JPH0222321B2 - - Google Patents

Info

Publication number
JPH0222321B2
JPH0222321B2 JP25845385A JP25845385A JPH0222321B2 JP H0222321 B2 JPH0222321 B2 JP H0222321B2 JP 25845385 A JP25845385 A JP 25845385A JP 25845385 A JP25845385 A JP 25845385A JP H0222321 B2 JPH0222321 B2 JP H0222321B2
Authority
JP
Japan
Prior art keywords
bright spot
measurement surface
receiving element
light receiving
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP25845385A
Other languages
Japanese (ja)
Other versions
JPS62119408A (en
Inventor
Shigeru Kitahara
Seiji Kuroda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KAGAKU GIJUTSUCHO KINZOKU ZAIRYO GIJUTSU KENKYU SHOCHO
Original Assignee
KAGAKU GIJUTSUCHO KINZOKU ZAIRYO GIJUTSU KENKYU SHOCHO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KAGAKU GIJUTSUCHO KINZOKU ZAIRYO GIJUTSU KENKYU SHOCHO filed Critical KAGAKU GIJUTSUCHO KINZOKU ZAIRYO GIJUTSU KENKYU SHOCHO
Priority to JP25845385A priority Critical patent/JPS62119408A/en
Publication of JPS62119408A publication Critical patent/JPS62119408A/en
Publication of JPH0222321B2 publication Critical patent/JPH0222321B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measurement Of Optical Distance (AREA)
  • Automatic Focus Adjustment (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は光ビームを測定面の一点に照射して、
その散乱光を用いて測定面の変位を測定する光学
式変位測定装置に関するものである。
[Detailed Description of the Invention] Industrial Application Field The present invention irradiates a light beam onto one point on a measurement surface.
The present invention relates to an optical displacement measuring device that measures displacement of a measurement surface using the scattered light.

従来技術 光学的粗面の微小変位測定は、産業界の広い分
野に行われ、数多くの方法が提案されている。
BACKGROUND OF THE INVENTION Measuring minute displacements of optically rough surfaces is performed in a wide range of industrial fields, and many methods have been proposed.

その1つとして、 測定面の一点に光ビームを照射して輝点を生じ
させ、測定面の変位によつて、この輝点が移動す
るのを入射ビームと異なる方向から観測して変位
を測定する装置において、輝点の移動量を検出す
るために光電変換機能を持つた受光素子と、受光
素子上に輝点の実像を結ぶためのレンズを組合せ
た装置が知られている。(特公昭59−762号公報) しかし、この種の装置においては、その測定精
度は輝点の大きさ、測定面の光学的性質、入射ビ
ームと観測部がなす観測角の大きさ及び受光素子
の特性とその出力の処理方法により決定される。
One method is to irradiate a light beam onto one point on the measurement surface to create a bright spot, and then measure the displacement by observing the movement of this bright spot from a direction different from the incident beam due to the displacement of the measurement surface. There is known a device that combines a light-receiving element with a photoelectric conversion function for detecting the amount of movement of a bright spot, and a lens for forming a real image of the bright spot on the light-receiving element. (Special Publication No. 59-762) However, in this type of device, the measurement accuracy depends on the size of the bright spot, the optical properties of the measurement surface, the size of the observation angle between the incident beam and the observation section, and the light receiving element. is determined by the characteristics of the output and how its output is processed.

この種の装置における一般的な問題点として
は、次の点が挙げられる。
Common problems with this type of device include the following.

(1) ビーム照射部と観測部が一体化した装置にお
いては、測定対象物から離れるに従い、両部の
なす角が小さくなるため、測定対象物の変位に
対する輝点の移動量の割合、即ち感度が減少
し、測定精度が低下する。通常測定対象物と観
測部の距離が大きくなると測定精度が低下し、
例えば50mmの距離から10μmの測定精度を実現
できても、1mの距離から同等の測定精度を得
ることは非常に困難である。
(1) In a device in which the beam irradiation part and the observation part are integrated, the angle between the two parts becomes smaller as the distance from the measurement object increases. decreases, and measurement accuracy decreases. Normally, as the distance between the measurement target and the observation unit increases, measurement accuracy decreases.
For example, even if it is possible to achieve a measurement accuracy of 10 μm from a distance of 50 mm, it is extremely difficult to obtain the same measurement accuracy from a distance of 1 m.

