施
した。なお、第3の熱処理を行わなかった試料も作製し
た。これらのSi基板上に厚さ120人の薄いSiO2
膜を熱酸化で形成し、面積0.1 cutの多結晶Si
を電極とするMOSダイオードを作製し、薄い5iQ2
膜の絶縁耐圧を調べた。従来技術による参照試作として
は、やはりO1濃度15ゴX 10 ”atoms/c
fflのSi基板に1200℃ 5時間、700℃ 1
0時間の熱処理を施したものを用い、同一条件で作製さ
れたMOSダイオードの絶縁耐圧を調べた。
Next, a second embodiment of the present invention will be described. In this example, the O1 concentration was 15.7×10”atoms/cn
1200°C as the first heat treatment for the Si substrate of
A second heat treatment was performed at 050° C. for 6 hours, and a third heat treatment was performed at 700° C. for 10 hours. Note that a sample that was not subjected to the third heat treatment was also produced. A thin SiO2 layer with a thickness of 120 mm is deposited on these Si substrates.
The film is formed by thermal oxidation and is made of polycrystalline Si with an area of 0.1 cut.
A MOS diode with electrodes was fabricated, and a thin 5iQ2
The dielectric strength voltage of the membrane was investigated. As a reference prototype using the conventional technology, the O1 concentration is 15g x 10”atoms/c.
ffl Si substrate at 1200°C for 5 hours, 700°C 1
Using a MOS diode that had been heat-treated for 0 hours, the dielectric strength voltage of MOS diodes manufactured under the same conditions was examined.

第3図は、これらの試料の絶縁耐圧の測定結果である。FIG. 3 shows the results of measuring the dielectric strength of these samples.

第3の熱処理まで施したSi基板では、比較的中電界(
4〜8MV/Cm)で破壊するモードのものは皆無で全
てがほぼ5iOz膜の真性耐圧であったのに対し、従来
技術によるものでは約15%みられた。この差は、熱酸
化時にSi基板の極表面に存在するOi析出物がSi0
g膜に取り込まれ耐圧不良を誘発する事を従来技術では
完全に克服できていない事を示すものである。また、本
実施例において第3の熱処理を省略した場合では中電界
で破壊されるモードの不良が10%程度みられたが、こ
れはゲッタリング効果の不足により重金属等の汚染が完
全に除去できなかった事による。この事は、耐圧測定後
、Si基板内部の結晶欠陥密度をライトエッチにより測
定した所10’ケ/ cnt〜3X10’ケ/ cnt
の欠陥しか観察されなかった事から確認された。
The Si substrate that has been subjected to the third heat treatment has a relatively medium electric field (
There were no cases where the breakdown mode occurred at a voltage of 4 to 8 MV/Cm), and all of them were approximately at the intrinsic breakdown voltage of the 5iOz film, whereas this was observed in about 15% of cases using the prior art. This difference is due to the fact that Oi precipitates present on the extreme surface of the Si substrate during thermal oxidation
This shows that the conventional technology has not been able to completely overcome the problem of being incorporated into the G film and causing breakdown voltage failure. In addition, in this example, when the third heat treatment was omitted, about 10% of defects were observed in the mode destroyed by medium electric fields, but this is because the contamination of heavy metals etc. could not be completely removed due to the lack of gettering effect. Because it wasn't there. This is confirmed by measuring the crystal defect density inside the Si substrate by light etching after measuring the breakdown voltage.
This was confirmed because only defects were observed.

次に本発明の第3の実施例について述べる。本実施例で
はOi濃度18.5 X 1017atoms/ cn
tのSi基板に第1の熱処理として1180℃ 4時間
、第2の熱処理として1050℃ 6時間の熱処理を施
した。この時、第1の熱処理と第2の熱処理を連続して
一括処理した試料と、核々を分割した処理とし一度室温
まで冷却した後第2熱処理を施した試料とを作製した。
Next, a third embodiment of the present invention will be described. In this example, the Oi concentration is 18.5 x 1017 atoms/cn
The Si substrate of t was subjected to heat treatment at 1180° C. for 4 hours as a first heat treatment and at 1050° C. for 6 hours as a second heat treatment. At this time, a sample was prepared in which the first heat treatment and the second heat treatment were consecutively performed at once, and a sample in which the kernels were treated separately and once cooled to room temperature and then subjected to the second heat treatment.