(2) 粗面の形状及び光学系の有限の分離能に起因
する輝点内の輝度分布の不規則性を補正するよ
うな手段が講じられていないので、輝点の大き
さによつて測定精度が制限される。
(2) Since no measures have been taken to correct for the irregularity of the brightness distribution within the bright spot due to the shape of the rough surface and the finite resolution of the optical system, the measurement is based on the size of the bright spot. Accuracy is limited.

発明の目的 本発明は従来装置における前記問題点を解消す
べくなされたもので、その目的は測定精度の優れ
た光学式変位測定装置を提供するにある。
OBJECTS OF THE INVENTION The present invention has been made to solve the above-mentioned problems in conventional devices, and its purpose is to provide an optical displacement measuring device with excellent measurement accuracy.

発明の構成 本発明者らは前記目的を達成すべく鋭意研究の
結果、結像レンズのほかに、シリンドリカルレン
ズまたは凹面鏡を結像レンズと受光素子の間に設
けると前記問題点を解消し得られることを究明し
得、この知見に基いて本発明を完成した。
Composition of the Invention As a result of intensive research to achieve the above object, the present inventors have found that the above problems can be solved by providing a cylindrical lens or a concave mirror between the imaging lens and the light receiving element in addition to the imaging lens. The present invention was completed based on this knowledge.

本発明の光学式変位測定装置を図面に基いて説
明する。
The optical displacement measuring device of the present invention will be explained based on the drawings.

第1図はシリンドリカルレンズを用いた場合の
構成図である。
FIG. 1 is a configuration diagram when a cylindrical lens is used.

測定面Sにほぼ垂直方向に置かれた集光レンズ
2とレーザ1によつてレーザ光を測定面上の一点
Oに収束させる。この輝点Oの発する散乱光は、
観測角θの方向の光軸上に配列された結像レンズ
3を通り、次にシリンドリカルレンズ4によつて
縦方向に縮小された輝点の実像Pを一次元受光素
子5の上に結ばせる。
A condenser lens 2 placed substantially perpendicular to the measurement surface S and a laser 1 converge the laser beam to a point O on the measurement surface. The scattered light emitted by this bright spot O is
It passes through the imaging lens 3 arranged on the optical axis in the direction of the observation angle θ, and then is vertically reduced by the cylindrical lens 4 to form a real image P of the bright spot on the one-dimensional light receiving element 5. .

測定面Sがdだけ変位すると、輝点はO′に移
動し、対応する像もP′へ移動する。このとき結像
レンズ3と輝点との距離がdに比べて十分大きけ
れば、PからP′への移動距離Δとdの間には、 Δ=Msinθd …(1) なる関係が成り立つ。但し、Mは観測部光学系の
倍率を表わす。
When the measuring surface S is displaced by d, the bright spot moves to O' and the corresponding image also moves to P'. At this time, if the distance between the imaging lens 3 and the bright spot is sufficiently larger than d, the relationship Δ=Msinθd (1) holds between the moving distance Δ from P to P' and d. However, M represents the magnification of the observation unit optical system.

従つて、M,θを一定とすればΔよりdが求め
られる。
Therefore, if M and θ are constant, d can be found from Δ.

実際には輝点及びその実像は有限の大きさを有
し、しかもその輝度分布が必ずしも一定ではない
ので、輝点の像の移動距離Δが余りに小さいと険
出できない。
Actually, the bright spot and its real image have a finite size, and the brightness distribution thereof is not necessarily constant, so if the moving distance Δ of the bright spot image is too small, it cannot be seen.

第2図に受光素子5上の輝点の像の輝度分布が
観測角θ及びシリンドリカルレンズ4によつてど
のように変化するかを示す。
FIG. 2 shows how the brightness distribution of the bright spot image on the light receiving element 5 changes depending on the observation angle θ and the cylindrical lens 4.