これらの試料について、0MO8製造工程の熱処理を加
えた後、ヘキ開し、レーザートモグラフィー(応用物理
、第55巻、第6号、1986年 p542参照)によ
り内部の結晶欠陥を観察した。その結果、連続−括処理
の場合DZ幅は38〜45μm(試料数20)であった
のに対し分割処理の場合は5〜35μm(試料数20)
でバラツキも大きかった。これは分割処理の場合、第2
の熱処理時、室温から1050℃までの昇温過程で析出
核の再形成・成長が起こりOi析出が促進された事によ
る。バラツキの増加については、複数のSi基板が熱処
理炉に入る際、その人炉順によって個々のSi基板が受
ける熱処理の条件(温度1時間)が微妙に変化するため
形成されるO1析出核の特性が不均一となるためである
These samples were subjected to the heat treatment of the 0MO8 production process, then opened, and internal crystal defects were observed by laser tomography (see Applied Physics, Vol. 55, No. 6, p. 542, 1986). As a result, in the case of continuous-batch processing, the DZ width was 38 to 45 μm (20 samples), whereas in the case of divided processing, it was 5 to 35 μm (20 samples).
There was also a large variation. In the case of split processing, this is the second
This is because during the heat treatment, precipitate nuclei reformed and grew during the temperature increase process from room temperature to 1050°C, promoting Oi precipitation. The increase in variation is due to the characteristics of O1 precipitation nuclei that are formed because when multiple Si substrates enter a heat treatment furnace, the heat treatment conditions (temperature for 1 hour) that each Si substrate receives changes slightly depending on the order in which they are placed in the heat treatment furnace. This is because it becomes non-uniform.

以上の結果から、第1の熱処理と第2の熱処理は連続し
た一括処理である必要のある事が分かる。
From the above results, it can be seen that the first heat treatment and the second heat treatment need to be continuous batch treatments.

!発明の効果〕 以上説明したように、本発明によるSi基板の製造方法
ではDZを形成するための溶体化処理を高温の第1の熱
処理と、これに連続した第1の熱処理より低温の第2の
熱処理の一括2段階処理とする事で、素子形成領域のO
i析出起因の結晶欠陥を完全に抑制し、これによる素子
特性劣化、製品歩留りの低下を改善できる効果がある。
! [Effects of the Invention] As explained above, in the method for manufacturing a Si substrate according to the present invention, the solution treatment for forming the DZ is performed as a first heat treatment at a high temperature and a second heat treatment at a lower temperature than the first heat treatment. By performing heat treatment in two stages, the O in the element formation area is reduced.
It has the effect of completely suppressing crystal defects caused by i-precipitation and improving the deterioration of device characteristics and product yield caused by this.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の概念を示すため、核熱処理を施した時
のSi基板表面から内部へ向ってのOi濃度分布を示し
た図である。第2図はSi基板表面から内部へ向っての
結晶欠陥密度の分布を示した図で、本発明の第1の実施
例と従来技術との比較を示した図である。第3図(A)
〜(C)は本発明の第2の実施例と従来技術からなるS
i基板での3202膜の絶縁耐圧分布の比較を示した図
である。 代理人 弁理士  内 原   晋 丼 2 薗 θ (表面) 10〃3θ 摩さ(tL帽) 一一−−−第tの黒処理稜 一第2d鯛団暗 一−−芹1/7熱処理/1時昨俵 茅 l g L’!、 ) #3  11!U
In order to illustrate the concept of the present invention, FIG. 1 is a diagram showing the Oi concentration distribution from the surface of a Si substrate toward the inside when nuclear heat treatment is performed. FIG. 2 is a diagram showing the distribution of crystal defect density from the surface of the Si substrate toward the inside, and is a diagram showing a comparison between the first embodiment of the present invention and the prior art. Figure 3 (A)
~(C) is S consisting of the second embodiment of the present invention and the prior art
FIG. 3 is a diagram showing a comparison of the dielectric strength distribution of the 3202 film on the i-substrate. Agent Patent Attorney Shindon Uchihara 2 Sono θ (surface) 10〃3θ Masa (tL cap) 11 --- tth black treatment ridge 1 2d sea bream dark 1 -- Seri 1/7 heat treatment / 1 At the time, it was bao l g L'! , ) #3 11! U

Claims (1)

【特許請求の範囲】 (1)チョクラルスキー法で製造されたSi単結晶から
切り出されたSi基板に、第1の熱処理として1100
℃以上の温度で熱処理を施し、第2の熱処理として、第
1の熱処理より低くかつ950℃以上の温度で熱処理を
施す事を特徴とするSi基板の製造方法 (2)前記第1、第2の熱処理の後、さらに900℃未
満の温度で第3の熱処理が追加される事を特徴とする請
求項1記載のSi基板の製造方法(3)前記第1、第2
の熱処理もしくは、第1乃至第3の熱処理を施すSi基
板が16.0〜19.5×10^1^7atoms/c
m^3の格子間酸素を含有している事を特徴とする請求
項1又は2記載のSi基板の製造方法 (4)前記第1、第2の熱処理が同一熱処理装置内で連
続して行われる事を特徴とする請求項1、2又は3記載
のSi基板の製造方法
[Claims] (1) A Si substrate cut out from a Si single crystal produced by the Czochralski method is subjected to a first heat treatment at 1100° C.
A method for manufacturing a Si substrate, characterized in that heat treatment is performed at a temperature of 950 °C or higher, and as a second heat treatment, a heat treatment is performed at a temperature lower than the first heat treatment and 950 °C or higher (2) the first and second 3. The method for manufacturing a Si substrate according to claim 1, further comprising adding a third heat treatment at a temperature of less than 900° C. after the heat treatment.
The Si substrate subjected to the heat treatment or the first to third heat treatments has a density of 16.0 to 19.5 x 10^1^7 atoms/c.
3. The method for manufacturing a Si substrate according to claim 1, wherein the Si substrate contains interstitial oxygen of m^3. The method for manufacturing a Si substrate according to claim 1, 2 or 3, characterized in that:
JP31012989A 1988-11-29 1989-11-28 Manufacture of silicon substrate Pending JPH02224249A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31012989A JPH02224249A (en) 1988-11-29 1989-11-28 Manufacture of silicon substrate

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP30310288 1988-11-29
JP63-303102 1988-11-29
JP31012989A JPH02224249A (en) 1988-11-29 1989-11-28 Manufacture of silicon substrate

Publications (1)

Publication Number Publication Date
JPH02224249A true JPH02224249A (en) 1990-09-06

Family

ID=26563395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31012989A Pending JPH02224249A (en) 1988-11-29 1989-11-28 Manufacture of silicon substrate

Country Status (1)

Country Link
JP (1) JPH02224249A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5649532A (en) * 1979-09-28 1981-05-06 Toshiba Corp Manufacture of silicon substrate
JPS57188827A (en) * 1981-05-15 1982-11-19 Nec Corp Manufacture of semiconductor device
JPS58222529A (en) * 1982-06-21 1983-12-24 Hitachi Ltd Manufacture of semiconductor substrate
JPS603130A (en) * 1983-06-03 1985-01-09 モトロ−ラ・インコ−ポレ−テツド Method of forming no defect surface layer of silicon wafer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5649532A (en) * 1979-09-28 1981-05-06 Toshiba Corp Manufacture of silicon substrate
JPS57188827A (en) * 1981-05-15 1982-11-19 Nec Corp Manufacture of semiconductor device
JPS58222529A (en) * 1982-06-21 1983-12-24 Hitachi Ltd Manufacture of semiconductor substrate
JPS603130A (en) * 1983-06-03 1985-01-09 モトロ−ラ・インコ−ポレ−テツド Method of forming no defect surface layer of silicon wafer

Similar Documents

Publication Publication Date Title
KR100573473B1 (en) Silicon wafer and method of fabricating the same
EP0948037B1 (en) Method for manufacturing a silicon epitaxial wafer
US6641888B2 (en) Silicon single crystal, silicon wafer, and epitaxial wafer.
JPH0684925A (en) Semiconductor substrate and its treatment
JPS6255697B2 (en)
JPH01202828A (en) Manufacture of semiconductor device
KR20000057350A (en) Method for manufacturing semiconductor silicon epitaxial wafer and semiconductor device
JPH07335657A (en) Silicon wafer and its thermal treatment method
JPH11168106A (en) Treatment method of semiconductor substrate
JPH10229093A (en) Production of silicon epitaxial wafer
US6599816B2 (en) Method of manufacturing silicon epitaxial wafer
US20120049330A1 (en) Silicon wafer and method for producing the same
JPH11204534A (en) Manufacture of silicon epitaxial wafer
US5574307A (en) Semiconductor device and method of producing the same
JPH09283529A (en) Manufacture and inspection of semiconductor substrate
JPH02224249A (en) Manufacture of silicon substrate
JPS63198334A (en) Manufacture of semiconductor silicon wafer
JPH06295913A (en) Manufacture of silicon wafer and silicon wafer
KR20020060244A (en) Method for manufacturing annealed wafer and annealed wafer
JPH05129404A (en) Method of evaluating wafer
JPH09223699A (en) Silicon wafer and its manufacturing method
JPH11297704A (en) Evaluation method for oxygen deposit density
JPH023539B2 (en)
JPH11288942A (en) Manufacture of semiconductor device
JPH01298726A (en) Manufacture of semiconductor wafer and semiconductor device using the semiconductor wafer