先ず、シリンドリカルレンズ4の無い場合、θ
が0かこれに近い場合では、(a)に示すように輝点
の像の輪郭は円形であり、一次元受光素子5によ
つて検出されるその横断線上の輝度分布は、山形
に不規則なピークが重畳したものとなる。このピ
ーク群はレーザ光のようなコヒーレント光に特有
なスペツクルによるものであり、測定面の表面形
状及び結像レンズの分解能によつて定まる。
First, if there is no cylindrical lens 4, θ
When is 0 or close to 0, the outline of the image of the bright spot is circular as shown in (a), and the brightness distribution on the transverse line detected by the one-dimensional light receiving element 5 is irregular in the shape of a mountain. The result is a superposition of peaks. This peak group is due to speckles specific to coherent light such as laser light, and is determined by the surface shape of the measurement surface and the resolution of the imaging lens.

第2図bはθ=70゜の例で像が縦長の楕円形に
なり、輝度は全体的に低下する。
FIG. 2b shows an example in which θ=70°, and the image becomes a vertically elongated ellipse, and the brightness decreases overall.

シリンドリカルレンズ4を結像レンズと一次元
受光素子5の間の適当な位置に挿入すると、第2
図cに示すように、楕円形の像を縦方向に縮小
し、輝度を上昇させると同時にスペツクルによる
不規則な輝度変化を相対的に減少させることがで
きる。
When the cylindrical lens 4 is inserted at an appropriate position between the imaging lens and the one-dimensional light receiving element 5, the second
As shown in Figure c, it is possible to reduce the elliptical image in the vertical direction, increase the brightness, and at the same time relatively reduce irregular brightness changes due to speckles.

このようにして得られた受光素子上の像が第3
図に示すように測定面上の変化に伴つて移動す
る。電子回路6は像の中心線を検出し、その移動
量を電位に変換し、指示計7に示す。
The image thus obtained on the photodetector is the third
As shown in the figure, it moves with changes on the measurement surface. The electronic circuit 6 detects the center line of the image, converts the amount of movement into an electric potential, and indicates it on the indicator 7.

凹面鏡を用いた場合の実施例を第4図に示す。
図中4′は凹面鏡を示す。この作用効果は前記シ
リンドリカルレンズを用いた場合におけると同様
である。
FIG. 4 shows an embodiment using a concave mirror.
In the figure, 4' indicates a concave mirror. This effect is the same as when using the cylindrical lens.

実施例 溶射皮膜の施工中の膜厚測定に適用した実施例
について述べる。
Example An example in which the present invention was applied to the measurement of film thickness during construction of a thermal spray coating will be described.

第1図に示した一次元受光素子5としてMOS
リニアイメージセンサを用い、観測角θを70゜と
し、ビーム照射部及び観測部を測定面より約1m
の距離に置いて測定した。
As the one-dimensional light receiving element 5 shown in Fig. 1, a MOS
Using a linear image sensor, the observation angle θ is 70°, and the beam irradiation part and observation part are approximately 1 m from the measurement surface.
Measurements were taken at a distance of

第5図は皮膜の積層が繰返される毎に皮膜厚さ
が増加して行く過程を測定した結果である。周期
的に出力dが0になるのは、溶射粉末を吹付ける
溶射ガンが光路を遮断するためである。
FIG. 5 shows the results of measuring the process in which the film thickness increases each time the film layering is repeated. The reason why the output d becomes 0 periodically is because the thermal spray gun that sprays the thermal spray powder blocks the optical path.

第6図は積層終了後の皮膜厚さをマイクロメー
タで測定した値と本発明装置による測定値を比較
したものであり、良好な一致を示している。
FIG. 6 shows a comparison of the film thickness measured with a micrometer after the completion of lamination and the value measured by the apparatus of the present invention, and shows good agreement.

発明の効果 本発明の光学式変位測定装置によると、微小変
位も非接触で高精度に測定し得られる優れた効果
を奏し得られる。
Effects of the Invention According to the optical displacement measuring device of the present invention, even minute displacements can be measured with high accuracy in a non-contact manner.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明装置の一実施態様図、第2図及
び第3図は本発明の原理の説明図、第4図は他の
実施態様図、第5図及び第6図は本発明装置にお
ける効果を示す図である。 1:レーザ、2:集光レンズ、3:結像レン
ズ、4:シリンドリカルレンズ、4′:凹面鏡、
5:一次元受光素子、6:電子回路、7:指示
計。
Fig. 1 is a diagram of one embodiment of the device of the present invention, Figs. 2 and 3 are explanatory diagrams of the principle of the invention, Fig. 4 is a diagram of another embodiment, and Figs. 5 and 6 are diagrams of the device of the present invention. It is a figure showing the effect in. 1: laser, 2: condensing lens, 3: imaging lens, 4: cylindrical lens, 4': concave mirror,
5: one-dimensional light receiving element, 6: electronic circuit, 7: indicator.

Claims (1)

【特許請求の範囲】[Claims] 1 光ビームを測定面の1点に照射して輝点を発
生させ、測定面が変位する際の輝点の移動を観測
することにより、変位を測定する装置において、
測定面にほぼ垂直な方向に置かれたレーザ、レー
ザ光を測定面上の一点に集める集光レンズとから
なる輝点発生装置と、入射レーザ光と異なる光軸
上に配置された結像レンズ、輝点の像を縦方向に
縮小するシリンドリカルレンズまたは凹面鏡及び
輝点の像の位置を検出する一次元受光素子とから
なる輝点の移動観測装置と、受光素子の出力を処
理する電子回路からなる検出装置とからなること
を特徴とする光学式変位測定装置。
1. In a device that measures displacement by irradiating a light beam onto one point on the measurement surface to generate a bright spot and observing the movement of the bright spot when the measurement surface is displaced,
A bright spot generator consisting of a laser placed almost perpendicular to the measurement surface, a condensing lens that focuses the laser beam onto a single point on the measurement surface, and an imaging lens placed on a different optical axis from the incident laser beam. , a bright spot moving observation device consisting of a cylindrical lens or concave mirror that vertically reduces the bright spot image, and a one-dimensional light receiving element that detects the position of the bright spot image, and an electronic circuit that processes the output of the light receiving element. What is claimed is: 1. An optical displacement measuring device comprising: a detection device;
JP25845385A 1985-11-20 1985-11-20 Optical type displacement measuring apparatus Granted JPS62119408A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25845385A JPS62119408A (en) 1985-11-20 1985-11-20 Optical type displacement measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25845385A JPS62119408A (en) 1985-11-20 1985-11-20 Optical type displacement measuring apparatus

Publications (2)

Publication Number Publication Date
JPS62119408A JPS62119408A (en) 1987-05-30
JPH0222321B2 true JPH0222321B2 (en) 1990-05-18

Family

ID=17320421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25845385A Granted JPS62119408A (en) 1985-11-20 1985-11-20 Optical type displacement measuring apparatus

Country Status (1)

Country Link
JP (1) JPS62119408A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS646810A (en) * 1987-06-30 1989-01-11 Toyota Motor Corp Optical scanning type displacement sensor

Also Published As

Publication number Publication date
JPS62119408A (en) 1987-05-30

Similar Documents

Publication Publication Date Title
US4311383A (en) Method for determination of velocity and direction of motion of moving object by speckle patterns and apparatus therefor
CN102072710B (en) Optical angle measuring device and angle measuring method
JPH0222321B2 (en)
JPH0226164B2 (en)
Dhawan et al. Design and performance of a laser-based compact position sensor for long standoff distance
JP3200927B2 (en) Method and apparatus for measuring coating state
JPS6125011A (en) Optical distance measuring device
JP2603317B2 (en) Laser distance meter and calibration method for thickness gauge using laser distance meter
JPS5836032Y2 (en) level detection device
JPH0611313A (en) Thickness measuring instrument
JPS59203904A (en) Contactless measuring method of sectional size
JPH036440A (en) Measuring apparatus of distribution of particle size of raindrop
JPH01127905A (en) Measuring method for eccentric quantity of cylindrical body
JPH07503547A (en) Interferometric probe for distance measurement
JPS6262208A (en) Range-finding apparatuws and method
Yamaguchi Advances in the laser speckle strain gauge
JPS5826325Y2 (en) position detection device
JPS6057202A (en) Optical surface displacement detecting device
JP2529049B2 (en) Optical displacement meter
JPS6127681B2 (en)
Zhang et al. Research on a laser position and dimension online inspection system
JPH0224446B2 (en)
JPH01233310A (en) Optical method and optical probe for measuring shape of surface
JPH0540821A (en) 3-dimensional measuring device
JPH0266403A (en) Instrument for measuring outer diameter of filament body

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term